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Pf re ace 

Our original purpose in writing this book was to provide a text for the under- 
graduate linear algebra course at the Massachusetts Institute of Technology. This 
course was designed for mathematics majors at the junior level, although three- 
fourths of the students were drawn from other scientific and technological disciplines 
and ranged from freshmen through graduate students. This description of the 
M.I.T. audience for the text remains generally accurate today. The ten years since 
the first edition have seen the proliferation of linear algebra courses throughout 
the country and have afforded one of the authors the opportunity to teach the 
basic material to a variety of groups at Brandeis University, Washington Univer- 
sity (St. Louis), and the University of California (Irvine). 

Our principal aim in revising Linear Algebra has been to increase the variety 
of courses which can easily be taught from it. On one hand, we have structured the 
chapters, especially the more difficult ones, so that there are several natural stop- 
ping points along the way, allowing the instructor in a one-quarter or one-semester 
course to exercise a considerable amount of choice in the subject matter. On the 
other hand, we have increased the amount of material in the text, so that it can be 
used for a rather comprehensive one-year course in linear algebra and even as a 
reference book for mathematicians. 

The major changes have been in our treatments of canonical forms and inner 
product spaces. In Chapter 6 we no longer begin with the general spatial theory 
which underlies the theory of canonical forms. We first handle characteristic values 
in relation to triangulation and diagonalization theorems and then build our way 
up to the general theory. We have split Chapter 8 so that the basic material on 
inner product spaces and unitary diagonalization is followed by a Chapter 9 which 
treats sesqui-linear forms and the more sophisticated properties of normal opera- 
tors, including normal operators on real inner product spaces. 

We have also made a number of small changes and improvements from the 
first edition. But the basic philosophy behind the text is unchanged. 

We have made no particular concession to the fact that the majority of the 
students may not be primarily interested in mathematics. For we believe a mathe- 
matics course should not give science, engineering, or social science students a 
hodgepodge of techniques, but should provide them with an understanding of 
basic mathematical concepts. 

. . . 
am 
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On the other hand, we have been keenly aware of the wide range of back- 
grounds which the students may possess and, in particular, of the fact that the 
students have had very little experience with abstract mathematical reasoning. 
For this reason, we have avoided the introduction of too many abstract ideas at 
the very beginning of the book. In addition, we have included an Appendix which 
presents such basic ideas as set, function, and equivalence relation. We have found 
it most profitable not to dwell on these ideas independently, but to advise the 
students to read the Appendix when these ideas arise. 

Throughout the book we have included a great variety of examples of the 
important concepts which occur. The study of such examples is of fundamental 
importance and tends to minimize the number of students who can repeat defini- 
tion, theorem, proof in logical order without grasping the meaning of the abstract 
concepts. The book also contains a wide variety of graded exercises (about six 
hundred), ranging from routine applications to ones which will extend the very 
best students. These exercises are intended to be an important part of the text. 

Chapter 1 deals with systems of linear equations and their solution by means 
of elementary row operations on matrices. It has been our practice to spend about 
six lectures on this material. It provides the student with some picture of the 
origins of linear algebra and with the computational technique necessary to under- 
stand examples of the more abstract ideas occurring in the later chapters. Chap- 
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats 
linear transformations, their algebra, their representation by matrices, as well as 
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of 
polynomials over a field, the ideals in that algebra, and the prime factorization of 
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter- 
polation formula. Chapter 5 develops determinants of square matrices, the deter- 
minant being viewed as an alternating n-linear function of the rows of a matrix, 
and then proceeds to multilinear functions on modules as well as the Grassman ring. 
The material on modules places the concept of determinant in a wider and more 
comprehensive setting than is usually found in elementary textbooks. Chapters 6 
and 7 contain a discussion of the concepts which are basic to the analysis of a single 
linear transformation on a finite-dimensional vector space; the analysis of charac- 
teristic (eigen) values, triangulable and diagonalizable transformations; the con- 
cepts of the diagonalizable and nilpotent parts of a more general transformation, 
and the rational and Jordan canonical forms. The primary and cyclic decomposition 
theorems play a central role, the latter being arrived at through the study of 
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial 
domain, the computation of invariant factors and elementary divisors of a matrix, 
and the development of the Smith canonical form. The chapter ends with a dis- 
cussion of semi-simple operators, to round out the analysis of a single operator. 
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers 
the basic geometry, relating orthogonalization to the idea of ‘best approximation 
to a vector’ and leading to the concepts of the orthogonal projection of a vector 
onto a subspace and the orthogonal complement of a subspace. The chapter treats 
unitary operators and culminates in the diagonalization of self-adjoint and normal 
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and 
self-adjoint operators on an inner product space, moves on to the spectral theory 
of normal operators and then to more sophisticated results concerning normal 
operators on real or complex inner product spaces. Chapter 10 discusses bilinear 
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as 
well as groups preserving non-degenerate forms, especially the orthogonal, unitary, 
pseudo-orthogonal and Lorentz groups. 

We feel that any course which uses this text should cover Chapters 1, 2, and 3 
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual 
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and 
determinants, may be treated with varying degrees of thoroughness. In fact, 
polynomial ideals and basic properties of determinants may be covered quite 
sketchily without serious damage to the flow of the logic in the text; however, our 
inclination is to deal with these chapters carefully (except the results on modules), 
because the material illustrates so well the basic ideas of linear algebra. An ele- 
mentary course may now be concluded nicely with the first four sections of Chap- 
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to 
be included, a more extensive coverage of Chapter 6 is necessary. 

Our indebtedness remains to those who contributed to the first edition, espe- 
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp, 
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby. 
In addition, we would like to thank the many students and colleagues whose per- 
ceptive comments led to this revision, and the staff of Prentice-Hall for their 
patience in dealing with two authors caught in the throes of academic administra- 
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill 
and her tireless efforts in typing the revised manuscript. 

K. M. H. / R. A. K. 
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3. Linear Transformations 

3.1. Linear Transformations 

We shall now introduce linear transformations, the objects which we 
shall study in most of the remainder of this book. The reader may find it 
helpful to read (or reread) the discussion of functions in the Appendix, 
since we shall freely use the terminology of that discussion. 

DeJinition.. Let V and W be vector spaces over the jield F. A linear 

transformation from V into W is a function T from V into W such that 

T(ca + P> = c(Ta) + TP 

for all a! and p in V and all scalars c in F. 

EXAMPLE 1. If V is any vector space, the identity transformation 
I, defined by ICY = (Y, is a linear transformation from V into V. The 
zero transformation 0, defined by Oa! = 0, is a linear transformation 
from V into V. 

EXAMPLE 2. Let F be a field and let V be the space of polynomial 
functions f from F into F, given by 

f(z) = co + ClX + . . . + CkXk. 
Let 

@f)(x) = Cl + 2czx + * * - + kCkxk-‘. 

Then D is a linear transformation from V into V-the differentiation 
transformation. 

67 



68 Linear Transformations Chap. 3 

EXAMPLE 3. Let A be a fixed m X n matrix with entries in the field F. 
The function T defined by T(X) = AX is a linear transformation from 
Fnxl into FmX1. The function U defined by U(a) = cuA is a linear trans- 
formation from Fn’ into Fn. 

EXAMPLE 4. Let P be a fixed m X m matrix with entries in the field F 
and let Q be a fixed n X n matrix over F. Define a function T from the 
space Fmxn into itself by T(A) = PA&. Then T is a linear transformation 
from Fnzxn into Fmxn, because 

T(cA + B) = P(cA + B)Q 
= (CPA + PB)Q 
= cPAQ + PBQ 
= CT(A) + T(B). 

EXAMPLE 5. Let R be the field of real numbers and let V be the space 
of all functions from R into R which are continuous. Define T by 

(Tf)(z) = ff(t) dt. 

Then T is a linear transformation from V into V. The function Tf is 
not only continuous but has a continuous first derivative. The linearity 
of integration is one of its fundamental properties. 

The reader should have no difficulty in verifying that the transfor- 
mations defined in Examples 1, 2, 3, and 5 are linear transformations. We 
shall expand our list of examples considerably as we learn more about 
linear transformations. 

It is important to note that if T is a linear transformation from I’ 
into W, then T(0) = 0; one can see this from the definition because 

T(0) = T(0 + 0) = T(0) + T(0). 

This point is often confusing to the person who is studying linear algebra 
for the first time, since he probably has been exposed to a slightly different 
use of the term ‘linear function.’ A brief comment should clear up the 
confusion. Suppose V is the vector space R’. A linear transformation from 
V into V is then a particular type of real-valued function on the real line R. 
In a calculus course, one would probably call such a function linear if its 
graph is a straight line. A linear transformation from R1 into R’, according 
to our definition, will be a function from R into R, the graph of which is a 
straight line passing through the origin. 

In addition to the property T(0) = 0, let us point out another property 
of the general linear transformation T. Such a transformation ‘preserves’ 
linear combinations; that is, if ~1, . . . , cyn are vectors in V and cl, . . . , Cn 
are scalars, then 

T(cw + . . . + CA) = cl(Tal) + . . . + cn(T4 
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This follows readily from the definition. For example, 

T(clal + cm) = cl(Ta~) + T(w) 
= Cl(Tcyl) + cs(Tarz). 

Theorem 1. Let V be a jinite-dimensional vector space over the field F 
and let {al, . . . , a,} be an ordered basis for V. Let W be a vector space over the 
same jield F and let PI, . . . , Pn be any vectors in W. Then there is precisely 
one linear transformation T from V into W such that 

Taj = fij, j = l,...,n. 

Proof. To prove there is some linear transformation T with Tq = 
pj we proceed as follows. Given a! in I’, there is a unique n-tuple (21, . . . , z,) 
such that 

a = Xl(Y1 + . . . + xnan. 

For this vector Q! we define 

Ta! = x& + . . . + x,&. 

Then T is a well-defined rule for associating with each vector CY in V a 
vector TCX in W. From the definition it is clear that Tai = pi for each j. 
To see that T is linear, let 

P = y1w + . ** + ynwz 

be in V and let c be any scalar. Now 

cc-i + P = (CXl + Y&l + * . . + (cxn + Yn)% 

and so by definition 

T(ca! + 13) = (CG + YI)& + . . . + (~5% + y&L 

On the other hand, 

and thus 

= i4, (CXi + YJPi 

T(ca! + P) = c(Tcx) + TP. 

If U is a linear transformation from V into W with Uai = @j, j = 

1 7”‘) n, then for the vector a! = 2 xiai we have 
i=l 

= iS, Xi( UQ(i) 
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so that U is exactly the rule T which we defined above. This shows that the 
linear transformation T with TCY~ = pi is unique. 1 

Theorem 1 is quite elementary; however, it is so basic that we have 
stated it formally. The concept of function is very general. If V and W are 
(non-zero) vector spaces, there is a multitude of functions from V into W. 
Theorem 1 helps to underscore the fact that the functions which are linear 
are extremely special. 

EXAMPLE 6. The vectors 

a1 = (1,2> 

a2 = (3,4) 

are linearly independent and therefore form a basis for R2. According to 
Theorem 1, there is a unique linear transformation from R2 into R3 such 
that 

TcxI = (3, 2, 1) 

TCQ = (6, 5, 4). 

If so, we must be able to find T(e1). We find scalars cl, c2 such that EI = 
clal + c2a2 and then we know that TQ = clTczl + czTa2. If (1, 0) = 
~(1, 2) + ~(3, 4) then cl = -2 and c2 = 1. Thus 

TO, 0) = -2(3, 2, 1) + (6, 5, 4) 
= (0, 1, 2). 

EXAMPLE 7. Let T be a linear transformation from the m-tuple space 
Fm into the n-tuple space Fn. Theorem 1 tells us that T is uniquely de- 
termined by the sequence of vectors PI, . . . , &,, where 

pi = TEE, i=l , . . . , m. 

In short, T is uniquely determined by the images of the standard basis 
vectors. The determination is 

a = (Xl, . . . ) x,) 

Tcx = x& + 1. . + x,,&,v 

If B is the m X n matrix which has row vectors /31, . . . , Pm, this says that 

Ta: = aB. 

In other words, if ,& = (Bil, . . . , Bi,), then 

T(zl, . . . , x,) = [xl . . . x,] [Fl ::: ?J 

This is a very explicit8 description of the linear transformation. In Section 
3.4 we shall make a serious study of the relationship between linear trans- 
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formations and matrices. We shall not pursue the particular description 
Ta = CXB because it has the matrix R on the right of the vector CY, and that 
can lead to some confusion. The point of this example is to show that we 
can give an explicit and reasonably simple description of all linear trans- 
formations from Fm into P. 

If T is a linear transformation from li into W, then the range of T is 
rlot only a subset of W; it is a subspace of W. Let Rr be the range of T, that 
is, the set of all vectors 0 in W such that p = Ta for some cx in F/‘. Let fll 
and pz be in Rr and let c be a scalar. There are vectors al and cy2 in V such 
that Ta, = p1 and Taz = ps. Since T is linear 

T(cw + (~2) = cTal + Ta2 

= CPl + P2, 

which shows that cpl + p2 is also in RT. 
Another interesting subspace associated with the linear transformation 

T is the set N consisting of the vectors (Y in V such that Tar = 0. It is a 
subspace of V because 

(a) T(0) = 0, so that N is non-empty; 
(b) if Tar, = Ta2 = 0, then 

T(cal + a2) = CTCQ + Tolz 
=co+o 
= 0 

so that CLY~ + a2 is in N. 

