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Pf re ace 

Our original purpose in writing this book was to provide a text for the under- 
graduate linear algebra course at the Massachusetts Institute of Technology. This 
course was designed for mathematics majors at the junior level, although three- 
fourths of the students were drawn from other scientific and technological disciplines 
and ranged from freshmen through graduate students. This description of the 
M.I.T. audience for the text remains generally accurate today. The ten years since 
the first edition have seen the proliferation of linear algebra courses throughout 
the country and have afforded one of the authors the opportunity to teach the 
basic material to a variety of groups at Brandeis University, Washington Univer- 
sity (St. Louis), and the University of California (Irvine). 

Our principal aim in revising Linear Algebra has been to increase the variety 
of courses which can easily be taught from it. On one hand, we have structured the 
chapters, especially the more difficult ones, so that there are several natural stop- 
ping points along the way, allowing the instructor in a one-quarter or one-semester 
course to exercise a considerable amount of choice in the subject matter. On the 
other hand, we have increased the amount of material in the text, so that it can be 
used for a rather comprehensive one-year course in linear algebra and even as a 
reference book for mathematicians. 

The major changes have been in our treatments of canonical forms and inner 
product spaces. In Chapter 6 we no longer begin with the general spatial theory 
which underlies the theory of canonical forms. We first handle characteristic values 
in relation to triangulation and diagonalization theorems and then build our way 
up to the general theory. We have split Chapter 8 so that the basic material on 
inner product spaces and unitary diagonalization is followed by a Chapter 9 which 
treats sesqui-linear forms and the more sophisticated properties of normal opera- 
tors, including normal operators on real inner product spaces. 

We have also made a number of small changes and improvements from the 
first edition. But the basic philosophy behind the text is unchanged. 

We have made no particular concession to the fact that the majority of the 
students may not be primarily interested in mathematics. For we believe a mathe- 
matics course should not give science, engineering, or social science students a 
hodgepodge of techniques, but should provide them with an understanding of 
basic mathematical concepts. 

. . . 
am 
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On the other hand, we have been keenly aware of the wide range of back- 
grounds which the students may possess and, in particular, of the fact that the 
students have had very little experience with abstract mathematical reasoning. 
For this reason, we have avoided the introduction of too many abstract ideas at 
the very beginning of the book. In addition, we have included an Appendix which 
presents such basic ideas as set, function, and equivalence relation. We have found 
it most profitable not to dwell on these ideas independently, but to advise the 
students to read the Appendix when these ideas arise. 

Throughout the book we have included a great variety of examples of the 
important concepts which occur. The study of such examples is of fundamental 
importance and tends to minimize the number of students who can repeat defini- 
tion, theorem, proof in logical order without grasping the meaning of the abstract 
concepts. The book also contains a wide variety of graded exercises (about six 
hundred), ranging from routine applications to ones which will extend the very 
best students. These exercises are intended to be an important part of the text. 

Chapter 1 deals with systems of linear equations and their solution by means 
of elementary row operations on matrices. It has been our practice to spend about 
six lectures on this material. It provides the student with some picture of the 
origins of linear algebra and with the computational technique necessary to under- 
stand examples of the more abstract ideas occurring in the later chapters. Chap- 
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats 
linear transformations, their algebra, their representation by matrices, as well as 
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of 
polynomials over a field, the ideals in that algebra, and the prime factorization of 
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter- 
polation formula. Chapter 5 develops determinants of square matrices, the deter- 
minant being viewed as an alternating n-linear function of the rows of a matrix, 
and then proceeds to multilinear functions on modules as well as the Grassman ring. 
The material on modules places the concept of determinant in a wider and more 
comprehensive setting than is usually found in elementary textbooks. Chapters 6 
and 7 contain a discussion of the concepts which are basic to the analysis of a single 
linear transformation on a finite-dimensional vector space; the analysis of charac- 
teristic (eigen) values, triangulable and diagonalizable transformations; the con- 
cepts of the diagonalizable and nilpotent parts of a more general transformation, 
and the rational and Jordan canonical forms. The primary and cyclic decomposition 
theorems play a central role, the latter being arrived at through the study of 
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial 
domain, the computation of invariant factors and elementary divisors of a matrix, 
and the development of the Smith canonical form. The chapter ends with a dis- 
cussion of semi-simple operators, to round out the analysis of a single operator. 
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers 
the basic geometry, relating orthogonalization to the idea of ‘best approximation 
to a vector’ and leading to the concepts of the orthogonal projection of a vector 
onto a subspace and the orthogonal complement of a subspace. The chapter treats 
unitary operators and culminates in the diagonalization of self-adjoint and normal 
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and 
self-adjoint operators on an inner product space, moves on to the spectral theory 
of normal operators and then to more sophisticated results concerning normal 
operators on real or complex inner product spaces. Chapter 10 discusses bilinear 
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as 
well as groups preserving non-degenerate forms, especially the orthogonal, unitary, 
pseudo-orthogonal and Lorentz groups. 

We feel that any course which uses this text should cover Chapters 1, 2, and 3 
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual 
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and 
determinants, may be treated with varying degrees of thoroughness. In fact, 
polynomial ideals and basic properties of determinants may be covered quite 
sketchily without serious damage to the flow of the logic in the text; however, our 
inclination is to deal with these chapters carefully (except the results on modules), 
because the material illustrates so well the basic ideas of linear algebra. An ele- 
mentary course may now be concluded nicely with the first four sections of Chap- 
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to 
be included, a more extensive coverage of Chapter 6 is necessary. 

Our indebtedness remains to those who contributed to the first edition, espe- 
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp, 
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby. 
In addition, we would like to thank the many students and colleagues whose per- 
ceptive comments led to this revision, and the staff of Prentice-Hall for their 
patience in dealing with two authors caught in the throes of academic administra- 
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill 
and her tireless efforts in typing the revised manuscript. 

K. M. H. / R. A. K. 
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4. Polynomials 

4.1. Algebras 

The purpose of this chapter is to establish a few of the basic prop- 
erties of the algebra of polynomials over a field. The discussion will be 
facilitated if we first introduce the concept of a linear algebra over a field. 

DeJinition. Let F be a jield. A linear algebra over the field F is a 
vector space Q. over F with, an additional operation called multiplication of 

vectors which associates with each pair of vectors a, B in (3 a vector ~$3 in 
~3, called the product of CT and /I in such a way that 

(a) multiplication is associative, 

4P-f) = (c&Y 

(b) multiplication is distributive with respect to addition, 

4P + r> = 4 + w and (a + P>r = w + Pr 

(c) for each scalar c in F, 

c(c@) = (c(u)/3 = a(@). 

If there is an element 1 in a such that la = arl = CI for each LY in (2, 
we call Q. a linear algebra with identity over F, and call 1 the identity 

of a. The algebra a is called commutative if C@ = ,&x for all Q and /I in a. 

EXAMPLE 1. The set of n X n matrices over a field, with the usual 
operations, is a linear algebra with identity; in particular the field itself 
is an algebra with identity. This algebra is not commutative if n 2 2. 
The field itself is (of course) commutative. 

117 



118 Polynomials Chap. 4 

EXAMPLE 2. The space of all linear operators on a vector space, with 
composition as the product, is a linear algebra with identity. It is com- 
mutative if and only if the space is one-dimensionai. 

The reader may have had some experience with the dot product and 
cross product of vectors in R3. If so, he should observe that neither of 
these products is of the type described in the definition of a linear algebra. 
The dot product is a ‘scalar product,’ that is, it associates with a pair of 
vectors a scalar, and thus it is certainly not the type of product we are 
presently discussing. The cross product does associate a vector with each 
pair of vectors in R3; however, this is not an associative multiplication. 

The rest of this section will be devoted to the construction of an 
algebra which is significantly different from the algebras in either of the 
preceding examples. Let F be a field and S the set of non-negative in- 
tegers. By Example 3 of Chapter 2, the set of all functions from S into 
F is a vector space over F. We shall denote this vector space by F”. The 
vectors in F” are therefore infinite sequences f = (fo, fi, fi, . . .) of scalars 
fi in F. If g = (go, 91, g2, . . .>, gi in F, and a, b are scalars in F, af + bg is 
the infinite sequence given by 

(4-l) af + bg = (afo + bgo, afl + bgl, afi + be, . . .>. 
We define a product in F” by associating with each pair of vectors f and 
g in F” the vector fg which is given by 

(4-z) (fgln = jofig.+ n = 0, 1, 2, . . . . 

Thus 

and as 
fg = (fogo, fog1 + f1g0, fog2 + f1g1 + f2g0, . . .> 

for n = 0, 1, 2, . . . , it follows that multiplication is commutative, fg = gf. 
If h also belongs to F”, then 
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for n = 0, 1, 2, . . . , so that 

(4-3) (fg)h = fW4. 

We leave it to the reader to verify that the multiplication defined by (4-2) 
satisfies (b) and (c) in the definition of a linear algebra, and that the 
vector 1 = (1, 0, 0, . . .) serves as an identity for F”. Then Fm, with the 
operations defined above, is a commutative linear algebra with identity 
over the field F. 

The vector (0, 1, 0, . . . , 0, . . .) plays a distinguished role in what 
follows and we shall consistently denote it by 2. Throughout this chapter 
x will never be used to denote an element of the field F. The product of x 
with itself n times will be denoted by x” and we shall put x0 = 1. Then 

x2 = (0, 0, 1, 0, . . .), x3 = (0, 0, 0, 1, 0, . . .) 

and in general for each integer k 2 0, (x”)k = 1 and (xk), = 0 for all non- 
negative integers n # lc. In concluding this section we observe that the 
set consisting of 1, x, x2, . . . is both independent and infinite. Thus the 
algebra F* is not finite-dimensional. 

