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Pf re ace 

Our original purpose in writing this book was to provide a text for the under- 
graduate linear algebra course at the Massachusetts Institute of Technology. This 
course was designed for mathematics majors at the junior level, although three- 
fourths of the students were drawn from other scientific and technological disciplines 
and ranged from freshmen through graduate students. This description of the 
M.I.T. audience for the text remains generally accurate today. The ten years since 
the first edition have seen the proliferation of linear algebra courses throughout 
the country and have afforded one of the authors the opportunity to teach the 
basic material to a variety of groups at Brandeis University, Washington Univer- 
sity (St. Louis), and the University of California (Irvine). 

Our principal aim in revising Linear Algebra has been to increase the variety 
of courses which can easily be taught from it. On one hand, we have structured the 
chapters, especially the more difficult ones, so that there are several natural stop- 
ping points along the way, allowing the instructor in a one-quarter or one-semester 
course to exercise a considerable amount of choice in the subject matter. On the 
other hand, we have increased the amount of material in the text, so that it can be 
used for a rather comprehensive one-year course in linear algebra and even as a 
reference book for mathematicians. 

The major changes have been in our treatments of canonical forms and inner 
product spaces. In Chapter 6 we no longer begin with the general spatial theory 
which underlies the theory of canonical forms. We first handle characteristic values 
in relation to triangulation and diagonalization theorems and then build our way 
up to the general theory. We have split Chapter 8 so that the basic material on 
inner product spaces and unitary diagonalization is followed by a Chapter 9 which 
treats sesqui-linear forms and the more sophisticated properties of normal opera- 
tors, including normal operators on real inner product spaces. 

We have also made a number of small changes and improvements from the 
first edition. But the basic philosophy behind the text is unchanged. 

We have made no particular concession to the fact that the majority of the 
students may not be primarily interested in mathematics. For we believe a mathe- 
matics course should not give science, engineering, or social science students a 
hodgepodge of techniques, but should provide them with an understanding of 
basic mathematical concepts. 

. . . 
am 
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On the other hand, we have been keenly aware of the wide range of back- 
grounds which the students may possess and, in particular, of the fact that the 
students have had very little experience with abstract mathematical reasoning. 
For this reason, we have avoided the introduction of too many abstract ideas at 
the very beginning of the book. In addition, we have included an Appendix which 
presents such basic ideas as set, function, and equivalence relation. We have found 
it most profitable not to dwell on these ideas independently, but to advise the 
students to read the Appendix when these ideas arise. 

Throughout the book we have included a great variety of examples of the 
important concepts which occur. The study of such examples is of fundamental 
importance and tends to minimize the number of students who can repeat defini- 
tion, theorem, proof in logical order without grasping the meaning of the abstract 
concepts. The book also contains a wide variety of graded exercises (about six 
hundred), ranging from routine applications to ones which will extend the very 
best students. These exercises are intended to be an important part of the text. 