DeJinition. Let V and W be vector spaces over the jield F and let T 
be a linear transformation from V into W. The null space of T is the set 
of all vectors CY in V such that TCX = 0. 

If V is finite-dimensional, the rank of T is the dimension of the ranye 
of T and the nullity of T is the dimension of the null space of T. 

The following is one of the most important results in iinear algebra. 

Theorem 2. Let V and W be vector spaces over the field F and let T be 
a linear transformation from V into W. Suppose that V is jinite-dimensional. 
Then 

rank (T) + nullity (T) = dim V. 

Proof. Let {(Ye, . . . , CQ} be a basis for N, the null space of T. 
There are vectors CQ+~, . . . , a, in V such that {cY~, . . . , LY%} is a basis for V. 
We shall now prove that {Tcx~+~, . . . , Ta,} is a basis for the range of T. 
The vectors Toll, . . . , Ta, certainly span the range of T, and since Tcq = 0, 
for j 5 k, we see that TcQ+~, . . . , TCY, span the range. To see that these 
vectors are independent, suppose we have scalars ci such that 

,i+, ci(Tai) = 0. 



72 Linear Transformations Chap. 3 

This says that 

and accordingly the vector a! = $ ciai is in the null space of T. Since 
i=lc+1 

a, . . . , ak form a basis for N, there must be scalars bl, . . . , bk such that 
k 

a = 2 biai. 
i=l 

Thus 

; biai - i CjCKj = 0 
i-l j=k+l 

and since (~1, . . . , cylL are linearly independent we must have 

bl = . . . = bk = Ck+l = . . . = Cn = 0. 

If r is the rank of T, the fact that Tak+I, . . . , TCY, form a basis for 
the range of T tells us that r = n - lc. Since k is the nullity of T and n is 
the dimension of V, we are done. 1 

Theorem 3. If A is an m X n matrix with entries in the field F, then 

row rank (A) = column rank (A). 

Proof. Let T be the linear transformation from Fnxl into FmXl 
defined by T(X) = &4X. The null space of T is the solution space for the 
system AX = 0, i.e., the set of all column matrices X such that AX = 0. 
The range of T is the set of all m X 1 column matrices Y such that AX = 
Y has a solution for X. If Al, . . . , A,, are the columns of A, then 

AX = xlAl + . . . + xnAn 

so that the range of T is the subspace spanned by the columns of A. In 
other words, the range of T is the column space of A. Therefore, 

rank (T) = column rank (A). 

Theorem 2 tells us that if S is the solution space for the system AX = 0, 
then 

dim S + column rank (A) = n. 

We now refer to Example 15 of Chapter 2. Our deliberations there 
showed that, if r is the dimension of the row space of A, then the solution 
space X has a basis consisting of n - r vectors: 

dim X = n - row rank (A). 

It is now apparent that 

row rank (A) = column rank (A). 1 

The proof of Theorem 3 which we have just given depends upon 



Sec. 3.1 Linear Transformations 

explicit calculations concerning systems of linear equations. There is a 

more conceptual proof which does not rely on such calculations. We shall 

give such a proof in Section 3.7. 

Exercises 

1. Which of the following functions T from R2 into R2 are linear transformations? 

(a) Th, ~2) = (1 + x1, ~2) ; 
(b) T(zl, 22) = (22, XI) ; 

Cc) Th, x2) = (~4,221; 

(4 T(xI, 22) = (sin 21, ~2) ; 
(4 Th x2) = (xl - 22,O). 

2. Find the range, rank, null space, and nullity for the zero transformation and 
the identity transformation on a finite-dimensional space V. 

3. Describe the range and the null space for the differentiation transformation 
of Example 2. Do the same for the integration transformation of Example 5. 

4. Is there a linear transformation T from R3 into R2 such that T(1, -1, 1) = 
(1, 0) and T(l, 1, 1) = (0, l)? 

5. If 

a = (1, -0, PI = (1, 0) 

a2 = (2, -11, P2 = (0, 1) 

a = (-3,2), P3 = (1, 1) 

is there a linear transformation T from R2 into R2 such that Tai = /?i for i = 1, 2 
and 3? 

6. Describe explicitly (as in Exercises 1 and 2) the linear transformation T from 
F2 into F2 such that Tel = (a, b), TQ = (c, d). 

7. Let F be a subfield of the complex numbers and let T be the function from 
F3 into F3 defined by 

T(xI, xz, x3) = (XI - x2 + 2~3,221 + 22, -XI - 2x2 + 223). 

(a) Verify that T is a linear transformation. 
(b) If (a, 6, c) is a vector in F3, what are the conditions on a, b, and c that 

the vector be in the range of T? What is the rank of T? 
(c) What are the conditions on a, b, and c that (a, b, c) be in the null space 

of T? What is the nullity of T? 

8. Describe explicitly a linear transformation from R3 into R3 which has as its 
range the subspace spanned by (1, 0, - 1) and (1, 2, 2). 

9. Let V be the vector space of all n X n matrices over the field F, and let B 
be a fixed n X n matrix. If 

T(A) = AB - BA 

verify that T is a linear transformation from V into V. 

10. Let V be the set of all complex numbers regarded as a vector space over the 
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field of real numbers (usual operations). Find a function from V into V which is 
a linear transformation on the above vector space, but which is not a linear trans- 
formation on Cl, i.e., which is not complex linear. 

11. Let V be the space of n X 1 matrices over F and let W be the space of m X 1 

matrices over F. Let A be a fixed m X n matrix over F and let T be the linear 
transformation from V into W defined by T(X) = AX. Prove that T is the zero 
transformation if and only if A is the zero matrix. 

12. Let V be an n-dimensional vector space over the field F and let T be a linear 
transformation from V into V such that the range and null space of Tare identical. 
Prove that n is even. (Can you give an example of such a linear transformation T?) 

13. Let V be a vector space and T a linear transformation from V into V. Prove 
that the following two statements about T are equivalent. 

(a) The intersection of the range of T and the null space of T is the zero 
subspace of V. 

(b) If T(Tor) = 0, then TCY = 0. 

3.2. The Algebra of Linear Transformations 

In the study of linear transformations from V into W, it is of funda- 
mental importance that the set of these transformations inherits a natural 
vector space structure. The set of linear transformations from a space V 
into itself has even more algebraic structure, because ordinary composition 
of functions provides a ‘multiplication’ of such transformations. We shall 
explore these ideas in this section. 

Theorem 4. Let V and W be vector spaces over the field F. Let T and 
U be linear transformations from V into W. The function (T + U) defined by 

(T+U)(cr) = Ta+Ua! 

is a linear transformation from V into W. If c is any element of F, the function 

(CT) defined by 
(CT)@ = C(TCY) 

is a linear transformation from V into W. The set of all linear transformations 

from V into W, together with the addition and scalar multiplication de$ned 

above, is a vector space over the field F. 

Proof. Suppose T and U are linear transformations from V into 
W and that we define (T + U) as above. Then 

0” + W(ca + PI = T(ca + P) + U(ca + P) 
= c(Ta) + TP+ c(Uol) + UP 
= @"a + Ua) + (773 + UP) 
= 0' + U>(a) + (T + U>(P) 

which shows that (T + U) is a linear transformation. Similarly, 
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W>@~ + PI = cW(da + P)] 
= c[d(W + TPI 
= cd(Ta) + c(TP) 
= a041 + c(m) 
= 4w%l + wop 

which shows that (CT) is a linear transformation. 
To verify that the set of linear transformations of I’ into W (together 

with these operations) is a vector space, one must directly check each of 
the conditions on the vector addition and scalar multiplication. We leave 
the bulk of this to the reader, and content ourselves with this comment: 
The zero vector in this space will be the zero transformation, which sends 
every vector of V into the zero vector in W; each of the properties of the 
two operations follows from the corresponding property of the operations 
in the space W. 1 

We should perhaps mention another way of looking at this theorem. 
If one defines sum and scalar multiple as we did above, then the set of 
all functions from V into W becomes a vector space over the field F. This 
has nothing to do with the fact that V is a vector space, only that V is a 
non-empty set. When V is a vector space we can define a linear transforma- 
tion from V into W, and Theorem 4 says that the linear transformations 
are a subspace of the space of all functions from V into W. 

We shall denote the space of linear transformations from V into W 
by L(V, W). We remind the reader that L(V, W) is defined only when V 
and W are vector spaces over the same field. 

Theorem 5. Let V be an n-dimensional vector space over the jield I?, 
and let W be an m-dimensional vector space over F. Then the space L(V, W) 
is finite-dimensional and has dimension mn. 

Proof. Let 

CB = {(Ye, . . . , cy,} and CB’ = {PI, . . . , Pm) 

be ordered bases for V and W, respectively. For each pair of integers (p, q) 
with 1 _< p 5 m and 1 5 q _< n, we define a linear transformation Ep*q 
from V into W by 

= &,P,. 

According to Theorem 1, there is a unique linear transformation from V 
into W satisfying these conditions. The claim is that the mn transforma- 
tions Ep*q form a basis for L(V, W). 

Let T be a linear transformation from V into W. For each j, 1 5 j 5 n, 



76 Linear Transformations Chap. 3 

let Aij, . . . , A,j be the coordinates of the vector Taj in the ordered basis 
Ct.?, i.e., 

(3-U Taj = 2 Apjpp. 

We wish to show that 
p=l 

(3-2) T = 5 i ApqEPsq. 
p=l q=l 

Let U be the linear transformation in the right-hand member of (3-2). 
Then for each j 

Uaj = 2 2 ApPEP’q(aj) 
P Q 

= Z L: Apq%q8p 
P P 

= pzl Ad= 

and consequently U = T. Now (3-2) shows that the Ep,q span L(V, W) ; 
we must prove that they are independent. But this is clear from what 
we did above; for, if the transformation 

U = 2 2 ApgEP.q 
P P 

is the zero transformation, then Uaj = 0 for each j, so 

Z A&p=0 
p=l 

and the independence of the &, implies that Apj = 0 for every p and j. 1 

Theorem 6. Let V, W, and Z be vector spaces over the jield F. Let T 
be a linear transformation from V into W and U a linear transformation 
from W into Z. Then the composed function UT dejined by (UT)(a) = 
U(T(a)) is a linear transformation from V into Z. 

Proof. 

(UT)(ca + P) = U[Tb + PII 
= U(cTcu + TO) 
= c[U(Tcx)] + U(TP) 
= cWT)(~ + (W(P). I 

In what follows, we shall be primarily concerned with linear trans- 
formation of a vector space into itself. Since we would so often have to 
write ‘T is a linear transformation from V into V,’ we shall replace this 
with ‘T is a linear operator on V.’ 

DeJnition. If V is a vector space over the field F, a linear operator on 

V is a linear transformation from V into V. 
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In the case of Theorem 6 when V = W = 2, so that U and T are 
linear operators on the space V, we see that the composition UT is again 
a linear operator on V. Thus the space L(V, V) has a ‘multiplication’ 
defined on it by composition. In this case the operator TU is also defined, 
and one should note that in general UT # TU, i.e., UT - TU # 0. We 
should take special note of the fact that if T is a linear operator on V then 
we can compose T with T. We shall use the notation T2 = TT, and in 
general Tn = T . . . T (n times) for n = 1, 2, 3, . . . . We define To = I if 
T # 0. 

Lemma. Let V be a vector space over the jield F; let U, T1 and Tz be 

linear operators on V; let c be an element of F. 

(a) IU = UI = U; 
(b) U(TI + Tz) = UT1 + UTg (T1 + Tz)U = TIU + TJJ; 
(c) c(UT1) = (cU)T, = U(cT1). 

Proof. (a) This property of the identity function is obvious. We 
have stated it here merely for emphasis. 

(b) [U(TI + Tz)lb) = U[(TI + Td(41 
= U(TNI + Tzcw) 

= U(Td + U(TzaY) 
= (UTI)(cu) + (UT,)(a) 

so that U(T1 + Tz) = UT1 + UT,. Also 

[VI + Tz)Ulb) = (TI + Tz)(Ua) 
= TdUa) + Tz(Ua) 
= (TlU)(a) + (T,U)(a) 

so that (T1 + Tz) U = TIU + T,U. (The reader may note that the proofs 
of these two distributive laws do not use the fact that T1 and Tz are linear, 
and the proof of the second one does not use the fact that U is linear either.) 

(c) We leave the proof of part (c) to the reader. [ 

The contents of this lemma and a portion of Theorem 5 tell us that 
the vector space L(V, V), together with the composition operation, is 
what is known as a linear algebra with identity. We shall discuss this in 
Chapter 4. 