The algebra Fm is sometimes called the algebra of formal power 

series over F. The element f = (fo, fi, f2, . . .) is frequently written 

(4-4) 

This notation is very convenient for dealing with the algebraic operations. 
When used, it must be remembered that it is purely formal. There are no 
‘infinite sums’ in algebra, and the power series notation (4-4) is not in- 
tended to suggest anything about convergence, if the reader knows what 
that is. By using sequences, we were able to define carefully an algebra 
in which the operations behave like addition and multiplication of formal 
power series, without running the risk of confusion over such things as 
infinite sums. 

4.2. The Algebra of Polynomials 

We are now in a position to define a polynomial over the field F. 

DeJinition. Let F[x] be the subspace of F* spanned by the vectors 
1, x, x2, . . . . An element of F[x] is called a polynomial over F. 

Since F[x] consists of all (finite) linear combinations of x and its 
powers, a non-zero vector f in F” is a polynomial if and only if there is 
an integer n 2 0 such that fn # 0 and such that fk = 0 for all integers 
k > n; this integer (when it exists) is obviously unique and is called the 
degree of f. We denote the degree of a polynomial f by deg f, and do 
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not assign a degree to the O-polynomial. If f is a non-zero polynomial of 
degree n it follows that 

(4-5) f = f&O + flZ + f2L2 + * * * + f?c, fn z 0. 

The scalars fo, fl, . . . , fn are sometimes called the coefficients of f, and 
we may say that f is a polynomial with coefficients in F. We shall call 
polynomials of the form CZ scalar polynomials, and frequently write c 
for cx”. A non-zero polynomial f of degree n such that f,, = 1 is said to 
be a manic polynomial. 

The reader should note that polynomials are not the same sort of 
objects as the polynomial functions on F which we have discussed on 
several occasions. If F contains an infinite number of elements, there is a 
natural isomorphism between F[x] and the algebra of polynomial func- 
tions on F. We shall discuss that in the next section. Let us verify that 
F[x] is an algebra. 

Theorem 1. Let f and g be non-zero polynomials over F. Then 

(i) fg is a mm-zero polynomial; 
(ii) deg (fg) = deg f + deg g; 

(iii) fg is a manic polynomial if both f and g are manic polynomials; 
(iv) fg is a scalar polynomial if and only if both f and g are scalar 

polynomials; 
(v> if f + g Z 0, 

deg (f + g> I mm (deg f, deg g). 

Proof. Suppose f has degree m and that g has degree n. If k is a 
non-negative integer, 

m+n+k 
(fd m+n+k = z f ignzfnfk-i- 

i=o 

In order that figm+n+k-i # 0, it is necessary that i I m and m + n + 
k - i < n. Hence it is necessary that m + k I i 5 m, which implies 
k = 0 and i = m. Thus 

(4-6) 

and 

(fs> m+n = f&3 

(4-7) (fd m+n+k - - 0, k > 0. 

The statements (i), (ii), (iii) follow immediately from (4-6) and (4-7), 
while (iv) is a consequence of (i) and (ii). We leave the verification of (v) 
to the reader. 1 

Corollary 1. The set of all polynomials over a given jield F equipped 
with the operations (4-l) and (4-2) is a commutative linear algebra with 
identity over F. 
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Proof. Since the operations (4-l) and (4-2) are those defined in 
the algebra F” and since F[x] is a subspace of Fm, it suffices to prove that 
the product of two polynomials is again a polynomial. This is trivial when 
one of the factors is 0 and otherwise follows from (i). 1 

Corollary 2. Suppose f, g, and h are polynomials over the Jield F such 
that f # 0 and fg = fh. Then g = h. 

Proof. Since jg = fh, j(g - h) = 0, and as j # 0 it follows at 
once from (i) that g - h = 0. 1 

Certain additional facts follow rather easily from the proof of Theorem 
1, and we shall mention some of these. 

Suppose 

f = : fixi and g = 2 gjxi. 
i=o j-0 

Then from (4-7) we obtain, 

(4-W 

The reader should verify, in the special case j = cx*, g = dx” with c, d in 
F, that (4-8) reduces to 

(4-9) (cxm) (dx”) = cdxmfn. 

Now from (4-9) and the distributive laws in F[x], it follows that the 
product in (4-8) is also given by 

(4-10) z jigjxi+j 
id 

where the sum is extended over all integer pairs i, j such that 0 5 i < m, 
and 0 I j < n. 

Dejinition. Let @. be a linear algebra with identity over the field F. We 
shall denote the identity of 0, by 1 and make the convention that a0 = 1 for 

each CY in @. Then to each polynomial f = ; fix’ over F and a in @ we asso- 
i-0 

ciate an element f(a) in c?, by the rule 

EXAMPLE 3. Let C be the field of complex numbers and letj = x2 + 2. 

(a) If a = C and z belongs to C, f(z) = x2 + 2, in particular j(2) = 6 
and 

4 -> 
l+i 1 
1 = ’ 



122 Polynomials 

(b) If Q is the algebra of all 2 X 2 matrices over C and if 

Chap. 4 

then 

(c) If @, is the algebra of all linear operators on C3 and T is the ele- 
ment of Q. given by 

T(Cl, c2, cg) = (iti Cl, c2, 95 c,) 

then f(T) is the linear operator on C3 defined by 

f(T)(cl, cz, cs) = (0, 3~ 0). 

(d) If a is the algebra of all polynomials over C and g = x4 + 3i, 
thenf(g) is the polynomial in Q. given by 

f(g) = -7 + 6ix4 + x8. 

The observant reader may notice in connection with this last example 
that if f is a polynomial over any field and z is the polynomial (0, 1, 0, . . .) 
then f = f(z), but he is advised to forget this fact. 

Theorem 2. Let 5’ be a field and a be a linear algebra with identity 
over F. Suppose f and g are polynomials over F, that a! is an element of a, 
and that c belongs to F. Then 

6) (cf + d (00 = cf(d + g(4; 
(ii> (fg)(d = f(&(4. 

Proof. As (i) is quite easy to establish, we shall only prove (ii). 
Suppose 

f = 5 fixi and g = 5 gjxi. 
i=O j=o 

BY (4-W, 
fg = zfigjxi+i 

i,i 
and hence by (i), 

(fs>(d = ~.fig&+i 

= (i:ofiai)(joC7Pi) 

= f(4d4. I 

Exercises 

1. Let F be a subfield of the complex numbers and let A be the following 2 X 2 
matrix over F 



Sec. 4.2 The Algebra of Polynomials 

For each of the following polynomials j over F, compute j(A). 
.(a) j = x2 - x + 2; 
(b) j= x3 - 1; 
(c) j = 22 - 52 + 7. 

123 

2. Let T be the linear operator on R3 defined by 

T(xI, xz, x3) = (XI, x3, -2x2 - x3). 

Let j be the polynomial over R defined by j = -x3 + 2. Find j(T). 

3. Let A be an n X n diagonal matrix over the field F, i.e., a matrix satisfying 
Aij = 0 for i # j. Let j be the polynomial over F defined by 

j = (x - AlI) . . . (x - A,,). 

What is the matrix j(A)? 

4. If j and g are independent polynomials over a field F and h is a non-zero 
polynomial over F, show that jh and gh are independent. 

5. If F is a field, show that the product of two non-zero elements of F” is non-zero. 

6. Let S be a set of non-zero polynomials over a field P. If no two elements of S 
have the same degree, show that S is an independent set in P[x]. 

7. If a and b are elements of a field F and a # 0, show that the polynomials 1, 
ax + b, (az + b)2, (az + b)3, . . . form a basis of F[x]. 

8. If F is a field and h is a polynomial over F of degree 2 1, show that the map- 
ping j + j(h) is a one-one linear transformation of F[x] into F[x]. Show that this 
transformation is an isomorphism of F[x] onto F[x] if and only if deg h = 1. 

9. Let F be a subfield of the complex numbers and let T, D be the transformations 
on F[x) defined by 

and 

D (i$, ,ixi) = ii, iCixi-‘. 

(a) Show that T is a non-singular linear operator on F[x]. Show also that T 
is not invertible. 

(b) Show that D is a linear operator on F[x] and find its null space. 
(c) Show that DT = I, and TD # I. 
(d) Show that T[(Tj)g] = (Tj)(Tg) - T[j(Tg)] for all j, g in F[x]. 
(e) State and prove a rule for D similar to the one given for T in (d). 
(f) Suppose V is a non-zero subspace of F[x] such that Tj belongs to V for 

each j in V. Show that V is not finite-dimensional. 
(g) Suppose V is a finite-dimensional subspace of F[x]. Prove there is an 

integer m 2 0 such that Dmj = 0 for each j in V. 
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4.3. Lagrange Interpolation 

Throughout this section we shall assume F is a fixed field and that 
to, t1, . . . , t, are n + 1 distinct elements of F. Let V be the subspace of 
F[z] consisting of all polynomials of degree less than or equal to n (to- 
gether with the O-polynomial), and let Li be the function from V into F 
defined for f in V by 

-L(f) = f@i>, Oliln. 
By part (i) of Theorem 2, each Li is a linear functional on V, and one of 
the things we intend to show is that the set consisting of Lo, LI, . . . , L, 
is a basis for V*, the dual space of V. 