Chapter 1 deals with systems of linear equations and their solution by means 
of elementary row operations on matrices. It has been our practice to spend about 
six lectures on this material. It provides the student with some picture of the 
origins of linear algebra and with the computational technique necessary to under- 
stand examples of the more abstract ideas occurring in the later chapters. Chap- 
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats 
linear transformations, their algebra, their representation by matrices, as well as 
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of 
polynomials over a field, the ideals in that algebra, and the prime factorization of 
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter- 
polation formula. Chapter 5 develops determinants of square matrices, the deter- 
minant being viewed as an alternating n-linear function of the rows of a matrix, 
and then proceeds to multilinear functions on modules as well as the Grassman ring. 
The material on modules places the concept of determinant in a wider and more 
comprehensive setting than is usually found in elementary textbooks. Chapters 6 
and 7 contain a discussion of the concepts which are basic to the analysis of a single 
linear transformation on a finite-dimensional vector space; the analysis of charac- 
teristic (eigen) values, triangulable and diagonalizable transformations; the con- 
cepts of the diagonalizable and nilpotent parts of a more general transformation, 
and the rational and Jordan canonical forms. The primary and cyclic decomposition 
theorems play a central role, the latter being arrived at through the study of 
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial 
domain, the computation of invariant factors and elementary divisors of a matrix, 
and the development of the Smith canonical form. The chapter ends with a dis- 
cussion of semi-simple operators, to round out the analysis of a single operator. 
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers 
the basic geometry, relating orthogonalization to the idea of ‘best approximation 
to a vector’ and leading to the concepts of the orthogonal projection of a vector 
onto a subspace and the orthogonal complement of a subspace. The chapter treats 
unitary operators and culminates in the diagonalization of self-adjoint and normal 
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and 
self-adjoint operators on an inner product space, moves on to the spectral theory 
of normal operators and then to more sophisticated results concerning normal 
operators on real or complex inner product spaces. Chapter 10 discusses bilinear 
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as 
well as groups preserving non-degenerate forms, especially the orthogonal, unitary, 
pseudo-orthogonal and Lorentz groups. 

We feel that any course which uses this text should cover Chapters 1, 2, and 3 
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual 
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and 
determinants, may be treated with varying degrees of thoroughness. In fact, 
polynomial ideals and basic properties of determinants may be covered quite 
sketchily without serious damage to the flow of the logic in the text; however, our 
inclination is to deal with these chapters carefully (except the results on modules), 
because the material illustrates so well the basic ideas of linear algebra. An ele- 
mentary course may now be concluded nicely with the first four sections of Chap- 
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to 
be included, a more extensive coverage of Chapter 6 is necessary. 

Our indebtedness remains to those who contributed to the first edition, espe- 
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp, 
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby. 
In addition, we would like to thank the many students and colleagues whose per- 
ceptive comments led to this revision, and the staff of Prentice-Hall for their 
patience in dealing with two authors caught in the throes of academic administra- 
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill 
and her tireless efforts in typing the revised manuscript. 

K. M. H. / R. A. K. 
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150 Determinants Chap. 5 

over R, with values in R, such that D(AB) = D(A)D(B) for all A, B. Suppose 
also that 

D([Y iw([:, iI)* 
Prove the following. 

(a) D(0) = 0; 
(b) D(A) = 0 if A2 = 0; 
(c) D(B) = -D(A) if B is obtained by interchanging the rows (or columns) 

of A; 
(d) D(A) = 0 if one row (or one column) of A is 0; 
(e) D(A) = 0 whenever A is singular. 

14. Let A be a 2 X 2 matrix over a field P. Then the set of all matrices of the 
form f(A), where j is a polynomial over F, is a commutative ring K with identity. 
If B is a 2 X 2 matrix over K, the determinant of B is then a 2 X 2 matrix over F, 
of the form f(A). Suppose I is the 2 X 2 identity matrix over F and that B is the 
2 X 2 matrix over K 

B = 
[ 

A - &I -11121 . 

- ‘&?,I A - A& 1 
Show that det B = f(A), where f = x2 - (An + Az)x + det A, and also that 
f(A) = 0. 

5.3. Permutations and the Uniqueness 

of Determinants 

In this section we prove the uniqueness of the determinant function 
on n X n matrices over K. The proof will lead us quite naturally to cou- 
sider permutations and some of their basic properties. 