EXAMPLE 8. If A is an m X n matrix with entries in F, we have the 
linear transformation T defined by T(X) = AX, from FnXl into FmX1. If 
B is a p X m matrix, we have the linear transformation U from Fmxl into 
Fpxl defined by U(Y) = BY. The composition UT is easily described: 

(UT)(X) = VT(X)) 
= U(AX) 

= B(AX) 

= (BA)X. 

Thus UT is ‘left multiplication by the product matrix BA.’ 

77 
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EXAMPLE 9. Let F be a field and V the vector space of all polynomial 
functions from F into F. Let D be the differentiation operator defined in 
Example 2, and let T be the linear operator ‘multiplication by z’ : 

(U)(z) = d(x)- 

Then DT # TD. In fact, the reader should find it easy to verify that 
DT - TD = I, the identity operator. 

Even though the ‘multiplication’ we have on L(V, V) is not commu- 
tative, it is nicely related to the vector space operations of L(V, V). 

EXAMPLE 10. Let 63 = {CQ, . . . , CU,} be an ordered basis for a vector 
space V. Consider the linear operators Ep*q which arose in the proof of 
Theorem 5: 

EP-q&i) = &,cQ,. 

These n2 linear operators form a basis for the space of linear operators on I’. 
What is EB’~QIP~~? We have 

Therefore, 

(E%PJ) (cq) = EP~q(&,(r,.) 
= &,Ep~q(Cr,.) 
= &&a*. 

EPen,lj+d = 
0, if r # q 

EP~S 
, if q = r. 

Let T be a linear operator on V. We showed in the proof of Theorem 5 
that if 

Ai = [Tc& 

then 
A = [A,, . . . , A,] 

If 

T = Z Z ApqEp*q. 
P Q 

is another linear operator on V, then the last lemma tells us that 

TU = (2 2 ApqEps@)(z 2 B,,J+) 
P P 

= 2 2 2 2 Ap,B,:E~%!P. 
P P 7 8 

As we have noted, the only terms which survive in this huge sum are the 
terms where q = r, and since EpvTE7vS = Epes, we have 

TU = 23 Z (2 AprBra)Ep~8 
PS T 

= 2 2: (AB)p,E~‘8. 
P 8 

Thus, the effect of composing T and U is to multiply the matrices A and B. 
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In our discussion of algebraic operations with linear transformations 
we have not yet said anything about invertibility. One specific question of 
interest is this. For which linear operators T on the space IJ does there 
exist a linear operator T-l such that TT-1 = T-IT = I? 

The function T from V into W is called invertible if there exists a 
function U from W into V such that UT is the identity function on V and 
TU is the identity function on W. If 7’ is invertible, the function U is 
unique and is denoted by T-l. (See Appendix.) Furthermore, T is invertible 
if and only if 

1. T is l:l, that is, Ta = Tp implies a = p; 
2. T is onto, that is, the range of T is (all of) W. 

Theorem 7. Let V and W be vector spaces over the field F and let T 
be a linear transformation from V into W. If T is invertible, then the inverse 
function T-’ is a linear transformation from W onto V. 

Proof. We repeat ourselves in order to underscore a point. When 
T is one-one and onto, there is a uniquely determined inverse function T-l 
which maps W onto V such that T-IT is the identity function on V, and 
TT-’ is the identity function on W. What we are proving here is that if a 
linear function 7‘ is invertible, then the inverse T-l is also linear. 

Let p1 and ,& be vectors in W and let c be a scalar. We wish to show 
that 

T-‘(c/3, + ,&) = CT-Y& + T-l/h. 

Let CQ = T-lpi, i = 1, 2, that is, let CY~ be the unique vector in V such that 
Tai = pi. Since T is linear, 

T(cw + az) = cTcq + TCY~ 
= CL4 -I- P2. 

Thus corl + az is the unique vector in V which is sent by T into ~$1 + /?z, 
and so 

T-Y@1 + 132) = cm + a2 

= c(T-‘@I) + T-92 

and T-l is linear. 1 

Suppose that we have an invertible linear transformation T from V 
onto W and an invertible linear transformation U from W onto 2. Then UT 
is invertible and (UT)-’ = T-‘U-1. That conclusion does not require the 
linearity nor does it involve checking separately that UT is 1: 1 and onto. 
All it involves is verifying that T-Ii?’ is both a left and a right inverse for 
UT. 

If T is linear, then T(a! - /?) = Ta! - T@; hence, TCY = Tp if and only 
if T(cy - p) = 0. This simplifies enormously the verification that T is 1: 1. 
Let us call a linear transformation T non-singular if Ty = 0 implies 
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y = 0, i.e., if the null space of T is (0). Evidently, T is 1: 1 if and only if T 
is non-singular. The extension of this remark is that non-singular linear 
transformations are those which preserve linear independence. 

Theorem 8. Let T be a linear transformation from V into W. Then 
T is non-singular if and only if T carries each linearly independent subset of 
V onto a linearly independent subset of W. 

Proof. First suppose that T is non-singular. Let S be a linearly 
independent subset of V. If al, . . . , CQ are vectors in S, then the vectors 
TCQ, . . . , TCQ are linearly independent; for if 

cl(Tad + . . . + ck(Tak) = 0 
then 

T(CKY~ + . . . + CLCYL) = 0 

and since T is non-singular 

ClcY1 + . . . + Ckffk = 0 

from which it follows that each ci = 0 because S is an independent set. 
This argument shows that the image of X under T is independent. 

Suppose that T carries independent subsets onto independent subsets. 
Let a! be a non-zero vector in V. Then the set S consisting of the one vector 
a is independent. The image of S is the set consisting of the one vector Tu,, 
and this set is independent. Therefore TCY # 0, because the set consisting 
of the zero vector alone is dependent. This shows that the null space of T is 
the zero subspace, i.e., T is non-singular. 1 

EXAMPLE 11. Let F be a subfield of the complex numbers (or a field of 
characteristic zero) and let V be the space of polynomial functions over F. 
Consider the differentiation operator D and the ‘multiplication by x’ 
operator T, from Example 9. Since D sends all constants into 0, D is 
singular; however, V is not finite dimensional, the range of D is all of V, 
and it is possible to define a right inverse for D. For example, if E is the 
indefinite integral operator : 

E(co + ClX + . . . + CnX”) = cox + f c1x2 + . . * + 
1 

- c,xn+l 
n+l 

then E is a linear operator on V and DE = I. On the other hand, ED # I 
because ED sends the constants into 0. The operator T is in what we might 
call the reverse situation. If xf(x) = 0 for all 5, then f = 0. Thus T is non- 
singular and it is possible to find a left inverse for T. For example if U is 
the operation ‘remove the constant term and divide by x’: 

U(c0 + Cl5 + . . . + CnX”) = Cl + c2x + . . . + c,x+l 

then U is a linear operator on V and UT = I. But TU # I since every 
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function in the range of TU is in the range of T, which is the space of 
polynomial functions j such that j(0) = 0. 
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EXAMPLE 12. Let F be a field and let T be the linear operator on F2 
defined by 

WI, 4 = (21 + xz, a>. 

Then T is non-singular, because if T(Q, x2) = 0 we have 

x1 + x2 = 0 
Xl = 0 

so that x1 = x2 = 0. We also see that T is onto; for, let (zl, z2) be any 
vector in F2. To show that (Q, z2) is in the range of T we must find scalars 
XI and x2 such that 

Xl + x2 = 21 

x1 = 22 

and the obvious solution is x1 = 22, 22 = z1 - x2. This last computation 
gives us an explicit formula for T-l, namely, 

T-l(21, 22) = (22, zr - 4. 

We have seen in Example 11 that a linear transformation may be 
non-singular without being onto and may be onto without being non- 
singular. The present example illustrates an important case in which that 
cannot happen. 

Theorem 9. Let V and W be j%te-dimensional vector spaces over the 
jield F such that dim V = dim W. If T is a linear transformation from V into 
W, the following are equivalent: 

(i) T is invertible. 
(ii) T is non-singular. 

(iii) T is onto, that is, the range of T is W. 

Proof. Let n = dim V = dim W. From Theorem 2 we know that 

rank (T) + nullity (T) = n. 

Now T is non-singular if and only if nullity (T) = 0, and (since n = dim 
W) the range of T is W if and only if rank (T) = n. Since the rank plus the 
nullity is n, the nullity is 0 precisely when the rank is n. Therefore T is 
non-singular if and only if T(V) = W. So, if either condition (ii) or (iii) 
holds, the other is satisfied as well and T is invertible. 1 

We caution the reader not to apply Theorem 9 except in the presence 
of finite-dimensionality and with dim V = dim W. Under the hypotheses 
of Theorem 9, the conditions (i), (ii), and (iii) are also equivalent to these. 

(iv) If {al, . . . , cr,} is basis for V, then {Ta,, . . . , Ta,} is a basis for 
W. 
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(v) There is some basis (CQ, . . . , cr,} for V such that {Tal, . . . , Tan} 
is a basis for W. 

We shall give a proof of the equivalence of the five conditions which 
contains a different proof that (i), (ii), and (iii) are equivalent. 

(i) + (ii). If T is invertible, T is non-singular. (ii) + (iii). Suppose 
T is non-singular. Let ((~1, . . . , cr,} be a basis for V. By Theorem 8, 
{Ta, . . . , TcY,,} is a linearly independent set of vectors in W, and since 
the dimension of W is also n, this set of vectors is a basis for W. Now let ,8 
be any vector in W. There are scalars cl, . . . , c,, such that 

P = CIU’LYI) + . - - + ~n(Tc~n) 
= T(CIW + * * * + c&J 

which shows that p is in the range of T. (iii) + (iv). We now assume that 
T is onto. If {crl, . . . , (Y,,} is any basis for V, the vectors Tcx~, . . . , TCY, 
span the range of T, which is all of W by assumption. Since the dimension 
of W is n, these n vectors must be linearly independent, that is, must comprise 
a basis for W. (iv) + (v). This requires no comment. (v) + (i). Suppose 
there is some basis {(Ye, . . . , CX,} for V such that {Tcrl, . . . , Tcx,} is a 
basis for W. Since the Tai span W, it is clear that the range of T is all of W. 
If CX! = ClcXl + * . * + c,,Q,, is in the null space of T, then 

T(CM + . . . + c,& = 0 
or 

cG”aJ + . . . + 4’4 = 0 

and since the TCX~ are independent each ci = 0, and thus LY = 0. We have 
shown that the range of T is W, and that T is non-singular, hence T is 
invertible. 

The set of invertible linear operators on a space V, with the operation 
of composition, provides a nice example of what is known in algebra as 
a ‘group.’ Although we shall not have time to discuss groups in any detail, 
we shall at least give the definition. 

DeJinition. A group consists of the following. 

1. A set G; 
2. A rule (or operation) which associates with each pair of elements x, 

y in G an element xy in G in such a way that 
(a) x(yz) = (xy)z, for all x, y, and z in G (associatiuity); 
(b) there is an element e in G such that ex = xe = x, for every x in G; 
(c) to each element x in G there corresponds an element xv1 in G such 

that xx-l = x-lx = e. 

We have seen that composition (U, T) -+ UT associates with each 
pair of invertible linear operators on a space V another invertible operator 
on V. Composition is an associative operation. The identity operator I 
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satisfies IT = TI for each T, and for an invertible T there is (by Theorem 
7) an.invertible linear operator T-l such that TT-l = T-lT = I. Thus the 
set of invertible linear operators on V, together with this operation, is a 
group. The set of invertible n X 12 matrices with matrix multiplica- 
tion as the operation is another example of a group. A group is called 
commutative if it satisfies the condition xy = yx for each x and y. The 
two examples we gave above are not commutative groups, in general. One 
often writes the operation in a commutative group as (x, y) + 2 + y, 
rather than (x, y) + xy, and then uses the symbol 0 for the ‘identity’ 
element e. The set of vectors in a vector space, together with the operation 
of vector addition, is a commutative group. A field can be described as a 
set with two operations, called addition and multiplication, which is a 
commutative group under addition, and in which the non-zero elements 
form a commutative group under multiplication, with the distributive 
law x(y + x) = xy + xz holding. 

Exercises 

1. Let T and U be the linear operators on R2 defined by 

T(zl, 4 = (22, ~1) and U(zi, ~2) = (~1~0). 

(a) How would you describe T and U geometrically? 
(b) Give rules like the ones defining T and U for each of the transformations 

(U + T), UT, TU, T2, Uz. 

2. Let T be the (unique) linear operator on C3 for which 

TE, = (1, 0, i), TEZ = (0, 1, I), TEE = (i, 1, 0). 

Is T invertible? 

3. Let T be the linear operator on R3 defined by 

WA, x2, zd = (321, XI - xz, 2x1 + x2 + x3). 

Is T invertible? If so, find a rule for T-1 like the one which defines T. 

4. For the linear operator T of Exercise 3, prove that 

(T2 - I)(T - 31) = 0. 

5. Let C2x2 be the complex vector space of 2 x 2 matrices with complex entries. 
Let 

B= [-: -:I 
and let T be the linear operator on C 2x2 defined by T(A) = BA. What is the 
rank of T? Can you describe T2? 