Of course in order that this be so, it is sufficient (cf. Theorem 15 of 
Chapter 3) that {Lo, LI, . . . , L,} be the dual of a basis {PO, PI, . . . , P,} 
of V. There is at most one such basis, and if it exists it is characterized by 

(4-l 1) Lj(Pi) = P,(tj) = 6ij. 

The polynomials 

(4-12) p, = (x - to) . . * (x - L,)(x - ti+,) * * * (x - tn) 
t (4 - to) . . . oi - Ll)@i - ti+l) * * * (ti - tn> 

= gi t. - t. ( > 2 - tj 
z I 

are of degree n, hence belong to V, and by Theorem 2, they satisfy (4-11). 
If f = Z ciPi, then for eachj 

(4-13) i f(tj) = 2 CiP,(tj) = Cj. 
i 

Since the O-polynomial has the property that O(t) = 0 for each t in F, it 
follows from (4-13) that the polynomials PO, PI, . . . , P, are linearly in- 
dependent. The polynomials 1, x, . . . , xn form a basis of V and hence the 
dimension of V is (n + 1). So, the independent set {PO, PI, . . . , P,} 
must also be a basis for V. Thus for eachf in V 

(4-14) 

The expression (4-14) is called Lagrange’s interpolation formula. Set- 
tingf = zi in (4-14) we obtain 

xi = 5 (ti)jPi. 
i=o 

Now from Theorem 7 of Chapter 2 it follows that the matrix 

(4-15) 

1 to t; * * * t; 
1 t1 t’: . * . t’l [ 1 . . . . . . . . . . 
i t, i; . .I i; 
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is invertible. The matrix in (4-15) is called a Vandermonde matrix; it 
is an interesting exercise to show directly that such a matrix is invertible, 
when to, ti, . . . , t, are n + 1 distinct elements of F. 

If j is any polynomial over F we shall, in our present discussion, de- 

125 

note by j- the polynomial function from F into F taking each t in F into 
j(t). By definition (cf. Example 4, Chapter 2) every polynomial function 
arises in this way; however, it may happen that j” = g- for two poly- 
nomials j and g such that j # g. Fortunately, as we shall see, this un- 
pleasant situation only occurs in the case where F is a field having only 
a finite number of distinct elements. In order to describe in a precise way 
the relation between polynomials and polynomial functions, we need to 
define the product of two polynomial functions. If j, g are polynomials 
over F, the product of j” and g- is the function j-g” from F into F given by 

(4-16) (f-s-> (0 = f-(oc-r(o, t in F. 

By part (ii) of Theorem 2, (jg)(t) = j(t)g(t), and hence 

(fd-0) = f-(OgW 

for each t in F. Thusfg” = (jg)“, and is a polynomial function. At this 
point it is a straightforward matter, which we leave to the reader, to verify 
that the vector space of polynomial functions over F becomes a linear 
algebra with identity over F if multiplication is defined by (4-16). 

DeJinition. Let F be a jield and let @, and a- be linear algebras over F. 
The algebras 0, and a- are said to be isomorphic if there is a one-to-one map- 
ping a + a” of a onto @,- such that 

(4 (ca + do)” = ca- + d/3- 

(b) (a/3)- = a!-p- 

for all a, fl in a and all scalars c, d in F. The mapping a + a” is called an 
isomorphism of a onto a-. An isomorphism of a onto a- is thus a vector- 
space isomorphism of Q onto a- which has the additional property (b) of 
‘preserving’ products. 

EXAMPLE 4. Let V be an n-dimensional vector space over the field F. 
By Theorem 13 of Chapter 3 and subsequent remarks, each ordered basis 
03 of V determines an isomorphism T + [T]a of the algebra of linear 
operators on V onto the algebra of n X n matrices over F. Suppose now 
that U is a fixed linear operator on V and that we are given a polynomial 

n 
j = z c&xi 

i=o 

with coefficients ci in F. Then 

f(U) = i%ciu” 
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and since T + [T]a is a linear mapping 

[f(Ulc% = iio dU"lc5. 

Now from the additional fact that 

[Td”da = [TMT& 
for all T1, Tz in L(V, V) it follows that 

lIwa3 = ([mdi, 2<i<n. 

As this relation is also valid for i = 0, 1 we obtain the result that 

(4-17) Lf(~>lcB =f(FJld. 

In words, if Ii is a linear operator on V, the matrix of a polynomial in U, 
in a given basis, is the same polynomial in the matrix of U. 

Theorem 3. If I’ is a field containing an in$nite number of distinct 
elements, the mapping f + fW is an isomorphism of the algebra of polynomials 
over F onto the algebra of polynomial junctions over F. 

Proof. By definition, the mapping is onto, and if f, g belong to 
F[x] it is evident that 

(cf + dg)” = df- + dg- 

for all scalars c and d. Since we have already shown that (jg)” = j-g-, we 
need only show that the mapping is one-to-one. To do this it suffices by 
linearity to show that j- = 0 implies j = 0. Suppose then that j is a poly- 
nomial of degree n or less such that j’ = 0. Let to, tl, . . . , t, be any n + 1 

distinct elements of F. Sincej- = 0, j(tJ = 0 for i = 0, 1, . . . , n, and it 
is an immediate consequence of (4-14) that j = 0. 1 

From the results of the next section we shall obtain an altogether 
different proof of this theorem. 

Exercises 

1. Use the Lagrange interpolation formula to find a polynomial f with real co- 
efficients such that f has degree 5 3 and f( - 1) = -6, f(0) = 2, j(1) = -2, 

f(2) = 6. 

2. Let ar, 6, y, 6 be real numbers. We ask when it is possible to find a polynomial j 
over R, of degree not more than 2, such that f(-1) = CC, j(l) = /3, f(3) = y and 
j(0) = 6. Prove that this is possible if and only if 

3cu + 6@ - y - 86 = 0. 

3. Let F be the field of real numbers, 
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2 0 0 0 2 0 0 0 

A=0200 A=0200 [ 1 [ 1 0 0 3 0 0 0 3 0 
0 0 0 1 0 0 0 1 

p = (z - 2)(x - 3)(X - 1). p = (z - 2)(x - 3)(X - 1). 

(a) Show that p(A) = 0. 
(b) Let P1, PI, P3 be the Lagrange polynomials for ti = 2, tz = 3, t3 = 1. 

Compute Ei = Pi(A), i = 1, 2, 3. 
(c) Show that El + EZ + E3 = I, EiEi = 0 if i # j, Ef = Ei. 
(d) Show that A = 2E1 + 3Ez + Ea. 

4. Let p = (z - 2)(s - 3)(2 - 1) and let T be any linear operator on R4 such 
that p(T) = 0. Let PI, Pz, P, be the Lagrange polynomials of Exercise 3, and let 
Ei = Pi(T), i = 1, 2, 3. Prove that 

El + Ez + Ea = I, EiEi = 0 if i #j, 

E,2 = Ei, and T = 2E1 + 3Ez + Es. 

5. Let n be a positive integer and F a field. Suppose A is an n X n matrix over F 
and P is an invertible n X n matrix over F. If f is any polynomial over F, prove 
that 

f(P-IAP) = P-tf(A)P. 

6. Let F be a field. We have considered certain special linear functionals on F[z] 
obtained via ‘evaluation at t’: 

Uf) = f(t). 

Such functionals are not only linear but also have the property that L(fg) = 
L(f)L(g). Prove that if L is any linear functional on F[x] such that 

Wg) = Ufmd 

for all f and g, then either L = 0 or there is a t in F such that L(f) = f(t) for all f. 

4.4. Polynomial Ideals 

In this section we are concerned with results which depend primarily 

on the multiplicative structure of the algebra of polynomials over a field. 

Lemma. Suppose f and d are non-zero polynomials over a jield F such 

that deg d 5 deg f. Then there exists a polynomial g in F[x] such that either 

f - dg = 0 or deg (f - dg) < deg f. 

Proof. Suppose 

m-1 
j = a,x" + z C&Xi, 

i=o 
a, # 0 

and that 
n-1 

d = b,Xn + Z. biXi, b, # 0. 
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Then m 2 n, and 

Gn 
f-C-> bn xmwnd = 0 or deg [f - (z)xm-nd] < degf. 

Thus we may take g = 

Using this lemma we can show that the familiar process of ‘long 
division’ of polynomials with real or complex coefficients is possible over 
any field. 

Theorem 4. If f, d are polynomials over a field F and d is di$erent 
from 0 then there exist polynomials q, r in F[x] such that 

(i) f = dq + r. 
(ii) either r = 0 or deg r < deg d. 

The polynomials q, r satisfying (i) and (ii) are unique. 

Proof. If f is 0 or deg f < deg d we may take q = 0 and r = f. In 
case f # 0 and deg f > deg d, the preceding lemma shows we may choose 
a polynomial g such that f - dg = 0 or deg (f - dg) < deg f. If f - 
dg # 0 and deg (f - dg) 2 deg d we choose a polynomial h such that 
(f - dg) - dh = 0 or 

deg If - 4g + hII < deg (f - &I. 
Continuing this process as long as necessary, we ultimately obtain poly- 
nomials q, r such that r = 0 or deg r < deg d, and f = dq + r. rc’ow sup- 
pose we also have f = dql + rl where rl = 0 or deg rl < deg d. Then 
dq + r = dql + ri, andd(q - ql) = ri - r. If q - ql # 0 thend(q - qJ # 
0 and 

deg d + deg (q - qJ = deg (ri - r). 

But as the degree of ri - r is less than the degree of d, this is impossible 
and q - q1 = 0. Hence also r1 - r = 0. 1 

De$nition. Let d be a non-zero polynomial over the Jield F. If f is in 
F[x], the preceding theorem shows there is at most one polynomial q in F[x] 
such that f = dq. If such a q exists we say that d divides f, that f is divisible 

by d, that f is a multiple of d, and call q the quotient of f and d. We 
also write q = f/d. 

Corollary 1. Let f be a polynomial over the field F, and let c be an ele- 
ment of F. Then f is divisible by x - c if and only if f(c) = 0. 

Proof. By the theorem, f = (x - c)q + r where r is a scalar 
polynomial. By Theorem 2, 

f(c) = Oq(c) + r(c) = r(c). 
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Hence r = 0 if and only if f(c) = 0. 1 

Dejinition. Let F be a field. An element c in F is said to be a root or 
a zero of a given polynomial f over F if f(c) = 0. 

Corollary 2. A polynomial f of degree n over aJield F has at most n roots 
in F. 

Proof. The result is obviously true for polynomials of degree 0 
and degree 1. We assume it to be true for polynomials of degree n - 1. If 
a is a root off, f = (x - a)q where 4 has degree n - 1. Since f(b) = 0 if 
and only if a = b or q(b) = 0, it follows by our inductive assumption that 
f has at most n roots. 1 

The reader should observe that the main step in the proof of Theorem 
3 follows immediately from this corollary. 

The formal derivatives of a polynomial are useful in discussing mul- 
tiple roots. The derivative of the polynomial 

f = co + ClZ + . . . + CnZ” 

is the polynomial 

f’ = cl + 2czx + . . . + nc,xn-‘. 

We also use the notation Dj = f’. Differentiation is linear, that is, D is a 
linear operator on F[s]. We have the higher order formal derivatives 
f” = Dzf f@’ = Oaf, and so on. 7 

Theorem 5 (Taylor’s Formula). Let F be a field of characteristic 
zero, c an element of F, and n a positive integer. If f is a polynomial over f 
with deg f _< n, then 

f = i,F (c)(x - c)“. 

Proof. Taylor’s formula is a consequence of the binomial theorem 
and the linearity of the operators D, D2, . . . , Dn. The binomial theorem 
is easily proved by induction and asserts that 

(a + b)n = 5 T ampk bk 
k=O 0 

where 
m 

0 

m! m(m - 1) . ~3 (m - k + 1) 
k = k!(m - Ic)! = 1 . 2 ... k 

is the familiar binomial coefficient giving the number of combinations of 
m objects taken Ic at a time. By the binomial theorem 

xm = [c + (x - c)]” 

cm-y5 - c)” 
= cm + mcm-l(x - c) + . . . + (x - c)” 



Polynomials Chap. 4 

and this is the statement of Taylor’s formula for the case f = xm. If 

f = jOumx- 

then 
Dkf(c) = z a,(Dkxq(c) 

m 

and 

= Z a,xm 

=; [ 

It should be noted that because the polynomials 1, (x - c), . . . , 
(x - c)~ are linearly independent (cf. Exercise 6, Section 4.2) Taylor’s 
formula provides the unique method for writing f as a linear combination 
of the polynomials (x - c)” (0 5 k 5 n). 

Although we shall not give any details, it is perhaps worth mentioning 
at this point that with the proper interpretation Taylor’s formula is also 
valid for polynomials over fields of finite characteristic. If the field F has 
finite characteristic (the sum of some finite number of l’s in F is 0) then 
we may have k! = 0 in F, in which case the division of (Dkf) (c) by lc! is 
meaningless. Nevertheless, sense can be made out of the division of Dkf 
by k!, because every coefficient of Dkf is an element of F multiplied by an 
integer divisible by k! If all of this seems confusing, we advise the reader 
to restrict his attention to fields of characteristic 0 or to subfields of the 
complex numbers. 

If c is a root of the polynomial f, the multiplicity of c as a root of 
f is the largest positive integer r such that (x - c)~ divides f. 

The multiplicity of a root is clearly less than or equal to the degree 
of f. For polynomials over fields of characteristic zero, the multiplicity 
of c as a root off is related to the number of derivatives off that are 0 at c. 

Theorem 6. Let F be a field of characteristic zero and f a polynomial 
over F with deg f 2 n. Then the scalar c is a root off of multiplicity r if and 
only if 

(D”f)(c) = 0, Olklr-1 

(Drf)(c) f 0. 

Proof. Suppose that r is the multiplicity of c as a root off. Then 
there is a polynomial g such that f = (a: - c)‘g and g(c) # 0. For other- 



Sec. 4.4 Polynomial Ideals 

wise f would be divisible by (z - c) 7+1, by Corollary 1 of Theorem 4. By 
Taylor’s formula applied to g 

f = (x - c)r [>; 9 (c) (z - c)-] 

= y (Dv) ----& (x - c)‘fm 
m=O . 

Since there is only one way to write f as a linear combination of the powers 
(z - c)” (0 5 k < n) it follows that 

OifO<kIr-1 
(D”f 1 Cc> 
__- = k! 

1 
Dk-‘g(c) if r < k < n 
(k - T)! - - . 

Therefore, Dkf(c) = 0 for 0 5 k 5 r - 1, and D’f(c) = g(c) # 0. Con- 
versely, if these conditions are satisfied, it follows at once from Taylor’s 
formula that there is a polynomial g such that f = (5 - c)rg and g(c) # 0. 
Now suppose that r is not the largest positive integer such that (X - c)’ 
divides f. Then there is a polynomial h such that f = (zr - c)‘+%. But 
this implies g = (5 - c)h, by Corollary 2 of Theorem 1; hence g(c) = 0, 
a contradiction. 1 

Dejinition. Let F be a jield. An ideal in F[x] is a subspace M of 
F[x] such that fg belongs to M whenever f is in F[x] and g is in M. 

EXAMPLE 5. If F is a field and d is a polynomial over F, the set 
J1 = dF [r], of all multiples df of d by arbitrary f in F [xl, is an ideal. For 
M is non-empty, M in fact contains d. If f, g belong to F[x] and c is a 
scalar, then 

c@f) - dg = 4cf - d 

belongs to M, so that M is a subspace. Finally M contains (df)g = d(fg) 

as well. The ideal M is called the principal ideal generated by d. 

EXAMPLE 6. Let dl,..., d, be a finite number of polynomials over F. 

Then the sum M of the subspaces dzF[x] is a subspace and is also an ideal. 
For suppose p belongs to M. Then there exist polynomials fl, . . . , fn in 
F [r] such that p = dlfl + * . . + dnfn. If g is an arbitrary polynomial 
over F, then 

pg = dl(flg) + . . 1 + dn(fng) 

so that pg also belongs to M. Thus M is an ideal, and we say that M is the 
ideal generated by the polynomials, dl, . . . , d,. 

EXAMPLE 7. Let F be a subfield of the complex numbers, and con- 
sider the ideal 

M = (x + 2)F[x] + (x” + 8x + 16)F[x]. 
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We assert that M = F[x]. For M contains 

x2 + 8x + 16 - x(x + 2) = 62 + 16 

and hence M contains 6x + 16 - 6(x + 2) = 4. Thus the scalar poly- 
nomial 1 belongs to M as well as all its multiples. 

Theorem 7. If F is a field, and M is any non-zero ideal in F[x], there 
is a unique manic polynomial d in F[x] such that M is the principal ideal 
generated by d. 

Proof. By assumption, M contains a non-zero polynomial; among 
all non-zero polynomials in M there is a polynomial d of minimal degree. 
We may assume d is manic, for otherwise we can multiply d by a scalar to 
make it manic. Now if f belongs to M, Theorem 4 shows that f = dq + r 
where r = 0 or deg r < deg d. Since d is in M, dq and f - dq = r also 
belong to M. Because d is an element of M of minimal degree we cannot 
have deg r < deg d, so r = 0. Thus M = dF[x]. If g is another manic 
polynomial such that M = gF[x], then there exist non-zero polynomials 
p, q such that d = gp and g = dq. Thus d = dpq and 

deg d = deg d + deg p + deg q. 

Hence deg p = deg q = 0, and as d, g are manic, p = q = 1. Thus 
d=g. 1 

It is worth observing that in the proof just given we have used a 
special case of a more general and rather useful fact; namely, if p is a non- 
zero polynomial in an ideal M and if f is a polynomial in M which is not 
divisible by p, then f = pq + r where the ‘remainder’ r belongs to M, is 
different from 0, and has smaller degree than p. We have already made 
use of this fact in Example 7 to show that the scalar polynomial 1 is the 
manic generator of the ideal considered there. In principle it is always 
possible to find the manic polynomial generating a given non-zero ideal. 
For one can ultimately obtain a polynomial in the ideal of minimal degree 
by a finite number of successive divisions. 

Corollary. If pi, . . . , pn are polynomials over a field F, not all of 

which are 0, there is a unique manic polynomial d in F[x] such that 

(a) d is in the ideal generated by pi, . . . , p,,; 
(b) d divides each of the polynomials pi. 

Any polynomial satisfying (a) and (b) necessarily satisjies 
(c) d is divisible by every polynomial which divides each of the poly- 

nomials pi, . . . , pn. 