6. Let T be a linear transformation from R3 into R2, and let U be a linear trans- 
formation from R2 into R3. Prove that the transformation UT is not invertible. 
Generalize the theorem. 
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7. Find two linear operators T and U on R2 such that TU = 0 but UT # 0. 

8. Let V be a vector space over the field F and T a linear operator on V. If T2 = 0, 
what can you say about the relation of the range of T to the null space of T? 
Give an example of a linear operator T on R2 such that T2 = 0 but T # 0. 

9. Let T be a linear operator on the finite-dimensional space V. Suppose there 
is a linear operator U on V such that TU = I. Prove that T is invertible and 
U = T-1. Give an example which shows that this is false when V is not finite- 
dimensional. (Hint: Let T = D, the differentiation operator on the space of poly- 
nomial functions.) 

10. Let A be an m X n matrix with entries in F and let T be the linear transforma- 
tion from FnX1 into Fmxl defined by T(X) = AX. Show that if m < n it may 
happen that T is onto without being non-singular. Similarly, show that if m > n 
we may have T non-singular but not onto. 

11. Let V be a finite-dimensional vector space and let T be a linear operator on V. 
Suppose that rank (T*) = rank (T). Prove that the range and null space of T are 
disjoint, i.e., have only the zero vector in common. 

12. Let p, m, and n be positive integers and F a field. Let V be the space of m X n 
matrices over F and W the space of p X n matrices over F. Let B be a fixed p X m 
matrix and let T be the linear transformation from V into W defined by 
T(A) = BA. Prove that T is invertible if and only if p = m and B is an invertible 
m X m matrix. 

3.3. Isomorphism 

If V and W are vector spaces over the field F, any one-one linear 

transformation T of V onto W is called an isomorphism of V onto W. 
If there exists an isomorphism of V onto W, we say that V is isomorphic 

to w. 
Note that V is trivially isomorphic to V, the identity operator being 

an isomorphism of V onto V. Also, if V is isomorphic to W via an iso- 
morphism T, then W is isomorphic to V, because T-l is an isomorphism 
of W onto V. The reader should find it easy to verify that if V is iso- 

morphic to W and W is isomorphic to 2, then V is isomorphic to 2. Briefly, 
isomorphism is an equivalence relation on the class of vector spaces. If 
there exists an isomorphism of V onto W, we may sometimes say that V 
and W are isomorphic, rather than V is isomorphic to W. This will cause 
no confusion because V is isomorphic to W if and only if W is isomorphic 
to v. 

Theorem 10. Every n-dimensional vector space over the field F is iso- 
morphic to the space F”. 

Proof. Let V be an n-dimensional space over the field F and let 
63 = {al, . . . ) cr,} be an ordered basis for V. We define a function T 
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from V into P, as follows: If a is in V, let TCY be the n-tuple (Q, . . . , x,) 
of coordinates of CY relative to the ordered basis @, i.e., the n-tuple such 
that 

a = Xl(Yl + . . . + x,c&. 

In our discussion of coordinates in Chapter 2, we verified that this T is 
linear, one-one, and maps V onto P. 1 

For many purposes one often regards isomorphic vector spaces as 
being ‘the same,’ although the vectors and operations in the spaces may 
be quite different, that is, one often identifies isomorphic spaces. We 
shall not attempt a lengthy discussion of this idea at present but shall 
let the understanding of isomorphism and the sense in which isomorphic 
spaces are ‘the same’ grow as we continue our study of vector spaces. 

We shall make a few brief comments. Suppose T is an isomorphism 
of V onto W. If S is a subset of V, then Theorem 8 tells us that X is linearly 
independent if and only if the set T(S) in W is independent. Thus in 
deciding whether S is independent it doesn’t matter whether we look at S 
or T(S). From this one sees that an isomorphism is ‘dimension preserving,’ 
that is, any finite-dimensional subspace of V has the same dimension as its 
image under T. Here is a very simple illustration of this idea. Suppose A 
is an m X n matrix over the field F. We have really given two definitions 
of the solution space of the matrix A. The first is the set of all n-tuples 
(21, . . . ) x,) in Fn which satisfy each of the equations in the system AX = 
0. The second is the set of all n X 1 column matrices X such that AX = 0. 
The first solution space is thus a subspace of Fn and the second is a subspace 
of the space of all n X 1 matrices over F. Now there is a completely 
obvious isomorphism between Fn and Fnxl, namely, 

Xl 

(Xl, . . . ) 2,) + 

[1 

; . 

X7L 

Under this isomorphism, the first solution space of A is carried onto the 
second solution space. These spaces have the same dimension, and so 
if we want to prove a theorem about the dimension of the solution space, 
it is immaterial which space we choose to discuss. In fact, the reader 
would probably not balk if we chose to identify Fn and the space of n X 1 
matrices. We may do this when it is convenient, and when it is not con- 
venient we shall not. 

Exercises 

1. Let V be the set of complex numbers and let F be the field of real numbers. 
With the usual operations, V is a vector space over F. Describe explicitly an iso- 
morphism of this space onto R2. 
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2. Let V be a vector space over the field of complex numbers, and suppose there 
is an isomorphism T of V onto C3. Let CQ, LYE, a3, a4 be vectors in V such that 

TCY, = (1, 0, i), TCYZ = (-2, 1 + i, 0), 

TCY~ = (-1, 1, I), Told = (d/2, i, 3). 

(a) Is aI in the subspace spanned by crz and as? 
(b) Let WI be the subspace spanned by (Ye and LYE, and let W2 be the subspace 

spanned by CQ and cy4. What is the intersection of WI and WI? 
(c) Find a basis for the subspace of V spanned by the four vectors o+ 

3. Let W be the set of all 2 X 2 complex Hermitian matrices, that is, the set 
- 

of 2 X 2 complex matrices n such that Asj = Aii (the bar denoting complex 
conjugation). As we pointed out in Example 6 of Chapter 2, W is a vector space 
over the field of real numbers, under the usual operations. Verify that 

is an isomorphism of R4 onto W. 

4. Show that Frnxn is isomorphic to Fmn. 

5. Let I’ be the set of complex numbers regarded as a vector space over the 
field of real numbers (Exercise 1). W7e define a function T from V into the space 
of 2 X 2 real matrices, as follows. If z = 2 + iy with z and y real numbers, then 

T(z) = 
z + 7Y 5Y 

-1oy z--y’ 1 
(a) Verify that T is a one-one (real) linear transformation of V into the 

space of 2 X 2 real matrices. 
(b) Verify that T(zlz2) = T(zl)T(zJ. 
(c) How would you describe the range of T? 

6. Let V and W be finite-dimensional vector spaces over the field F. Prove that 
V and W are isomorphic if and only if dim V = dim W. 

7. Let V and W be vector spaces over the field F and let U be an isomorphism 
of V onto W. Prove that T + UTUpl is an isomorphism of L( V, V) onto L(W, W). 

3.4. Representation of Transformations 

by Matrices 

Let V be an n-dimensional vector space over the field F and let W 
be an m-dimensional vector space over F. Let 03 = (q . . . , cr,} be an 
ordered basis for V and B’ = {PI, . . . , pm} an ordered basis for W. If T 
is any linear transformation from V into W, then T is determined by its 

action on the vectors aj. Each of the n vectors Tcq is uniquely expressible 

as a linear combination 

(3-3) TCY~ = 5 AijPi 
i=l 
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of the pi, the scalars Ali, . . . , A,? being the coordinates of Taj in the 
ordered basis 6~‘. Accordingly, the transformation T is determined by 
the win scalars A, via the formulas (3-3). The m X n matrix A defined 
by A(i, j) = Ai, is called the matrix of T relative to the pair of ordered 

bases 03 and 6~‘. Our immediate task is to understand explicitly how 
the matrix A determines the linear transformation T. 

If Q = zlal + . . . + xnan is a vector m V, then 

= ,Z, (2, Aijxj) Pi. 
If X is the coordinate matrix of CY in the ordered basis a, then the com- 
putation above shows that AX is the coordinate matrix of the vector Ta! 

in the ordered basis a’, because the scalar 

is the entry in the ith row of the column matrix AX. Let us also observe 
that if A is any m X n matrix over the field F, then 

(3-4) 

defines a linear transformation T from V into IV, the matrix of which is 
A, relative to a, 6~‘. We summarize formally: 

Theorem 11. Let V be an n-dimensional vector space over the jield F 
and W an m-dimensional vector space over F. Let CB be an ordered basis for 

V and a3’ an ordered basis for W. For each linear transformation T from V 
into W, there is an m X II matrix A with entries in F such that 

CTalw = ALaIm 
for every vector (Y in V. Furthermore, T + A is a one-one correspondence 

between the set of all linear transformations from V into W and the set of 
all m X n matrices over the field E‘. 

The matrix A which is associated with T in Theorem 11 is called the 
matrix of T relative to the ordered bases a, a’. Note that Equation 
(3-3) says that A is the matrix whose columns Al, . . . , A, are given by 

Aj = [Taj]af, j = 1, . . . , n. 
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If U is another linear transformation from J’ into W and B = [B1, . . . , B,] 
is the matrix of U relative to the ordered bases @, a’ then CA + B is the 
matrix of CT + U relative to a, 6~‘. That is clear because 

CAM + Bj = c[Taj]ar + [Uaj]at 
= [CTaj + UCU~]~ 
= [(CT + U)C&IY. 

Theorem 12. Let V be an n-dimensional vector space over the field F 
and let W be an m-dimensional vector space over F. For each pair of ordered 
bases &I$ a’ for V and W respectively, the junction which assigns to a linear 
transformation T its matrix relative to 6.~ 03’ is an isomorphism between the 
space L(V, W) and the space of all m X n matrices over the jield F. 

Proof. We observed above that the function in question is linear, 
and as stated in Theorem 11, this function is one-one and maps L(V, W) 
onto the set of m X n matrices. 1 

We shall be particularly interested in the representation by matrices 
of linear transformations of a space into itself, i.e., linear operators on a 
space V. In this case it is most convenient to use the same ordered basis 
in each case, that is, to take B = a’. We shall then call the representing 
matrix simply the matrix of T relative to the ordered basis 63. Since 
this concept will be so important to us, we shall review its definition. If T 
is a linear operator on the finite-dimensional vector space V and @ = 

{ al, . . . , a,} is an ordered basis for V, the matrix of T relative to a3 (or, the 
matrix of T in the ordered basis 6~) is the n X n matrix A whose entries 
A;i are defined by the equations 

(3-5) Tctj = 5 Aijai, j=l , . . . , n. 
i=l 

One must always remember that this matrix representing T depends upon 
the ordered basis @, and that there is a representing matrix for T in each 
ordered basis for V. (For transformations of one space into another the 
matrix depends upon two ordered bases, one for V and one for W.) In order 
that we shall not forget this dependence, we shall use the notation 

for the matrix of the linear operator T in the ordered basis a. The manner 
in which this matrix and the ordered basis describe T is that for each a! in V 

P’alas = [Tld~l~. 

EXAMPLE 13. Let V be the space of n X 1 column matrices over the 
field F; let W be the space of m X 1 matrices over F; and let A be a fixed 
m X n matrix over F. Let T be the linear transformation of V into W 
defined by T(X) = AX. Let a3 be the ordered basis for V analogous to the 
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standard basis in Fn, i.e., the ith vector in CB in the n X 1 matrix X; with 
a 1 in row i and all other entries 0. Let a’ be the corresponding ordered 
basis for W, i.e., the jth vector in a’ is the m X 1 matrix Yj with a 1 in row 
j and all other entries 0. Then the matrix of T relative to the pair (8, 63 is 
the matrix A itself. This is clear because the matrix AXj is the jth column 
ofA. 

EXAMPLE 14. Let F be a field and let T be the operator on F2 defined by 

Th x2) = (xl, 0). 

It is easy to see that T is a linear operator on F2. Let B be the standard 
ordered basis for F2, CB = {tl, c2>. Now 

Tel = T(l, 0) = (1, 0) = 1~ + 0~2 

Tt, = T(0, 1) = (0, 0) = 0~1 + 0~2 

so the matrix of T in the ordered basis CB is 

b"lm = [; 81. 