Proof. Let d be the manic generator of the ideal 

plF[xl + .-a + p,FCxl. 
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Every member of this ideal is divisible by d; thus each of the polynomials 
pi is divisible by d. N ow suppose f is a polynomial which divides each of 
the polynomials PI, . . . , p,. Then there exist polynomials gi, . . . , gn 
such that p; = fgi, 1 5 i 5 n. Also, since d is in the ideal 

p,F[zl + * ** + PnF[~l, 
there exist polynomials ~1, . . . , qn in F[z] such that 

d = plql + . . . + pnqn. 
Thus 

d = f[glql + . . . + gnqnl. 
We have shown that d is a manic polynomial satisfying (a), (b), and (c). 
If d’ is any polynomial satisfying (a) and (b) it follows, from (a) and the 
definition of d, that d’ is a scalar multiple of d and satisfies (c) as well. 
Finally, in case d’ is a manic polynomial, we have d’ = d. 1 

Dejinition. If pi, . . . , pn are polynomials over a Jield F, not all of 
which are 0, the manic generator d of the ideal 

p,F[xl + . . . + pnF[xl 
is called the greatest common divisor (g.c.d.) of pl, . . . , pn. This 
terminology is justiJied by the preceding corollary. We say that the poly- 
nomials p1, . . . , pn are relatively prime if their greatest common divisor 
is 1, or equivalently if the ideal they generate is all of F[x]. 

EXAMPLE 8. Let C be the field of complex numbers. Then 

(a) g.c.d. (z + 2, x2 + 8x + 16) = 1 (see Example 7); 
(b) g.c.d. ((x - 2)2(x + i), (x’ - 2)(x2 + 1)) = (J: - 2)(x i- i). For, 

the ideal 

contains 

(x - 2)2(x + i)F[x] + (x - 2)(x2 + l)F[zl 

(x - 2)2(z + i) - (5 - 2) (x2 + 1) = (x - 2) (x + i) (i - 2). 

Hence it contains (x - 2)(x + i), which is monk and divides both 

(z - 2)2(x + i) and (x - 2)(x2 + 1). 

EXAMPLE 9. Let F be the field of rational numbers and in F[z] let 
M be the ideal generated by 

(x - 1)(x + a2, (x + 2)Yx - 3), and (x - 3). 

Then M contains 

and since 

4(x + 2)2[(x - 1) - (x - 3)] = (r + 2>2 

(x + 2)2 = (x - 3)(X + 7) - 17 
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M contains the scalar polynomial 1. Thus M = F[z] and the polynomials 

(x - 1)(x + w, (II: + q2kC - 3), and (x - 3) 

are relatively prime. 

Exercises 

1. Let & be the field of rational numbers. Determine which of the following subsets 
of &[z] are ideals. When the set is an ideal, find its manic generator. 

(a) all f of even degree; 
(b) allf of degree 2 5; 
(c) all f such that f(0) = 0; 
(d) all f such that f(2) = f(4) = 0; 
(e) all f in the range of the linear operator T defined by 

2. Find the g.c.d. of each of the following pairs of polynomials 
(a) 29 - x3 - 3x2 - 6x + 4, x4 + x3 - x2 - 2~ - 2; 
(b) 324+822-3,23+2x2+3x+6; 
(c) x4-2~~-2~~-2~-3,~~+6~~+7~+1. 

3. Let A be an n X n matrix over a field F. Show that the set of all polynomials 
f in F[x] such that f(A) = 0 is an ideal. 

4. Let F be a subfield of the complex numbers, and let 

A= l-2 [ 1 0 3’ 

Find the manic generator of the ideal of all polynomials f in F[z] such that 
f(A) = 0. 

5. Let F be a field. Show that the intersection of any number of ideals in F[x] 
is an ideal. 

6. Let F be a field. Show that the ideal generated by a finite number of poly- 
nomials fi, . , . , fn in F[z] is the intersection of all ideals containing fi, . . . , fn. 

7. Let K be a subfield of a field F, and suppose f, g are polynomials in K[x]. 
Let MK be the ideal generated by f and g in K[x] and MP be the ideal they generate 
in F[x]. Show that MK and MF have the same manic generator. 

4.5. The Prime Factorization 

of a Polynomial 

In this section we shall prove that each polynomial over the field F 
can be written as a product of ‘prime’ polynomials. This factorization 
provides us with an effective tool for finding the greatest common divisor 
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of a finite number of polynomials, and in particular, provides an effective 
means for deciding when the polynomials are relatively prime. 

De$nition. Let F be a jield. A polynomial f in F[x] is said to be 
reducible over F if there exist polynomials g, h in F[x] of degree 2 1 such 
that f = gh, and if not, f is said to be irreducible over F. A non-scalar 
irreducible polynomial over I; is called a prime polynomial over F, and we 
sometimes say it is a prime in F[x]. 

EXAMPLE 10. The polynomial x2 + 1 is reducible over the field C of 
complex numbers. For 

x2+1 = (x+i)(x-ii) 

and the polynomials 2 + i, z - i belong to C[X]. On the other hand, 
9 + 1 is irreducible over the field E of real numbers. For if 

x2+1 = (az+b)(a’J:+b’) 

with a, a’, b, b’ in R, then 

aa’ = 1 , ab’ + ba’ = 0, bb’ = 1. 

These relations imply a2 + b2 = 0, which is impossible with real numbers 
a and b, unless a = b = 0. 

Theorem 8. Let p, f, and g be polynomials over the Jield F’. Suppose 
that p is a prime polynomial and that 11 divides the product fg. Then either p 
divides f or p divides g. 

Proof. It is no loss of generality to assume that p is a manic prime 
polynomial. The fact that p is prime then simply says that the only manic 
divisors of p are 1 and p. Let d be the g.c.d. of f and p. Then either 
d = 1 or d = p, since d is a monk polynomial which divides p. If d = p, 
then p divides f and we are done. So suppose d = 1, i.e., suppose f and p 
are relatively prime. We shall prove that p divides g. Since (j, p) = 1, 
there are polynomialsfO and p. such that 1 = fof + pop. Multiplying by g, 
we obtain 

9 = MC7 + PoPg 
= (fs)fo + P(PoS). 

Since p divides fg it divides (fg)fo, and certainly p divides p(pog). Thus 
p divides g. 1 

Corollary. If p is a prime and divides a product fl . . . f,, then p divides 
one of the polynomials fl, . . . , f,. 

Proof. The proof is by induction. When n = 2, the result is simply 
the statement of Theorem 6. Suppose we have proved the corollary for 
n = k, and that p divides the product fi . . . fk+l of some (k + 1) poly- 
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nomials. Since p divides (ji . . . jk)jk+l, either p divides jk+l or p divides 
j-1 * * * fk. By the induction hypothesis, if p divides fi 9 . . fk, then p divides 
fj for some j, 1 5 j 5 k. So we see that in any case p must divide some fj, 

llj<k+l. 1 

Theorem 9. If F is a jield, a non-scalar manic polynomial in F[x] can 
be factored as a product of manic primes in F[x] in one and, except for order, 
only one way. 

Proof. Suppose f is a non-scalar manic polynomial over F. As 
polynomials of degree one are irreducible, there is nothing to prove if 
deg f = 1. Suppose j has degree n > 1. By induction we may assume the 
theorem is true for all non-scalar manic polynomials of degree less than n. 

If f is irreducible, it is already factored as a product of manic primes, and 
otherwise j = gh where g and h are non-scalar manic polynomials of 
degree less than n. Thus g and h can be factored as products of manic 
primes in F [z] and hence so can f. Now suppose 

f = p1e.e pm = q1 "' qn 

where pl, . . . , p, and q1, . . . , qn are manic primes in F[x]. Then p, 
divides the product ql . . . qm. By the above corollary, p, must divide 
some qi. Since qi and p, are both manic primes, this means that 

(4-16) pa = pm 

From (4-16) we see that m = n = 1 if either m = 1 or n = 1. For 

de f = i!, deg P, = j$, deg qj- 

In this case there is nothing more to prove, so we may assume m > 1 and 
n > 1. By rearranging the q’s we can then assume p, = qnr and that 

p1 **. pm-1pwa = q1 **. qn4pm. 

Now by Corollary 2 of Theorem 1 it follows that 

p1 *.* p?n-1 = q1 . . . qn-1. 

As the polynomial pl . . . P,-~ has degree less than n, our inductive 
assumption applies and shows that the sequence ql, . . . , q,,-1 is at most 
a rearrangement of the sequence pl, . . . , p,-1. This together with (4-16) 
shows that the factorization of f as a product of manic primes is unique 
up to the order of the factors. 1 

In the above factorization of a given non-scalar manic polynomial j, 
some of the manic prime factors may be repeated. If pl, pz, . . . , p, are 
the distinct manic primes occurring in this factorization of j, then 

(4-17) f = p;‘pF . . . p:‘, 

the exponent ni being the number of times the prime pi occurs in the 
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factorization. This decomposition is also clearly unique, and is called 
the primary decomposition of f. It is easily verified that every manic 
divisor off has the form 

(4-18) p;l”‘pT * * * p?“, 0 I m; 5 ni. 

From (4-18) it follows that the g.c.d. of a finite number of non-scalar 
manic polynomials fi, . . . , fs is obtained by combining all those manic’ 
primes which occur simultaneously in the factorizations of fi, . . . , fs. 
The exponent to which each prime is to be taken is the largest for which 
the corresponding prime power is a factor of each fi. If no (non-trivial) 
prime power is a factor of each fi, the polynomials are relatively prime. 

EXAMPLE 11. Suppose F is a field, and let a, b, c be distinct elements 
of F. Then the polynomials x - a, z - b, x - c are distinct manic primes 
in F[x]. If m, n, and s are positive integers, (x - c)~ is the g.c.d. of the 
polynomials. 

(x - b)“(z - c)” and (x - CJ)~(X - c)” 

whereas the three polynomials 

(x - b)“(z - c)*, (5 - a>yx - c)a, (x - a>yx - b)” 

are relatively prime. 

Theorem 10. Let f be a non-scalar monk polynomial over the field F 
and let 

f = pp . . . p4 

be the prime factorization of f. For each j, 1 5 j 5 k, let 

f j  = f/p;j = JIj PP’. 

Then t, . . . , fk are relatively prime. 

Proof. We leave the (easy) proof of this to the reader. We have 
stated this theorem largely because we wish to refer to it later. 1 

Theorem 11. Let f be a polynomial over the field F with derivative f’. 
Then f is a product of distinct irreducible polynomials over F if and only if 
f and f’ are relatively prime. 

Proof. Suppose in the prime factorization of f over the field F 
that some (non-scalar) prime polynomial p is repeated. Then f = p2h for 
some h in F[x]. Then 

f’ = p2h’ + 2pp’h 

and p is also a divisor of f’. Hence f and f’ are not relatively prime. 
Now suppose f = pl * . . pk, where pl, . . . , pk are distinct non-scalar 

irreducible polynomials over F. Let fi = f/p+ Then 

s’ = p:fi + g&f* + * . * + dfk. 
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Let p be a prime polynomial which divides both f andf’. Then p = pi for 
some i. Now pi divides fi for j # i, and since pi also divides 

we see that p, must divide p:ji. Therefore pi divides either fi or pi. But pi 
does not divide f; since pl, . . . , pl, are distinct. So pi divides pi. This is 
not possible, since pi has degree one less than the degree of pi. We con- 
clude that no prime divides both f and s’, or that, f and 7 are relatively 
prime. 1 

Dejinition. The Jeld F is called algebraically closed if every prime 
polynomial over F has degree 1. 

To say that F is algebraically closed means every non-scalar irreduc- 
ible manic polynomial over F is of the form (J: - c). We have already 
observed that each such polynomial is irreducible for any F. Accordingly, 
an equivalent definition of an algebraically closed field is a field F such 
that each non-scalar polynomial f in F[x] can be expressed in the form 

f = c(z - cp . . . (cc - cp 

where c is a scalar, cl, . . . , clc are distinct elements of F, and nl, . . . , nk 
are positive integers. Still another formulation is that if f is a non-scalar 
polynomial over F, then there is an element c in F such that f(c) = 0. 

The field l2 of real numbers is not algebraically closed, since the poly- 
nomial (9 + 1) is irreducible over R but not of degree 1, or, because 
there is no real number c such that c2 + 1 = 0. The so-called Funda- 
mental Theorem of Algebra states that the field C of complex numbers is 
algebraically closed. We shall not prove this theorem, although we shall 
use it somewhat later in this book. The proof is omitted partly because 
of the limitations of time and partly because the proof depends upon a 
‘non-algebraic’ property of the system of real numbers. For one possible 
proof the interested reader may consult the book by Schreier and Sperner 
in the Bibliography. 

The Fundamental Theorem of Algebra also makes it clear what the 
possibilities are for the prime factorization of a polynomial with real 
coefficients. If f is a polynomial with real coefficients and c is a complex 
root off, then the complex conjugate 1 is also a root off. Therefore, those 
complex roots which are not real must occur in conjugate pairs, and the 
entire set of roots has the form {tl, . . . , tk, cl, El, . . . , cr, F,} where tl, . .., k 2 
are real and cl, . . . , c7 are non-real complex numbers. Thus f factors 

f = c(z - tl) * ’ * (Li? - t&l * ’ ’ p, 

where pi is the quadratic polynomial 

pi = (cc - Ci)(Z - Fi). 
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These polynomials pi have real coefficients. We conclude that every 
irreducible polynomial over the real number field has degree 1 or 2. Each 
polynomial over R is the product of certain linear factors, obtained from 
the real roots off, and certain irreducible quadratic polynomials. 
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Exercises 

1. Let p be a manic polynomial over the field F, and let j and g be relatively 
prime polynomials over F. Prove that the g.c.d. of pj and pg is p. 

2. Assuming the Fundamental Theorem of Algebra, prove the following. If j and 
g are polynomials over the field of complex numbers, then g.c.d. (j, g) = 1 if and 
only if j and g have no common root. 

3. Let D be the differentiation operator on the space of polynomials over the 
field of complex numbers. Let j be a manic polynomial over the field of complex 
numbers. Prove that 

j = (z - Cl) * . . (z - Ck) 

where cl, . . . , ck are distinct complex numbers if and only if j and Dj are relatively 
prime. In other words, j has no repeated root if and only if j and Dj have no com- 
mon root, (Assume the Fundamental Theorem of Algebra.) 

4. Prove the following generalization of Taylor’s formula. Let j, g, and h be 
polynomials over a subfield of the complex numbers, with deg j 5 n. Then 

j(g) = $ Ij”)(h)(g - h)k. 
.?$=I3 k! 

(Here j(g) denotes ‘j of g.‘) 
For the remaining exercises, we shall need the following definition. If j, g, 

and p are polynomials over the field F with p # 0, we say that j is congruent to g 

modulo p if (j - g) is divisible by p. If j is congruent to g modulo p, we write 

j = g mod p. 

5. Prove, for any non-zero polynomial p, that congruence modulo p is an equiva- 
lence relation. 

(a) It is reflexive: j = j mod p. 
(b) It is symmetric: if j = g mod p, then g = j mod p. 
(c) It is transitive: if j = g mod p and g = h mod p, then j = h mod p. 

6. Suppose j = g mod p and ji = g1 mod p. 
(a) Prove that j + ji = g + g1 mod p. 
(b) Prove that jfi = gg1 mod p. 

7. Use Exercise 7 to prove the following. If j, g, h, and p are polynomials over the 
field F and p # 0, and if j = g mod p, then h(j) = h(g) mod p. 

8. If p is an irreducible polynomial and jg = 0 mod p, prove that either 
j = 0 mod p or g = 0 mod p. Give an example which shows that, this is false if p 
is not irreducible. 



5. Determinants 

5.1. Commutative Rings 

In this chapter we shall prove the essential facts about determinants 
of square matrices. We shall do this not only for matrices over a field, but 
also for matrices with entries which are ‘scalars’ of a more general type. 
There are two reasons for this generality. First, at certain points in the 
next chapter, we shall find it necessary to deal with determinants of 
matrices with polynomial entries. Second, in the treatment of determi- 
nants which we present, one of the axioms for a field plays no role, namely, 
the axiom which guarantees a multiplicative inverse for each non-zero 
element. For these reasons, it is appropriate to develop the theory of 
determinants for matrices, the entries of which are elements from a com- 
mutative ring with identity. 

Definition. A ring is a set K, together with two operations (x, y) + 
x + y and (x, y) + xy satisfying 

(a) K is a commutative group under the operation (x, y) + x + y (K 
is a commutative group under addition) ; 

(b) (xy)z = x(yz) (multiplication is associative) ; 
(cl x(y+z) =xy+xz; (y + z)x = yx + zx (the two distributive 

laws hold). 
If xy = yx for all x and y in I(, we say that the ring K is commutative. 

If there is an element 1 in K such that lx = xl = x for each x, K is said 
to be a ring with identity, and 1 is called the identity for K. 
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We are interested here in commutative rings with identity. Such a 
ring can be described briefly as a set K, together with two operations 
which satisfy all the axioms for a field given in Chapter 1, except possibly 
for axiom (8) and the condition 1 # 0. Thus, a field is a commutative 
ring with non-zero identity such that to each non-zero x there corresponds 
an element x:-r with xx-l = 1. The set of integers, with the usual opera- 
tions, is a commutative ring with identity which is not a field. Another 
commutative ring with identity is the set of all polynomials over a field, 
together with the addition and multiplication which we have defined for 
polynomials. 

If K is a commutative ring with identity, we define an m X n matrix 
over K to be a function A from the set of pairs (i, j) of integers, 1 5 i _< m, 
1 2 j < n, into K. As usual we represent such a matrix by a rectangular 
array having m rows and n columns. The sum and product of matrices 
over K are defined as for matrices over a field 

(A + B)ij = Aij + Bij 

(A& = z A&j 

the sum being defined when A and B have the same number of rows and 
the same number of columns, the product being defined when the number 
of columns of A is equal to the number of rows of B. The basic algebraic 
properties of these operations are again valid. For example, 

A(B + C) = AB + AC, (AB)C = A(X), etc. 

As in the case of fields, we shall refer to the elements of K as scalars. 
We may then define linear combinations of the rows or columns of a 
matrix as we did earlier. Roughly speaking, all that we previously did for 
matrices over a field is valid for matrices over K, excluding those results 
which depended upon the ability to ‘divide’ in K. 