EXAMPLE 15. Let V be the space of all polynomial functions from R 
into R of the form 

j(x) = co + Cl2 + c222 + c3x3 

that is, the space of polynomial functions of degree three or less. The 
differentiation operator D of Example 2 maps V into V, since D is ‘degree 
decreasing.’ Let CB be the ordered basis for V consisting of the four functions 
ji, j2, j3, j4 defined by jj(x) = xi-l. Then 

WI>(X) = 0, Dfi = Ojl + Of2 + Of3 + Of4 

(Dfi)(x) = 1, Dj2 = lfi + Oj2 + Oj3 + Oj4 

W3)(5) = 22, Qf3 = Of1 + V2 + Of3 + Of4 

(Df4)(2) = 3x2, Dj4 = Of1 + Oj2 + 3j3 + Of4 

so that the matrix of D in the ordered basis CB is 

We have seen what happens to representing matrices when transfor- 
mations are added, namely, that the matrices add. We should now like 
to ask what happens when we compose transformations. More specifically, 
let V, W, and Z be vector spaces over the field F of respective dimensions 
n, m, and p. Let T be a linear transformation from V into W and U a linear 
transformation from W into 2. Suppose we have ordered bases 

@= {w,...,cyn}, @‘= {Pl,...,Pm}, 63” = (71, . . . ) Yp) 



90 Linear Transformations Chap. 3 

for the respective spaces V, W, and 2. Let A be the matrix of T relative 
to the pair a, a’ and let B be the matrix of U relative to the pair (ES’, a”. 
It is then easy to see that the matrix C of the transformation UT relative 
to the pair a, a” is the product of B and A ; for, if (Y is any vector in V 

D"Q~CBJ = A[alcis 
[U(T~)]@JT = B[Ta]@! 

and so 
[U”)b)lw = BALala3 

and hence, by the definition and uniqueness of the representing matrix, 
we must have C = BA. One can also see this by carrying out the computa- 
tion 

(UT)(aJ = U(Taj) 

= U (k!l Axi&) 

= ,zl -‘b(Uh) 

= it A,j ii BikYi 
k=l i=l 

so that we must have 

(3-Q c;j = 2 Bik&j. 
k=l 

We motivated the definition (3-6) of matrix multiplication via operations 
on the rows of a matrix. One sees here that a very strong motivation for 
the definition is to be found in composing linear transformations. Let us 
summarize formally. 

Theorem. 13. Let V, W, and Z be finite-dimensional vector spaces over 
the Jield F; let T be a linear transformation from V into W and U a linear 
transformation from W into Z. If 03, a’, and 63” are ordered bases for the 
spaces V, W, and Z, respectively, if A is the matrix of T relative to the pair 
a, a’, and B is the matrix of U relative to the pair a’, Brr, then the matrix 
of the composition UT relative to the pair a, 63” is the product matrix C = BA. 

We remark that Theorem 13 gives a proof that matrix multiplication 
is associative-a proof which requires no calculations and is independent 
of the proof we gave in Chapter 1. We should also point out that we proved 
a special case of Theorem 13 in Example 12. 

It is important to note that if T and U are linear operators on a 
space V and we are representing by a single ordered basis a, then Theorem 
13 assumes the simple form [UT]@ = [U]a[T]a. Thus in this case, the 
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correspondence which 6~ determines between operators and matrices is not 
only a vector space isomorphism but also preserves products. A simple 
consequence of this is that the linear operator T is invertible if and only if 
[T]a is an invertible matrix. For, the identity operator I is represented by 
the identity matrix in any ordered basis, and thus 

UT = TU = I 
is equivalent to 

V%~P’loa = D%U-Jl~ = 1. 
Of course, when T is invertible 

[T-Q, = [T&l. 

Now we should like to inquire what happens to representing matrices 
when the ordered basis is changed. For the sake of simplicity, we shall 
consider this question only for linear operators on a space I’, so that we 
can use a single ordered basis. The specific question is this. Let T be a 
linear operator on the finite-dimensional space I’, and let 

(B = {Q . . . , (Y,} and 6~’ = (4, . . . , a:} 

be two ordered bases for V. How are the matrices [T]a and [T]~J related? 
As we observed in Chapter 2, there is a unique (invertible) n X n matrix P 
such that 

(3-7) IIQICB = JTQIW 
for every vector (Y in V. It is the matrix P = [PI, . . . , PR] where Pi = 
[cy&. By definition 

(3-S) Wla = P”ld~lob. 
Applying (3-7) to the vector TCY, we have 

(3-9) [Tcx]~ = P[Tcx]~J. 

Combining (3-7), (3-S), and (3-9), we obtain 

or 
P-‘[T]~P[~]w = [Tcr]~ 

and so it must be that 

(3-10) [T]@! = P-‘[T]@P. 

This answers our question. 
Before stating this result formally, let us observe the following. There 

is a unique linear operator U which carries a3 onto a’, defined by 

UcVj = ffl, j = 1, . . . ) n. 

This operator U is invertible since it carries a basis for V onto a basis for 
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V. The matrix I’ (above) is precisely the matrix of the operator U in the 
ordered basis 6~ For, P is defined by 

ai = 5 P<jQi 
i=l 

and since Uaj = cu;, this equation can be written 

UCYj = i Pijffi. 
i=l 

So P = [U],, by definition. 

Theorem 14. Let V be a finite-dimensional vector space over the field F, 
and let 

63 = {al, . . . ) a,} and 03’ = {a;, . . . , aA> 

be ordered bases for V. Suppose T is a linear operator on V. If P = [P,, . . . , 
P,] is the n X 11 matrix with columns Pj = [a;]@, then 

[T]w = P-‘[Tlo3P. 

Alternatively, if U is the invertible operator on V dejined by Uaj = a;, j = 
1 ,**-, n, then 

[‘UCB~ = WIG ‘lTl&Jl,. 

EXAMPLE 16. Let T be the linear operator on R2 defined by T(xl, x2) = 

(~1, 0). In Example 14 we showed that the matrix of T in the standard 
ordered basis 6~ = {Q, Q} is 

II% = [; 81. 

Suppose 6~’ is the ordered basis for R2 consisting of the vectors E: = (1, l), 
E; = (2, 1). Then 

t: = Cl + 62 

d = 2Q + t2 
so that I’ is the matrix 

p’ 12. [ 1 
By a short computation 

p-1 =[ l l -1 2 
1 -1’ 

] 

Thus 
[T]w = P-‘[T]@P 

= [I-: -I][:, :I[: T] 

= [-: -91 [ii iI 

= [-i -;I. 
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We can easily check that this is correct because 
TE:=(l,o)= -e:+ 6; 

TE; = (2, 0) = -24 + 2& 

EXAMPLE 17. Let V be the space of polynomial functions from R into 
R which have ‘degree’ less than or equal to 3. As in Example 15, let D be 
the differentiation operator on V, and let 

@ = ul,fi, f3, f4) 

be the ordered basis for V defined by f;(z) = xi--l. Let t be a real number 
and define g<(x) = (x + t)+l, that is 

g1 = fi 
g2 = tfi +f2 

$73 = t2fl + 2v2 + f3 
g4 = t”fi + 3ty2 + 31f3 + f4. 

Since the matrix 
1 t t2 t3 

0 0 1 3t 
00 0 1 

is easily seen to be invertible with 

it follows that a’ = {gl, 92, g3, g4} is an ordered basis for V. In Example 15, 
we found that the matrix of D in the ordered basis a3 is 

The matrix of D in the ordered basis cB’ is thus 

p-l[D]+[i -; -i -:i_lk ; ; ;]I ; f ty 
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Thus D is represented by the same matrix in the ordered bases 63 and a’. 
Of course, one can see this somewhat more directly since 

Dg, = 0 
Dg, = gl 
Dgs = 2gz 
Dg4 = 3g3. 

This example illustrates a good point. If one knows the matrix of a linear 
operator in some ordered basis 03 and wishes to find the matrix in another 
ordered basis a’, it is often most convenient to perform the coordinate 
change using the invertible matrix P; however, it may be a much simpler 
task to find the representing matrix by a direct appeal to its definition. 

DeJinition. Let A and B be n X n (square) matrices over the field F. 
We say that B is similar to A over F if there is an invertible n X II matrix 
P over F such that B = P-‘AP. 

According to Theorem 14, we have the following: If V is an n-dimen- 
sional vector space over F and @ and 03’ are two ordered bases for V, 
then for each linear operator T on V the matrix B = [T]ar is similar to 
the matrix A = [T]a. The argument also goes in the other direction. 
Suppose A and B are n X n matrices and that B is similar to A. Let 
V be any n-dimensional space over F and let @ be an ordered basis for V. 
Let T be the linear operator on V which is represented in the basis @ by 
A. If B = P-‘AP, let a be the ordered basis for V obtained from & by P, 
i.e., 

Then the matrix of T in the ordered basis a’ will be B. 
Thus the statement that B is similar to A means that on each n- 

dimensional space over F the matrices A and B represent the same linear 
transformation in two (possibly) different ordered bases. 

Note that each n X n matrix A is similar to itself, using P = I; if 
B is similar to A, then A is similar to B, for B = P-‘AP implies that 
A = (P-I)-‘BP-‘; if B is similar to A and C is similar to B, then C is similar 
to A, for B = P-‘AP and C = Q-‘BQ imply that C = (PQ)-IA( 
Thus, similarity is an equivalence relation on the set of n X n matrices 
over the field F. Also note that the only matrix similar to the identity 
matrix I is I itself, and that the only matrix similar to the zero matrix is 
the zero matrix itself. 
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Exercises 

1. Let T be the linear operator on C2 defined by T(Q, x2) = (x1, 0). Let @ be 
the standard ordered basis for C2 and let OS’ = { (pi, 02) be the ordered basis defined 
by czi = (1, i), (~2 = (-i, 2). 

(a) What is the matrix of T relative to the pair @, a’? 
(b) What is the matrix of T relative to the pair a’, a? 
(c) What is the matrix of T in the ordered basis (I?/? 
(d) What is the matrix of T in the ordered basis {LYE, cur}? 

2. Let T be the linear transformation from R3 into R2 defined by 

T(q 22, 23) = (21 + xz, 223 - 21). 

(a) If OS is the standard ordered basis for R3 and a3’ is the standard ordered 
basis for R2, what is the matrix of T relative to the pair 03, OS’? 

(b) If & = {czi, CQ, as} and OY = {pi, &}, where 

a1 = (1, 0, -1), a2 = (1, 1, l), (Y3 = (1, 0, O), P1 = (0, l), P2 = (LO) 

what is the matrix of T relative to the pair OS, a3’? 

3. Let T be a linear operator on F”, let A be the matrix of T in the standard 
ordered basis for Z+, and let W be the subspace of Fn spanned by the column 
vectors of A. What does 1Y have to do with T? 

4. Let I’ be a two-dimensional vector space over the field F, and let a3 be an 
ordered basis for V. If T is a linear operator on V and 

prove that T2 - (a + d)T + (ad - bc)Z = 0. 

5. Let T be the linear operator on R3, the matrix of which in the standard ordered 
basis is 

1 2 1 
A= [ 1 0 11. 

-1 3 4 

Find a basis for the range of T and a basis for the null space of T. 

6. Let T be the linear operator on R2 defined by 

T(zl, zz) = (-x2,4. 

(a) What is the matrix of T in the standard ordered basis for R2? 
(b) What is the matrix of T in the ordered basis 6S = {LY~, a2}, where CYI = (1,2) 

and (Y~ = (1, -l)? 
(c) Prove that for every real number c the operator (T - cZ) is invertible. 
(d) Prove that if OS is any ordered basis for R2 and [T]m = A, then A12A21 # 0. 

7. Let T be the linear operator on R3 defined by 

T(xI, x2, x3) = (321 + x3, -221 + x2, -x1 + 2x2 + 4x3). 

(a) What is the matrix of T in the standard ordered basis for R3? 
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(b) What is the matrix of T in the ordered basis 

+-a, a2, a31 

where LYI = (1, 0, l), a2 = (- 1, 2, l), and (Y~ = (2, 1, I)? 
(c) Prove that T is invertible and give a rule for T-1 like the one which de- 

fines T. 

8. Let 6 be a real number. Prove that the following two matrices are similar 
over the field of complex numbers: 

[ 
;?J; -;;I’ [r ?.I 

(Hint: Let T be the linear operator on C2 which is represented by the first matrix 
in the standard ordered basis. Then find vectors crl and (Y~ such that Tcvl = eiecyl, 
Tm = e-%, and {CYI, (~2) is a basis.) 

9. Let V be a finite-dimensional vector space over the field F and let S and T 
be linear operators on V. We ask: When do there exist ordered bases @ and a 
for V such that [&‘]a = [T](B~? Prove that such bases exist if and only if there is 
an invertible linear operator U on V such that T = USU-1. (Outline of proof: 
If [S]aa = [T]abt, let U be the operator which carries B onto a’ and show that 
S = UTP. Conversely, if T = USP for some invertible U, let (I?, be any 
ordered basis for V and let a3’ be its image under U. Then show that [S]a = [T]~J.) 

10. We have seen that the linear operator T on R2 defined by T(q, x2) = (x1, 0) 
is represented in the standard ordered basis by the matrix 

This operator satisfies T2 = T. Prove that if S is a linear operator on K? such that 
X2 = S, then S = 0, or S = I, or there is an ordered basis G3 for R2 such that 
[S]a = A (above). 

11. Let W be the space of all n X 1 column matrices over a field F. If A is an 
n X n matrix over F, then A defines a linear operator La on W through left 
multiplication: LA(X) = AX. Prove that every linear operator on W is left multi- 
plication by some n X n matrix, i.e., is LA for some A. 

Now suppose V is an n-dimensional vector space over the field F, and let (R 
be an ordered basis for V. For each (Y in V, define Ua = [a]~. Prove that U is an 
isomorphism of V onto W. If T is a linear operator on V, then UTU-1 is a linear 
operator on IV. Accordingly, UTU-l is left multiplication by some n X n matrix A. 
What is A? 

12. Let V be an n-dimensional vector space over the field F, and let @ = 

+I, . * . , a,,} be an ordered basis for V. 
(a) According to Theorem 1, there is a unique linear operator T on V such that 

t TCY~ = aj+l, j = 1,. . .) 12 - 1 t Tcu, = 0. 

What is the matrix A of T in the ordered basis a? 
(b) Prove that T* = 0 but Tnml # 0. 
(c) Let S be any linear operator on V such that Sn = 0 but Sri-l # 0. Prove 

that there is an ordered basis 6~’ for V such that the matrix of S in the ordered 
basis E.V is the matrix A of part (a). 
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(d) Prove that if M and N are n X n matrices over F such that Ma = Nn = 0 
but, Mn-l # 0 # Nn-l, then M and N are similar. 

13. Let V and W be finite-dimensional vector spaces over the field F and let T 
be a linear transformation from V into W. If 

63 = {al, . . . ,4 and OS’= {b,...,&i 

are ordered bases for V and W, respectively, define the linear transformations Epv* 
as in the proof of Theorem 5: E+aJ = &,&. Then the Epsg, 1 5 p 5 m, 
1 5 q 2 n, form a basis for L(V, IV), and so 

T = 5 5 A,,Epsn 
p=l q=l 

for certain scalars A,, (the coordinates of T in this basis for L(V, W)). Show that 
the matrix A with entries A@, q) = A,, is precisely the matrix of T relative to 
the pair cB, 6Y. 

3.5. Linear Func tionals 

If V is a vector space over the field F, a linear transformation f from V 
into the scalar field F is also called a linear functional on V. If we start 
from scratch, this means that f is a function from V into F such that 

f(ca + PI = cm + f(P) 

for all vectors CY and /3 in V and all scalars c in F. The concept of linear 
functional is important in the study of finite-dimensional spaces because 
it helps to organize and clarify the discussion of subspaces, linear equations, 
and coordinates. 

EXAMPLE 18. Let F be a field and let al, . . . , a, be scalars in F. Define 
a function f on Fn by 

fkl, . . . 7 x,) = UlXl + . . . + unxn. 

Then f is a linear functional on Fg. It is the linear functional which is 
represented by the matrix [al . * * a,] relative to the standard ordered 
basis for Fn and the basis (1) for F: 

% = f(9), j = 1, . . . , n. 

Every linear functional on Fn is of this form, for some scalars al, . . . , a,. 
That is immediate from the definition of linear functional because we define 
uj = f(cj) and use the linearity 

= 2; UjXj. 
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EXAMPLE 19. Here is an important example of a linear functional. 
Let 12 be a positive integer and F a field. If A is an n X n matrix with 
entries in F, the trace of A is the scalar 

tr A = AlI + AZ2 + . . . + A,,. 

The trace function is a linear functional on the matrix space Fnxn because 

= c 5 Aii + 5 Bii 
i=l i=l 

= ctrA + trB. 

EXAMPLE 20. Let V be the space of all polynomial functions from the 
field F into itself. Let t be an element of F. If we define 

then L, is a linear functional on V. One usually describes this by saying 
that, for each t, ‘evaluation at t’ is a linear functional on the space of 
polynomial functions. Perhaps we should remark that the fact that the 
functions are polynomials plays no role in this example. Evaluation at t 
is a linear functional on the space of all functions from F into F. 

EXAMPLE 21. This may be the most important linear functional in 
mathematics. Let [a, b] be a closed interval on the real line and let C([a, b]) 
be the space of continuous real-valued functions on [a, b]. Then 

L(g) = 1.” g(t) at 
defines a linear functional L on C([a, b]). 

If V is a vector space, the collection of all linear functionals on V 
forms a vector space in a natural way. It is the space L(V, F). We denote 
this space by V* and call it the dual space of V: 

V* = L(V, F). 

If V is finite-dimensional, we can obtain a rather explicit description 
of the dual space V*. From Theorem 5 we know something about the 
space V*, namely that 

dim V* = dim V. 

Let a3 = {(Ye, . . . , a,} be a basis for V. According to Theorem 1, there 
is (for each i) a unique linear functionalfi on V such that 

(3-l 1) fi(Oij) = 6ij. 

In this way we obtain from @ a set of n distinct linear functionalsfi, . . . , fn 
on V. These functionals are also linearly independent. For, suppose 
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(3-12) 

Then 

Linear Functionals 99 

f((Yj) = j, Cifibj) 

= 5 CiSij 
i-1 

= Cj. 

In particular, if j is the zero functional, j(aj) = 0 for each j and hence 
the scalars cj are all 0. Now ji, . . . , jn are n linearly independent func- 
tionals, and since we know that V* has dimension n, it must be that 
OS* = {.A, . . . ,fn) is a basis for V*. This basis is called the dual basis 

of @I. 

Theorem 15. Let V be a finite-dimensional vector space over the jield F, 
and let 63 = (~21, . . . , CY,} be a basis for V. Then there is a unique dual 
basis a3* = {f,, . . . , fn} for V* such that fi(aj) = 6ij. For each linear junc- 
tional f on V we have 

(3-13) f = $, f(ai)fi 

and for each vector CY in V we have 

(3-14) Cr = g fi(CY)CXi. 
i=l 

Proof. We have shown above that there is a unique basis which is 
‘dual’ to EL If j is a linear functional on V, then j is some linear combination 
(3-12) of the ji, and as we observed after (3-12) the scalars cj must be given 
by cj = j(aj). Similarly, if 

Q = ; xjffj 
i=l 

is a vector in V, then 

= 5 XjSjj 
i=l 

= Xj 

so that the unique expression for (Y as a linear combination of the cri is 

Equation (3-14) provides us with a nice way of describing what the 
dual basis is. It says, if CB = {(Ye, . . . , a,} is an ordered basis for V and 
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a* = {jl, . . . ,fJ is the dual basis, then ji is precisely the function 
which assigns to each vector (Y in V the ith coordinate of (II relative to the 
ordered basis a. Thus we may also call the ji the coordinate functions for 
a. The formula (3-13), when combined with (3-14) tells us the following: 
If j is in V*, and we let j(a;) = cri, then when 

a = Zlcdl + . . . + z,a, 
we have 

(3-15) j(a) = a1q + . * . + c&J,. 

In other words, if we choose an ordered basis 63 for V and describe each 
vector in V by its n-tuple of coordinates (~1, . . . , z,,) relative to (8, then 
every linear functional on V has the form (3-15). This is the natural 
generalization of Example 18, which is the special case V = Fn and @ = 

{Qt * . .,GJ. 

EXAMPLE 22. Let V be the vector space of all polynomial functions 
from R into R which have degree less than or equal to 2. Let tl, t2, and t3 
be any three distinct real numbers, and let 

-L(p) = P(ti). 

Then L1, Lz, and Lz are linear functionals on V. These functionals are 
linearly independent ; for, suppose 

L = c,L, + CZLZ + c3L3. 

If L = 0, i.e., if L(p) = 0 for each p in V, then applying L to the particular 
polynomial ‘functions’ 1, 2, 9, we obtain 

Cl + CP + c3 = 0 

t1c1 + t2c2 + t3c3 = 0 

th + t;c2 + &a = 0 

From this it follows that cl = c2 = c3 = 0, because (as a short computation 
shows) the matrix 

[ 1 
1 1 1 
t1 t2 t3 

t: t; t; 

is invertible when tl, t2, and t3 are distinct. Now the Li are independent, 
and since V has dimension 3, these functionals form a basis for V*. What 
is the basis for V, of which this is the dual? Such a basis {pr, ~2, ~3) for V 
must satisfy 

Li(pj) = 6ij 
or 

pj(ti) = 6ij. 

These polynomial functions are rather easily seen to be 
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(x - t2) (z - t3) 
pl(x) = (tl - tz)(tl - t3) 

(x - h)(Z - ta) 
P2(x) = (tz - tl)(tz - t3) 

- h)(s - t2> 
p3(2) = Iz; - tl)(t3 - tzj 

The basis {pl, p,, pa} for V is interesting, because according to (3-14) we 
have for each p in V 

p = P(h)Pl + PWP2 + P@dP3. 

Thus, if cl, c2, and c3 are any real numbers, there is exactly one polynomial 
function p over R which has degree at most 2 and satisfies p(tJ = cj, j = 
1, 2, 3. This polynomial function is p = clpl + c2p2 + c3p3. 

Now let us discuss the relationship between linear functionals and 
subspaces. If f is a non-zero linear functional, then the rank off is 1 because 
the range off is a non-zero subspace of the scalar field and must (therefore) 
be the scalar field. If the underlying space V is finite-dimensional, the rank 
plus nullity theorem (Theorem 2) tells us that the null space Nf has 
dimension 

dimN, = dimV - 1. 

In a vector space of dimension n, a subspace of dimension n - 1 is called 
a hyperspace. Such spaces are sometimes called hyperplanes or subspaces 
of codimension 1. Is every hyperspace the null space of a linear functional? 
The answer is easily seen to be yes. It is not much more difficult to show 
that each d-dimensional subspace of an n-dimensional space is the inter- 
section of the null spaces of (n - d) linear functionals (Theorem 16 below). 

Definition. If V is a vector space over the field F and S is a subset of V, 
the annihilator of S is the set So of linear functionals f on V such that 
f(ar) = 0 for every Q in S. 

It should be clear to the reader that So is a subspace of V*, whether 
S is a subspace of V or not. If S is the set consisting of the zero vector 
alone, then So = V*. If S = V, then X0 is the zero subspace of V*. (This is 
easy to see when V is finite-dimensional.) 

Theorem 16. Let V be a jinite-dimensional vector space over the jield F, 
and let W be a subspace of V. Then 

dim W + dim W” = dim V. 

Proof. Let Ic be the dimension of W and (CQ, . . . , W} a basis for 
W. Choose vectors (Y~+~, . . . , an in V such that {q . . . , a,> is a basis for 
V. Let (fi, . . . , fn} be the basis for V” which is dual to this basis for V. 
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The claim is that {jk+l, . . . , jn} is a basis for the annihilator WO. Certainly 
ji belongs to W” for i 2 lc + 1, because 

ji(aj) = 6ij 

and6ij=Oifi>k+landj~k;fromthisitfollowsthat,fori>k+l, 
Jim = 0 whenever cy is a linear combination of al, . . . , ak. The functionals 

f k+l, . . . , n j are independent, so all we must show is that they span WO. 
Suppose f is in V*. Now 

so that if f is in W” we have f(aJ = 0 for i < k and 

We have shown that if dim W = lc and dim V = n then dim W” = 
n-k. 1 

Corollary. If W is a k-dimensional subspace of an n-dimensional vector 
space V, then W is the intersection of (11 - k) hyperspaces in V. 

Proof. This is a corollary of the proof of Theorem 16 rather than 
its statement. In the notation of the proof, W is exactly the set of vectors (Y 
such that fi(a) = 0, i = k + 1, . . . , n. In case k = n - 1, W is the null 
space of fn. 1 

Corollary. If WI and Wz are subspaces of a jinite-dimensional vector 
space, then W1 = Wz if and only if WY = W!. 

Proof. If WI = Wz, then of course WY = WZ. If WI # Wz, then 
one of the two subspaces contains a vector which is not in the other. 
Suppose there is a vector (Y which is in Wz but not in WI. By the previous 
corollaries (or the proof of Theorem 16) there is a linear functional j such 
that f(p) = 0 for all p in W, but f(a) # 0. Then f is in WY but not in W! 
and WY # Wg. 1 

In the next section we shall give different proofs for these two corol- 
laries. The first corollary says that, if we select some ordered basis for the 
space, each k-dimensional subspace can be described by specifying (n - k) 
homogeneous linear conditions on the coordinates relative to that basis. 

Let us look briefly at systems of homogeneous linear equations from 
the point of view of linear functionals. Suppose we have a system of linear 
equations, 

&la + ... +Al,z, =o 
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for which we wish to find the solutions. If we let fi, i = 1, . . . , m, be the 
linear functional on Fn defined by 

fi(Zl, . . . , 2,) = Ailxl+ ... + A&X, 

then we are seeking the subspace of F” of all CY such that 

fi(a) = 0, i=l , . . . , m. 

In other words, we are seeking the subspace annihilated by fi, . . . , fm. 
Row-reduction of the coefficient matrix provides us with a systematic 
method of finding this subspace. The n-tuple (Ail, . . . , Ai,) gives the 
coordinates of the linear functional fi relative to the basis which is dual 
to the standard basis for P. The row space of the coefficient matrix may 
thus be regarded as the space of linear functionals spanned by ji, . . . , f wt. 
The solution space is the subspace annihilated by this space of functionals. 

Now one may look at the system of equations from the ‘dual’ point 
of view. That is, suppose that we are given m vectors in Fn 

a; = (Ail, . . . ) A&) 

and we wish to find the annihilator of the subspace spanned by these 
vectors. Since a typical linear functional on Fn has the form 

fbl, * * . > 2,) = ClXl + . . . + cnxn 

the condition that j be in this annihilator is that 

5 A<jci=O, i=l ,...,m 
j=l 

that is, that (cl, . . . , c,) be a solution of the system AX = 0. From this 
point of view, row-reduction gives us a systematic method of finding the 
annihilator of the subspace spanned by a given finite set of vectors in Fn. 