5.2. Determinant Functions 

Let K be a commutative ring with identity. We wish to assign to 
each n X n (square) matrix over K a scalar (element of K) to be known 
as the determinant of the matrix. It is possible to define the determinant 
of a square matrix A by simply writing down a formula for this determi- 
nant in terms of the entries of A. One can then deduce the various prop- 
erties of determinants from this formula. However, such a formula is 
rather complicated, and to gain some technical advantage we shall proceed 
as follows. We shall define a ‘determinant function’ on Knxn as a function 
which assigns to each n X n matrix over K a scalar, the function having 
these special properties. It is linear as a function of each of the rows of the 
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matrix: its value is 0 on any matrix having two equal rows; and its value 
on the n X n identity matrix is 1. We shall prove that such a function 
exists, and then that it is unique, i.e., that there is precisely one such 
function. As we prove the uniqueness, an explicit formula for the determi- 
nant will be obtained, along with many of its useful properties. 

This section will be devoted to the definition of ‘determinant function’ 
and to the proof that at least one such function exists. 

DeJinition. Let Ei be a commutative ring with identity, n a positive 
integer, and let D be a function which assigns to each n X n matrix A over K 
a scalar D(A) in I<. We say that D is n-linear if for each i, 1 5 i 2 n, 
D is a linear function of the ith row when the other (n - 1) rows are held jixed. 

This definition requires some clarification. If D is a function from 
Knxn into K, and if (~1, . . . , QI, are the rows of the matrix A, let us also 
write 

D(A) = D(al, . . . , a,) 

that is, let us also think of D as the function of the rows of A. The state- 
ment that D is n-linear then means 

(5-l) D(q . . . , C(Y( + CI:, . . . , a,) = cD(a~, . . . , ai, . . . , ar,,) 
+ WC-Q, . . . ) a:, . . . , a,). 

If we fix all rows except row i and regard D as a function of the ith row, 
it is often convenient to write D(cxJ for D(A). Thus, we may abbreviate 
(5-l) to 

D(cai + a;) = cD(ai) + D(c~:) 

so long as it is clear what the meaning is. 

EXAMPLE 1. Let kl, . . . , k, be positive integers, 1 5 Ici 5 n, and 
let a be an element of K. For each n X n matrix A over K, define 

(5-2) D(A) = aA(l, kI) ... A(n, k,). 

Then the function D defined by (5-2) is n-linear. For, if we regard D as a 
function of the ith row of A, the others being fixed, we may write 

D((Y;) = A(i, ki)b 

where b is some fixed element of K. Let (Y: = (A&, . . . , Ak). Then we 
have 

D(cai + ai:) = [cA(i, ki) + A’(i, ki)]b 
= cD(ai) + D(a:)* 

Thus D is a linear function of each of the rows of A. 
A particular n-linear function of this type is 

D(A) = AllAs . . . A,,. 
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In other words, the ‘product of the diagonal entries’ is an n-linear function 
on Knxn. 

EXAMPLE 2. Let us find all 2-linear functions on 2 X 2 matrices over 
K. Let D be such a function. If we denote the rows of the 2 X 2 identity 
matrix by ~1, q, we have 

D(A) = D(Ane1 + AEQ, Azel + A2d 

Using the fact that D is 2-linear, (5-l), we have 

D(A) = A,ID(EI, A,I~ + Am) + &D(Q, A,,e + A2d 
= An&D(tl, ~1) + AddV~l, ez) 

+ AddV~2, 4 + &A&(Q, 4. 

Thus D is completely determined by the four scalars 

D(Q, 4, D(~I, ~2>, D(Ez, d, and D(Ez, ~2). 

The reader should find it easy to verify the following. If a, b, c, cl are any 
four scalars in K and if we define 

D(A) = AnA21a + An&b + AuAac + &z&d 
then D is a 2-linear function on 2 X 2 matrices over K and 

D(EI, 61) = a, D(EI, ~2) = b 
D(Ez, ~1) = c, DC ES, E2) = d. 

Lemma. A linear combination of n-linear junctions is n-linear. 

Proof. It suffices to prove that a linear combination of two 
n-linear functions is n-linear. Let D and E be n-linear functions. If a and b 
belong to K, the linear combination aD + bE is of course defined by 

(aD + bE)(A) = aD(A) + bE(A). 

Hence, if we fix all rows except row i 

(aD + bE)(ccq + a;) = aD(ccu; + (.y;) + bE(cai + (Y:) 
= acD(aJ + aD(ac:) + bcE(aJ + bE(cr:) 
= c(aD + bE)(ai) + (aD + bE)(a:). 1 

If K is a field and V is the set of n X n matrices over K, the above 
lemma says the following. The set of n-linear functions on V is a subspace 
of the space of all functions from V into K. 

EXAMPLE 3. Let D be the function defined on 2 X 2 matrices over 

K by 

(5-3) D(A) = &A,, - A,,&. 

Now D is the sum of two functions of the type described in Example 1: 

D = D1 + D, 
DIM) = &I&Z 
D,(A) = -A,,&. 
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By the above lemma, D is a 2-linear function. The reader who has had 
any experience with determinants will not find this surprising, since he 
will recognize (5-3) as the usual definition of the determinant of a 2 X 2 
matrix. Of course the function D we have just defined is not a typical 
2-linear function. It has many special properties. Let us note some of these 
properties. First, if 1 is the 2 X 2 identity matrix, then D(I) = 1, i.e., 
,?J(Q, Q) = 1. Second, if the two rows of A are equal, then 

D(A) = AllA12 - A&11 = 0. 

Third, if A’ is the matrix obtained from a 2 X 2 matrix A by interchang- 
ing its rows, then D(A’) = -D(A); for 

D(A’) = Ak4;z - A:& 
= Ad12 - A,,& 
= -D(A). 

De$nition. Let D be an n-linear function. We say D is alternating 

(or alternate) if the following two conditions are satisfied: 

(a) D(A) = 0 whenever two rows of A are equal. 
(b) If A’ is a matrix obtained from A by interchanging two rows of A, 

then D(A’) = -D(A). 

We shall prove below that any n-linear function D which satisfies (a) 
automatically satisfies (b). We have put both properties in the definition 
of alternating n-linear function as a matter of convenience. The reader 
will probably also note that if D satisfies (b) and A is a matrix with two 
equal rows, then D(A) = -D(A). It is tempting to conclude that D 
satisfies condition (a) as well. This is true, for example, if K is a field in 
which 1 + 1 # 0, but in general (a) is not a consequence of (b). 

Definition. Let K be a commutative ring with identity, and let n be a, 
positive integer. Suppose D is a function from n X n matrices over K into 
1~. We say that D is a determinant function if D is n-linear, alternating, 
and D(1) = 1. 

As we stated earlier, we shall ultimately show that there is exactly 
one determinant function on n X n matrices over K. This is easily seen 
for 1 X 1 matrices A = [a] over K. The function D given by D(A) = a 
is a determinant function, and clearly this is the only determinant func- 
tion on 1 X 1 matrices. We are also in a position to dispose of the case 
n = 2. The function 

D(A) = AA, - AI,& 

was shown in Example 3 to be a determinant function. Furthermore, the 
formula exhibited in Example 2 shows that D is the only determinant 
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function on 2 X 2 matrices. For we showed that for any Z-linear function D 

D(A) = AIIAZID(EI, EI) + &&D(~I, d 
+ AnAd8~2, ~1) + Aw4dJ(t~, 4. 

If D is alternating, then 

WEI, ~1) = D(ez, 4 = 0 
and 

D(ez, q) = -D(Q) e2) = -D(I). 

If D also satisfies D(I) = 1, then 

D(A) = &A,, - AnA,l. 

EXAMPLE 4. Let F be a field and let D be any alternating 3-linear 
function on 3 X 3 matrices over the polynomial ring F[x]. 

Let 

If we denote the rows of the 3 X 3 identity matrix by E,, c2, Q, then 

D(A) = D(sal - &, ~2, tl + x+3). 

Since D is linear as a function of each row, 

D(A) = xD(~1, ~2, el + x3c13) - CC~D(E~, ~2, ~1 + 23~3) 

= xD(s, ~27 ~1) + X~J%EI, ~2, ~3) - x2D(ea, ~2, ~1) - ~D(Q, ~2, ~3). 

Because D is alternating it follows that 

WA) = (x4 + x2)D(~1, ~2, ~3). 

Lemma. Let D be a Z-linear function with the property that D(A) = 0 
for all 2 X 2 matrices A over K having equal rows. Then D is alternating. 

Proof. What we must show is that if A is a 2 X 2 matrix and A’ 
is obtained by interchanging the rows of A, then D(A’) = -D(A). If the 
rows of A are LY and /3, this means we must show that D(/.3, CX) = - D(cr, 0). 
Since D is Z-linear, 

D(a + P, a + /3 = D(a, 4 + D(a, 13 + W, 4 + D(P, 8. 

By our hypothesis D(ar + p, (Y + /3) = D(ol, a) = D(& /3) = 0. So 

0 = D(a, PI + W, 4. I 

Lemma. Let D be an n-linear function on n X n matrices over K. 
Suppose D has the property that D(A) = 0 whenever two adjacent rows of 
A are equal. Then D is alternating. 

Proof. We must show that D(A) = 0 when any two rows of A 
are equal, and that D(A’) = -D(A) if A’ is obtained by interchanging 
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some two rows of A. First, let us suppose that A’ is obtained by inter- 
changing two adjacent rows of A. The reader should see that the argument 
used in the proof of the preceding lemma extends to the present case and 
gives us D(A’) = -D(A). 