EXAMPLE 23. Here are three linear functionals on R4: 

fl(Xl, x2, x3, z4) = 21 + 2x2 + 2x3 + x4 

fi(Xl, x2, 53, x4) = 2x2 + 24 

j-3(21, x2, x3, x4) = -2221 - 4x3 + 3x4. 

The subspace which they annihilate may be found explicitly by finding the 
row-reduced echelon form of the matrix 

A short calculation, or a peek at Example 21 of Chapter 2, shows that 

1 

[ 0 

0 2 0 

R= 10 0 0 0 0. 1 1 
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Therefore, the linear functionals 

$71(X1, x2, 23, 24) = 21 + 223 

92(x1, 52, x3,24) = x2 

93(x1, x2, x3, x4) = x4 

span the same subspace of (R4)* and annihilate the same subspace of R4 
as do fi, f2, j3. The subspace annihilated consists of the vectors with 

x1 = -2x3 
x2 = x4 = 0. 

EXAMPLE 24. Let W be the subspace of R5 which is spanned by the 
vectors 

a1 = (2, - 2, 3, 4, - l), a3 = (0, 0, -1, -2, 3) 
a2 = (-1, 1, 2, 5, a>, a4 = (1, -1, 2, 3, 0). 

How does one describe W”, the annihilator of W? Let us form the 4 X 5 
matrix A with row vectors clll, a2, CQ, (~4, and find the row-reduced echelon 
matrix R which is row-equivalent to A: 

If f is a linear functional on R6: 

f(Xl, . * * 7 X5) = i CjXj 
j=l 

then f is in W” if and only if f(aJ = 0, i = 1, 2, 3, 4, i.e., if and only if 

i Aijcj=Oy lIii4. 
j=l 

This is equivalent to 

i Rijcj = 0, lIi13 
j=l 

or 
Cl - c2 - c4 = 0 

C3 + 2C4 = 0 

c5 = 0. 

We obtain all such linear functionals f by assigning arbitrary values to 
c2 and cd, say c2 = a and cd = b, and then finding the corresponding cl = 
a + b, c3 = -2b, c5 = 0. So W” consists of all linear functionals f of the 
form 

fh ~2, ~3, a, x.d = (a + b)xl + ax2 - 2bx3 + bx4. 
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The dimension of W” is 2 and a basis {ji, ji} for W” can be found by first 

takinga = 1, b = Oand thena = 0, b = 1: 

kg:: : : : : 
x5) = x1 + x2 
x5) = x1 - 223 + x4. 

The above general j in W” is j = uji + bfi. 

Exercises 

1. In R3, let (Y~ = (1, 0, I), CQ = (0, 1, -2), a3 = (-1, -1, 0). 
(a) If f is a linear functional on R3 such that 

f(4 = 1, f(a2) = -1, fb3) = 3, 

and if cr = (a, b, c), find f(a). 
(b) Describe explicitly a linear functional f on R3 such that 

f(ai) = f(czz) = 0 but f(aJ # 0. 

(c) Let f be any linear functional such that 

f(~r) = f(az) = 0 and f(a3) # 0. 

If (Y = (2, 3, --I), show that f(a) # 0. 

2. Let @ = {CQ, (Ye, a3} be the basis for C3 defined by 

w  = (LO, --I), ff2 = (1, 1, I), a3 = (2, 2, 0). 

Find the dual basis of (8. 

3. If A and B are n X n matrices over the field F, show that trace (AB) = trace 
(BA). Now show that similar matrices have the same trace. 

4. Let V be the vector space of all polynomial functions p from R into R which 
have degree 2 or less: 

p(z) = co + Cl5 + c2x2. 

Define three linear functionals on V by 

h(p) = Jd ~($1 dx, fi(p) = 1,2pC4 dx, $3(p) = /,-1~(4 dx. 

Show that {fi, f2,f3} is a basis for V* by exhibiting the basis for V of which it is 
the dual. 

5. If A and B are n x n complex matrices, show that AB - BA = I is im- 
possible. 

6. Let m and n be positive integers and F a field. Let fr, . . . , J,, be linear func- 
tionals on Fn. For a in F” define 

!!‘a! = (fi(a), . . . ,fm(a)). 

Show that T is a linear transformation from F” into Fm. Then show that every 
linear transformation from F* into Fm is of the above form, for some jr, . . f ., 7n. 

7. Let cur = (1, 0, - 1,2) and CV~ = (2,3, 1, l), and let W be the subspace of R4 
spanned by cri and CY~. Which linear functionals f: 
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fhx2,23, x4) = ClXl + c222 + cax3 + c4x4 

are in the annihilator of W? 

8. Let W be the subspace of Rb which is spanned by the vectors 

a1 = Cl + 2E2 + -5, ff2 = E2 + 3Q + 3E4 + cl 

LYE = ~1 $ 4E2 + 6~3 + 4~4 + ~5. 

Find a basis for W”. 

9. Let V be the vector space of all 2 X 2 matrices over the field of real numbers, 
and let 

B = [-; -;I. 

Let W be the subspace of V consisting of all A such that A B = 0. Let f be a linear 
functional on V which is in the annihilator of W. Suppose that f(1) = 0 and 
f(C) = 3, where I is the 2 X 2 identity matrix and 

Find f(B). 

c= O O [ 1 0 1’ 

10. Let F be a subfield of the complex numbers. We define n linear functionals 
on Fn (n 2 2) by 

fk(%, . . . , XJ = jh, (k - A% l<k<n. 

What is the dimension of the subspace annihilated by fi, . . . , fn? 

11. Let WI and W2 be subspaces of a finite-dimensional vector space V. 
(a) Prove that (WI + W2)0 = W’j n W$ 
(b) Prove that (WI n WZ)O = WY + W& 

12. Let V be a finite-dimensional vector space over the field F and let W be a 
subspace of V. If f is a linear functional on W, prove that there is a linear functional 
g on V such that g(ar) = f(a) for each (I! in the subspace W. 

13. Let F be a subfield of the field of complex numbers and let V be any vector 
space over F. Suppose that f and g are linear functionals on V such that the func- 
tion h defined by h(o) = f(a)g(a) is also a linear functional on V. Prove that 
eitherf= Oorg = 0. 

14. Let F be a field of characteristic zero and let V be a finite-dimensional vector 
space over F. If (pi, . . . , urn are finitely many vectors in V, each different from the 
zero vector, prove that there is a linear functionalf on V such that 

f(w) # 0, i=l , . . . , m. 

15. According to Exercise 3, similar matrices have the same trace. Thus we can 
define the trace of a linear operator on a finite-dimensional space to be the trace 
of any matrix which represents the operator in an ordered basis. This is well- 
defined since all such representing matrices for one operator are similar. 

Now let V be the space of all 2 X 2 matrices over the field F and let P be a 
fixed 2 X 2 matrix. Let T be the linear operator on V defined by T(A) = PA. 
Prove that trace (T) = 2 trace (P). 
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16. Show that the trace functional on n X n matrices is unique in the following 
sense. If W is the space of n X n matrices over the field F and if f is a linear func- 
tional on W such that f(M) = f(BA) f or each A and B in W, then f is a scalar 
multiple of the trace function. If, in addition, f(Z) = n, thenf is the trace function. 

17. Let W be the space of n X n matrices over the field F, and let W. be the sub- 
space spanned by the matrices C of the form C = AB - BA. Prove that WO is 
exactly the subspace of matrices which have trace zero. (Hint: What is t,he dimen- 
sion of the space of matrices of trace zero? Use the matrix ‘units,’ i.e., matrices with 
exactly one non-zero entry, to construct enough linearly independent matrices of 
the form AB - BA.) 

3.6. The Double Dual 

One question about dual bases which we did not answer in the last 

section was whether every basis for V* is the dual of some basis for V. One 
way to answer that question is to consider V**, the dual space of V*. 

If CY is a vector in V, then LY induces a linear functional L, on V* 
defined by 

L(f) = fb), f in V*. 

The fact that L, is linear is just a reformulation of the definition of linear 

operations in V*: 

L&f + $7) = (cf + g)b) 
= (d)b) + SW 
= cm + SW 
= c-L(f) + -u7). 

If V is finite-dimensional and a # 0, then L, # 0; in other words, there 

exists a linear functional f such that f(a) # 0. The proof is very simple 

and was given in Section 3.5: Choose an ordered basis @ = {CQ, . . . , cu,} 

for V such that (Ye = (Y and let f be the linear functional which assigns to 
each vector in V its first coordinate in the ordered basis CB. 

Theorem 17. Let V be a jinite-dimensional vector space over the fi.eld F. 
For each vector a in V define 

L(f) = fb>, f in V*. 

The mapping a! + L, is then an isomorphism of V onto V**. 

Proof. We showed that for each (Y the function L, is linear. 

Suppose CY and p are in V and c is in F, and let y = ca + p. Then for each j 

in V* 
-b(f) = f(r) 

= fb + P> 
= cm + f(P) 

and so 
= c-L(f) + -b(f) 

L, = CL, + Lg. 
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This shows that the mapping (Y + L, is a linear transformation from V 
into V**. This transformation is non-singular; for, according to the 
remarks above L, = 0 if and only if (Y = 0. Now (Y + L, is a non-singular 
linear transformation from V into V**, and since 

dim V** = dim V* = dim V 

Theorem 9 tells us that this transformation is invertible, and is therefore 
an isomorphism of V onto V**. 1 

Corollary. Let V be a finite-dimensional vector space over the field F. 
If L is a linear junctional on the dual space V* of V, then there is a unique 
vector a in V such that 

L(f) = f(a) 

for every f in V*. 

Corollary. Let Tr be a finite-dimensional vector space over the jield F. 
Each basis for V* is the dual of some basis for V. 

Proof. Let a* = (ji, . . . , fn} be a basis for V*. By Theorem 15, 
there is a basis {L1, . . . , L,} for V** such that 

Li(fj) = f&j. 

Using the corollary above, for each i there is a vector (I in V such that 

L(f) = f(c4 

for every j in V*, i.e., such that Li = Lai. It follows immediately that 

{ a, . . . , a,} is a basis for V and that a3* is the dual of this basis. 1 

In view of Theorem 17, we usually identify (Y with L, and say that V 
‘is’ the dual space of V* or that the spaces V, V* are naturally in duality 
with one another. Each is the dual space of the other. In the last corollary 
we have an illustration of how that can be useful. Here is a further illustra- 
tion. 

If E is a subset of V*, then the annihilator E” is (technically) a subset 
of V**. If we choose to identify V and V** as in Theorem 17, then E” is a 
subspace of V, namely, the set of all (Y in V such thatf(a) = 0 for allf in E. 
In a corollary of Theorem 16 we noted that each subspace W is determined 
by its annihilator W”. How is it determined? The answer is that W is the 
subspace annihilated by all j in W”, that is, the intersection of the null 
spaces of all j’s in W”. In our present notation for annihilators, the answer 
may be phrased very simply : W = ( W”)O. 

Theorem 18. If S is any subset of a finite-dimensional vector space V, 
then (SO)O is the subspace spanned by S. 
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Proof. Let W be the subspace spanned by ~5’. Clearly WO = SO. 
Therefore, what we are to prove is that W = WOO. We have given one 
proof. Here is another. By Theorem 16 

dim W + dim WO = dim V 
dim W” + dim WOO = dim V* 

and since dim V = dim V* we have 

dim W = dim Woo. 

Since W is a subspace of Woo, we see that W = Woo. 1 

The results of this section hold for arbitrary vector spaces; however, 
the proofs require the use of the so-called Axiom of Choice. We want to 
avoid becoming embroiled in a lengthy discussion of that axiom, so we shall 
not tackle annihilators for general vector spaces. But, there are two results 
about linear functionals on arbitrary vector spaces which are so fundamen- 
tal that we should include them. 

Let V be a vector space. We want to define hyperspaces in V. Unless 
V is finite-dimensional, we cannot do that with the dimension of the 
hyperspace. But, we can express the idea that a space N falls just one 
dimension short of filling out V, in the following way: 

1. N is a proper subspace of V; 
2. if W is a subspace of V which contains N, then either W = N or 

w = v. 

Conditions (1) and (2) together say that N is a proper subspace and there 
is no larger proper subspace, in short, N is a maximal proper subspace. 

Dejinition. If V is a vector space, a hyperspace in V is a maximal 
proper subspace of V. 

Theorem 19. If f is a non-zero linear functional on the vector space V, 
then the null space off is a hyperspace in V. Conversely, every hyperspace in V 
is the null space of a (not unique) non-zero linear junctional on V. 

Proof. Let j be a non-zero linear functional on V and Nf its null 
space. Let cy be a vector in V which is not in N,, i.e., a vector such that 
j(a) # 0. We shall show that every vector in V is in the subspace spanned 
by Nf and LY. That subspace consists of all vectors 

Y + CQ, y in NI, c in F. 

Let p be in V. Define 
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which makes sense because j(a) # 0. Then the vector y = /3 - ca is in N, 
since 

f(r) = f(P - 4 
= f(P) - cfb> 
= 0. 

So p is in the subspace spanned by N, and cr. 
Now let N be a hyperspace in V. Fix some vector cx which is not in N. 

Since N is a maximal proper subspace, the subspace spanned by N and a 
is the entire space V. Therefore each vector /3 in V has the form 

P = Y + ca, y in N, c in F. 

The vector y and the scalar c are uniquely determined by ,8. If we have also 

p = y’ + da, y’ in N, c’ in F. 
then 

(c’ - c)‘” = y - 7’. 

If cl - c # 0, then (Y would be in N; hence, c’ = c and y’ = y. Another 
way to phrase our conclusion is this: If /3 is in V, there is a unique scalar c 
such that 0 - ca is in N. Call that scalar g(p). It is easy to see that g is a 
linear functional on V and that N is the null space of g. 1 

Lemma. If f and g are linear functionals on a vector space T’, then g 
is a scalar multiple of f if and only if the null space of g contains the null space 
of f, that is, if and only if f(a) = 0 implies g(a) = 0. 

Proof. If f = 0 then g = 0 as well and g is trivially a scalar 
multiple of j. Suppose j # 0 so that the null space N, is a hyperspace in V. 
Choose some vector a in V with j(a) # 0 and let 

The linear functional h = g - cf is 0 on N,, since both j and g are 0 there, 
and h(a) = g(a) - cj((~) = 0. Thus h is 0 on the subspace spanned by Nf 
and a-and that subspace is V. We conclude that h = 0, i.e., that g = 

cf. I 

Theorem 20. Let g, fl, . . . , f, be linear junctionals on a vector space V 
with respective null spaces N, N1, . . . , N,. Then g is a linear combination of 
f I, . . . , f, if and only if N contains the intersection N1 (3 . . . (3 N,. 

Proof. If g = clfi + . . f + cTfr and fi(a) = 0 for each i, then 
clearly g(a) = 0. Therefore, N contains N1 n . . 1 f7 N,. 

We shall prove the converse (the ‘if’ half of the theorem) by induction 
on the number r. The preceding lemma handles the case r = 1. Suppose we 
know the result for r = k - 1, and let fi, . . . , fk be linear functionals with 
null spaces Ni, . . . , Ne such that N1 n . . . n NE is contained in N, the 
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null space of g. Let g’, f:, . . . , f;-i be the restrictions of g, fi, . . . , fk-i to 
the subspace Nk. Then g’, f;, . . . , f;- 1 are linear functionals on the vector 
space Nk. Furthermore, if (Y is a vector in Nk and f;(a) = 0, i = 1, . . . , 
k - 1, then (Y is in Ni n . . . n Nk and so g’(a) = 0. By the induction 
hypothesis (the case r = k - l), there are scalars ci such that 

g’ = sj: + . . . + Ck--lf& 1. 
Now let 

k-l 

(3-16) h = g - 2 Cifi. 
i=l 

Then h is a linear functional on V and (3-16) tells us that h(cy) = 0 for 
every Q in Nk. By the preceding lemma, h is a scalar multiple of fk. If h = 
ckfk, then 

g = ii Cifi- 1 
i-l 

Exercises 

1. Let n be a positive integer and F a field. Let W be the set of all vectors 
(21, . . . , 2,) in F” such that x1 + . . . + Z~ = 0. 

(a) Prove that IV0 consists of all linear functionalsf of the form 

f(21, * * * , x,) = c 2 xi. 

j=l 

(b) Show that the dual space IV’* of W can be ‘naturally’ identified with the 
linear functionals 

.f(% * f . , 2,) = c121 + . . . + cnxn 

on Fn which satisfy ci + + . . + cn = 0. 

2. Use Theorem 20 to prove the following. If W is a subspace of a finite-dimen- 
sional vector space V and if {gi, . . . , gr} is any basis for W”, then 

W = 6 N,,. 
i=l 

3. Let S be a set, F a field, and V(S; F) the space of all functions from S into F: 

(f + g)(x) = f(x) + g(x) 
(d)(x) = 6(x). 

Let W be any n-dimensional subspace of V(S; F). Show that there exist points 
21, . . . , x, in S and functions fi, . . . , f,, in W such that fi(sJ = &+ 

3.7. The Transpose of a Linear 

Transformation 

Suppose that we have two vector spaces over the field F, V, and W, 

and a linear transformation T from V into W. Then T induces a linear 
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transformation from W* into V*, as follows. Suppose g is a linear functional 
on W, and let 

(3-17) fk4 = Lo4 

for each a! in V. Then (3-17) defines a function f from V into P, namely, 
the composition of T, a function from V into W, with g, a function from 
W into F. Since both T and g are linear, Theorem 6 tells us that f is also 
linear, i.e., f is a linear functional on V. Thus T provides us with a rule Tt 
which associates with each linear functional g on W a linear functional 
f = Tlg on V, defined by (3-17). Note also that T1 is actually a linear 
transformation from W* into V*; for, if g1 and gz are in W* and c is a scalar 

b”Ycgl + &I (4 = (wl + d CT4 
= cgl(Ta) + gz(Ta) 
= WgJ(4 + G’%)(a) 

so that Tt(cgl + 92) = cTtgl + Ttgz. Let us summarize. 

Theorem 21. Let V and W be vector spaces over the jield F. For each 
linear transformation T from V into W, there is a unique linear transformation 
Tt from W* into V* such that 

UWW = dT4 

for every g in W* and cr in V. 

We shall call Tt the transpose of T. This transformation Tt is often 
called the adjoint of T; however, we shall not use this terminology. 

Theorem 22. Let V and W be vector spaces over the ,$eZd F, and let T 
be a linear transformation from V into W. The null space of Tt is the annihi- 
lator of the range of T. If V and W are jlnite-dimensional, then 

(i) rank (Tt) = rank (T) 
(ii) the range of Tt is the annihilator of the null space of T. 

Proof. If g is in W*, then by definition 

(Ttg)k4 = sU’4 

for each a! in V. The statement that g is in the null space of Tt means that 
g(Tol) = 0 for every (Y in V. Thus the null space of T1 is precisely the 
annihilator of the range of T. 

Suppose that V and W are finite-dimensional, say dim V = n and 
dim W = m. For (i) : Let r be the rank of T, i.e., the dimension of the range 
of T. By Theorem 16, the annihilator of the range of T then has dimension 
(m - r). By the first statement of this theorem, the nullity of Tt must be 
(m - r). But then since Tt is a linear transformation on an m-dimensional 
space, the rank of Tt is m - (m - r) = r, and so T and Tt have the same 
rank. For (ii) : Let N be the null space of T. Every functional in the range 
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of Tt is in the annihilator of N; for, suppose j = Ttg for some g in W*; then, 
if cz is in N 

11s 

j(a) = (Ttg)(a) = g(Tcu) = g(0) = 0. 

Now the range of T1 is a subspace of the space No, and 

dim No = n - dim N = rank (T) = rank (T1) 

so that the range of Tt must be exactly No. 1 

Theorem 23. Let V and W be jinite-dimensional vector spaces over the 
jield F. Let & be an ordered basis for V with dual basis a*, and let 63 be an 
ordered basis for W with dual basis c%‘*. Let T be a linear transformation 
from V into W; let A be the matrix of T relative to 63, 63’ and let B be the matrix 
of Tt relative to a’*, a*. Then Bij = Aji. 

Proof. Let 

@ = &I,. . .,aJ, @I’= {Pl,...,Prn), 
a* = {fl, . . . ,fn), w*= {m,...,gm}. 

By definition, 

T~lj = 2 Aijfii, j=l,...,n 
i=l 

Ttgj = ii, Bijfi, j = 1,'. . . , m. 

On the other hand, 

= k!l AkiSj(h) 

= 5 AhJjk 
k=l 

For any linear functional j on V 

f = i;l fbilfi. 

If we apply this formula to the functional j = Ttgj and use the fact that 
(T’gJ(cyi) = Ajc we have 

Ttgj = $, Ajifi 

from which it immediately follows that Bij = Aji. 1 
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DeJinition. If A is an m X n matrix over the field F, the transpose of 

A is the n X m matrix At dejined by Atj = Aji. 

Theorem 23 thus states that if T is a linear transformation from V 
into IV, the matrix of which in some pair of bases is A, then the transpose 
transformation Tt is represented in the dual pair of bases by the transpose 
matrix At. 

Theorem 24. Let A be ang m X n matrix over the jield F. Then the 
row rank of A is equal to the column rank of A. 

Proof. Let @ be the standard ordered basis for Fn and @ the 
standard ordered basis for Fm. Let T be the linear transformation from Fn 
into Fm such that the matrix of T relative to the pair (R, a3’ is A, i.e., 

Th, . . . , xn) = (~1, . . . , ym) 
where 

Yi = 5 Aijxj. 
j=l 

The column rank of A is the rank of the transformation T, because the 
range of T consists of all m-tuples which are linear combinations of the 
column vectors of A. 

Relative to the dual bases a’* and (8*, the transpose mapping Tt is 
represented by the matrix At. Since the columns of At are the rows of A, 
we see by the same reasoning that the row rank of A (the column rank of A ‘) 
is equal to the rank of Tt. By Theorem 22, T and T1 have the same rank, 
and hence the row rank of A is equal to the column rank of A. l 

Now we see that if A is an m X n matrix over F and T is the linear 
transformation from Fn into Fm defined above, then 

rank (T) = row rank (A) = column rank (A) 

and we shall call this number simply the rank of A. 

EXAMPLE 25. This example will be of a general nature-more dis- 
cussion than example. Let I’ be an n-dimensional vector space over the 
field F, and let T be a linear operator on V. Suppose 63 = {w, . . . , cr,> 
is an ordered basis for V. The matrix of T in the ordered basis @ is defined 
to be the n X n matrix A such that 

Taj = 5 Ai+i 
j=l 

in other words, Aij is the ith coordinate of the vector Taj in the ordered 
basis a. If {fr, . . . , fn} is the dual b asis of @, this can be stated simply 

Aij = fi(Taj). 



Sec. 3.7 The Transpose of a Linear Transformation 115 

Let us see what happens when we change basis. Suppose 

63 = {cd, . . . , a@ 

is another ordered basis for V, with dual basis {f;, . . . , f;}. If B is the 
matrix of T in the ordered basis a’, then 

Bij = f;(Ta;). 

Let U be the invertible linear operator such that Uaj = a;. Then the 
transpose of U is given by Ulfl = fi. It is easy to verify that since U is 
invertible, so is Ut and (Ut)-l = ( U-‘)t. Thusf: = (U-l)“fi, i = 1, . . . , n. 
Therefore, 

Bij = [ ( U-l) $I( Tcx;) 
= fi( U-‘Ta;) 
= fi( U-‘TUaj). 

Now what does this say? Well, f;(U-lTUcq) is the i, j entry of the matrix 
of U-‘TU in the ordered basis 6% Our computation above shows that this 
scalar is also the i, j entry of the matrix of T in the ordered basis CB’. In 
other words 

[T]@t = [U-‘TU]a 
= K-‘ImP’l~~~l, 
= Wlci’[Tl~[~l~ 

and this is precisely the change-of-basis formula which we derived earlier. 

Exercises 

1. Let F be a field and let j be the linear functional on F2 defined by j(q, ZJ = 
azl + bxz. For each of the following linear operators T, let g = Ty, and find 
dx1,4. 

(a) T(xl, x2) = (xl, 0) ; 

(b) T(xI, x4 = C-22, XI) ; 

(c) T(xl, x2) = (xl - x2, x1 + ~2). 

2. Let V be the vector space of all polynomial functions over the field of real 
numbers. Let, a and b be fixed real numbers and let j be the linear functional on V 
defined by 

f(P) = /J p(x) (ix* 

If D is the differentiation operator on V, what is DEf? 

3. Let, V be the space of all n X n matrices over a field F and let B be a fixed 
n X n matrix. If T is the linear operator on V defined by T(A) = AB - BA, 
and if j is the trace function, what is Ttf? 

4. Let V be a finite-dimensional vector space over the field F and let T be a 
linear operator on V. Let, c be a scalar and suppose there is a non-zero vector CY 
in V such that TCI = CQ. Prove that there is a non-zero linear functional j on V 
such that TEf = cf. 
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5. Let A be an m X n matrix with real entries. Prove that A = 0 if and only 
if trace (A’A) = 0. 

6. Let n be a positive integer and let V be the space of all polynomial functions 
over the field of real numbers which have degree at most n, i.e., functions of the 
form 

j(z) = co + Cl2 + * * * + c&P. 

Let D be the differentiation operator on V. Find a basis for the null space of the 
transpose operator D’. 

7. Let V be a finite-dimensional vector space over the field F. Show that T + Tt 
is an isomorphism of L(V, V) onto L(V*, V*). 

8. Let V be the vector space of n X n matrices over the field F. 
(a) If B is a fixed n X n matrix, define a function Jo on V by js(A) = trace 

(B”A). Show that jB is a linear functional on V. 
(b) Show that every linear functional on V is of the above form, i.e., is js 

for some B. 
(c) Show that B + js is an isomorphism of V onto V*. 