Now let B be obtained by interchanging rows i and j of A, where 
i < j. We can obtain l? from A by a succession of interchanges of pairs of 
adjacent rows. We begin by interchanging row i with row (i + 1) and 
continue until the rows are in the order 

al, . . . , a-1, %+1, . . . , q, Qli, "j+1, . . * , G. 

This requires lc = j - i interchanges of adjacent rows. We now move aj 
to the ith position using (k - 1) interchanges of adjacent rows. We have 
thus obtained 3 from A by k + (k - 1) = 2k - 1 interchanges of adja- 
cent rows. Thus 

D(3) = (-1)+9(A) = -D(A). 

Suppose A is any n X n matrix with two equal rows, say ai = aj 
with i < j. If j = i + 1, then A has two equal and adjacent rows and 
D(A) = 0. If j > i + 1, we interchange ai+~ and cwj and the resulting 
matrix B has two equal and adjacent rows, so D(B) = 0. On the other 
hand, D(3) = -D(A), hence D(A) = 0. 1 

DeJinition. If n > 1 and A is an n X n matrix over K, we let A(ilj) 
denote the (n - 1) X (n - 1) matrix obtained by deleting the ith row and 
jth column of A. If D is an (n - l)-linear function and A is an n X n 
matrix, we put Dij(A) = D[A(iJj)]. 

Theorem 1. Let n > 1 and let D be an alternating (n - I)-linear 
junction on (n - 1) X (n - 1) matrices ozler K. For each j, 1 < j I n,, 
the function Ej de$ned by 

(5-4) Ej(A) = ii, (-l)‘+‘AiiDij(A) 

is an alternating n-linear function on n X n matrices A. If D is a determi- 
nant function, so is each Ej. 

Proof. If A is an n X n matrix, Dij(A) is independent of the ith 
row of A. Since D is (n - l)-linear, it is clear that Dij is linear as a func- 
tion of any row except row i. Therefore AijDii(A) is an n-linear function 
of A. A linear combination of n-linear functions is n-linear; hence, Ej is 
n-linear. To prove that Ej is alternating, it will s&ice to show that 
Ej(A) = 0 whenever A has two equal and adjacent rows. Suppose ak = 

Crk+l. If i # k and i # k + 1, the matrix A(ilj) has two equal rows, and 
thus Dij(A) = 0. Therefore 

E,(A) = ( -l)k+iAtiDkj(A) + ( -l)k+‘+iA(Ir+l)jD(E+l)j(A). 
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Since ffk = ffk+l, 

Akj = A(k+l)j and A(k/j) = A(k + llj). 

Clearly then Ej(A) = 0. 
Now suppose D is a determinant function. If I(“) is the n X n identity 

matrix, then lcn)(j]j) is the (n - 1) X (n - 1) identity matrix Icn--l). 
Since 1$’ = 6;j, it follows from (5-4) that 

(5-5) Ej(I’“‘) = D(I’“-I’). 

NOW D(I(“-“) = 1, SO that Ej(l’“‘) = 1 and Ej is a determinant func- 
tion. 1 

Corollary. Let K be a commutative ring with identity and let n be a 
positive integer. There exists at least one determinant function on Knxn. 

Proof. We have shown the existence of a determinant function 
on 1 X 1 matrices over K, and even on 2 X 2 matrices over K. Theorem 1 
tells us explicitly how to construct a determinant function on n X n 
matrices, given such a function on (n - 1) X (n - 1) matrices. The 
corollary follows by induction. 1 

EXAMPLE 5. If B is a 2 X 2 matrix over K, we let 

IBI = &l&2 - &&l. 

Then ]B[ = D(B), h w ere D is the determinant function on 2 X 2 matrices. 
We showed that this function on K2X2 is unique. Let 

A = E;i ;, ;;k] 

be a 3 X 3 matrix over K. If we define El, Ez, Ea as in (5-4), then 

It follows from Theorem 1 that El, Ez, and Es are determinant functions. 
Actually, as we shall show later, El = Ez = ES, but this is not yet appar- 
ent even in this simple case. It could, however, be verified directly, by 
expanding each of the above expressions. Instead of doing this we give 
some specific examples. 

(a) Let K = R[x] and 

X3 

x-2 1 . 
x-3 1 
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Then 

and 

E,(A) = 

(b) Let K = R and 

Then 

E,(A) = ; ; = 1 I I 
E,(A) = - I 0 = 1 1 I o 1 

E,(A) = - I 0 1 I = 1 o 1. 

Exercises 

1. Each of the following expressions defines a function D on the set of 3 x 3 
matrices over the field of real numbers. In which of these cases is D a a-linear 
function? 

(4 D(A) = An + A22 + As; 

(b) D(A) = (Ad2 + 3Adzz; 

(cl D(A) = &4r&; 

(4 D(A) = &&&2 + 5AnAdm; 
(e) D(A) = 0; 
(f) D(A) = 1. 

2. Verify directly that the three functions &, Ez, E3 defined by (5-6), (5-7), and 
(5-8) are identical. 

3. Let K be a commutative ring with identity. If A is a 2 x 2 matrix over K, 
the classical adjoint of A is the 2 X 2 matrix adj A defined by 

-An . 
Au 1 

If det denotes the unique determinant function on 2 X 2 matrices over K, show 
that 
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(a) (adj A)A = A(adj A) = (det A)I; 
(b) det (adj A) = det (A); 
(c) adj (At) = (adj A)t. 

(At denotes the transpose of A.) 

4. Let A be a 2 X 2 matrix over a field F. Show that A is invertible if and only 
if det A # 0. When A is invertible, give a formula for A-l. 

5. Let A be a 2 X 2 matrix over a field F, and suppose that A2 = 0. Show for 
each scalar c that det (cl - A) = c2. 

6. Let K be a subfield of the complex numbers and n a positive integer. Let 
311 f * *, j, and ICI, . . . , k, be positive integers not exceeding n. For an n X n 
matrix A over K define 

D(A) = A($, k3A(jz,k2) . . . ALL, W. 

Prove that D is n-linear if and only if the integers jr, . . . , j,, are distinct. 

7. Let K be a commutative ring with identity. Show that the determinant func- 
tion on 2 X 2 matrices A over K is alternating and 2-linear as a function of the 
columns of A. 

8. Let K be a commutative ring with identity. Define a function D on 3 X 3 
matrices over K by the rule 

Show that D is alternating and 3-linear as a function of the columns of A. 

9. Let K be a commutative ring with identity and D an alternating nJinear 
function on n X n matrices over K. Show that 

(a) D(A) = 0, if one of the rows of A is 0. 
(b) D(B) = D(A), if B is obtained from A by adding a scalar multiple of 

one row of A to another. 

10. Let P be a field, A a 2 X 3 matrix over F, and (cl, c2, ct) the vector in F3 
defined by 

Show that 
(a) rank (A) = 2 if and only if (cl, ~2, c3) # 0; 
(b) if A has rank 2, then (cl, c2, ca) is a basis for the solution space of the 

system of equations AX = 0. 

11. Let K be a commutative ring with identity, and let D be an alternating 2-linear 
function on 2 X 2 matrices over K, Show that D(A) = (det A)D(I) for all A. 
Now use this result (no computations with the entries allowed) to show that 
det (AB) = (det A)(det B) for any 2 X 2 matrices A and B over K. 

12. Let F be a field and D a function on n X n matrices over F (with values in F). 
Suppose D(AB) = D(A)D(B) for all A, B. Show that either D(A) = 0 for all A, 
or D(I) = 1. In the latter case show that D(A) Z 0 whenever A is invertible. 

13. Let R be the field of real numbers, and let D be a function on 2 X 2 matrices 
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over R, with values in R, such that D(AB) = D(A)D(B) for all A, B. Suppose 
also that 

D([Y iw([:, iI)* 
Prove the following. 

(a) D(0) = 0; 
(b) D(A) = 0 if A2 = 0; 
(c) D(B) = -D(A) if B is obtained by interchanging the rows (or columns) 

of A; 
(d) D(A) = 0 if one row (or one column) of A is 0; 
(e) D(A) = 0 whenever A is singular. 

14. Let A be a 2 X 2 matrix over a field P. Then the set of all matrices of the 
form f(A), where j is a polynomial over F, is a commutative ring K with identity. 
If B is a 2 X 2 matrix over K, the determinant of B is then a 2 X 2 matrix over F, 
of the form f(A). Suppose I is the 2 X 2 identity matrix over F and that B is the 
2 X 2 matrix over K 

B = 
[ 

A - &I -11121 . 

- ‘&?,I A - A& 1 
Show that det B = f(A), where f = x2 - (An + Az)x + det A, and also that 
f(A) = 0. 

5.3. Permutations and the Uniqueness 

of Determinants 

In this section we prove the uniqueness of the determinant function 
on n X n matrices over K. The proof will lead us quite naturally to cou- 
sider permutations and some of their basic properties. 

Suppose D is an alternating n-linear function on n X n matrices over 
K. Let A be an n X n matrix over K with rows al, CQ, . . . , (Y,. If we de- 
note the rows of the n X n identity matrix over K by cl, Q, . . . , en, then 

(5-9) 

Hence 

w = jl A (6 jbj, l<i<n. - 

D(A) = D 
( 

L: A(1, j)cj, 03, . . . , LY, 
i ) 

= 2: AU, j)D(Ej, w,, . . . , 4. 
i 

If we now replace fy2 by 2 A(‘2, k)~, we see that 
k 

Thus 

D(A) = Z A (1, j)A (2, k)D(ej, ck, * . . 9 an>- 
i,k 