Suppose D is an alternating n-linear function on n X n matrices over 
K. Let A be an n X n matrix over K with rows al, CQ, . . . , (Y,. If we de- 
note the rows of the n X n identity matrix over K by cl, Q, . . . , en, then 

(5-9) 

Hence 

w = jl A (6 jbj, l<i<n. - 

D(A) = D 
( 

L: A(1, j)cj, 03, . . . , LY, 
i ) 

= 2: AU, j)D(Ej, w,, . . . , 4. 
i 

If we now replace fy2 by 2 A(‘2, k)~, we see that 
k 

Thus 

D(A) = Z A (1, j)A (2, k)D(ej, ck, * . . 9 an>- 
i,k 
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In D(E~, EE, . . . , CY,) we next replace 013 by Z A(3, Z)Q and so on. We finally 
obtain a complicated but theoretically important expression for D(A), 
namely 

(5-10) D(A) = 
z AU, hM@, h) . . . A(n, hJD(ea, Ekz, . . . , Ek,). 

kl, ka. , . . , k, 

In (5-10) the sum is extended over all sequences (kl, k,, . . . , k,) of positive 
integers not exceeding n. This shows that D is a finite sum of functions of 
the type described by (5-2). It should be noted that (5-10) is a consequence 
just of assumption that D is n-linear, and that a special case of (5-10) was 
obtained in Example 2. Since D is alternating, 

D(%, Ckk,, . . . , Ekn) = 0 

whenever two of the indices Ici are equal. A sequence (i&, k,, . . . , k,) 
of positive integers not exceeding n, with the property that no two of 
the ki are equal, is called a permutation of degree n. In (5-10) we need 
therefore sum only over those sequences which are permutations of 
degree n. 

Since a finite sequence, or n-tuple, is a function defined on the first n 
positive integers, a permutation of degree n may be defined as a one-one 
function from the set (1, 2, . . . , n} onto itself. Such a function (r corre- 
sponds to the n-tuple (~1, ~2, . . . , an) and is thus simply a rule for order- 
ing 1, 2, . . . , n in some well-defined way. 

If D is an alternating n-linear function and A is an n X n matrix 
over K, we then have 

(5-11) D(A) = 2 A(l, ~1) . . . A(n, un)D(cO1, . . . , con) 
c 

where the sum is extended over the distinct permutations u of degree n. 
Next we shall show that 

(5-12) D(E~I, . . . , 4 = =WEI t * . . ) 4 

where the sign f depends only on the permutation U. The reason for this 
is as follows. The sequence (al, ~2, . . . , an) can be obtained from the 
sequence (1,2, . . . , n) by a finite number of interchanges of pairs of 
elements. For example, if ~1 # 1, we can transpose 1 and al, obtaining 

. .). Proceeding in this way we shall arrive at the sequence ;;;I : : : ; 1, * 
un) after n or less such interchanges of pairs. Since D is alter- 

nating, the sign of its value changes each time that we interchange two 
of the rows ci and ej. Thus, if we pass from (1, 2, . . . , n) to (~1, ~2, . . . , an) 
by means of m interchanges of pairs (i, j), we shall have 

D(M, . . . , em) = (- l)mD(c~, . . . , 4. 

In particular, if D is a determinant function 

(5-13) D(u, . . . ) em) = (-1)” 
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where m depends only upon u, not upon D. Thus all determinant func- 
tions assign the same value to the matrix with rows c.1, . . . , Ed,, and this 
value is either 1 or -1. 

Now a basic fact about permutations is the following. If u is a per- 
mutation of degree n, one can pass from the sequence (1,2, . . . , n) to 
the sequence (al, ~2, . . . , an) by a succession of interchanges of pairs, 
and this can be done in a variety of ways; however, no matter how it is 
done, the number of interchanges used is either always even or always 
odd. The permutation is then called even or odd, respectively. One 
defines the sign of a permutation by 

sgn u = 
1, if uiseven 

- 1, if u is odd 

the symbol ‘1’ denoting here the integer 1. 
We shall show below that this basic property of permutations can be 

deduced from what we already know about determinant functions. Let 
us assume this for the time being. Then the integer m occurring in (5-13) 
is always even if u is an even permutation, and is always odd if u is an odd 
permutation. For any alternating n-linear function D we then have 

D(w, . . . , 4 = (sgn u)D(a, . . . , 4 

and using (5-11) 

(5-14) D(A) = 
[ 

2 (sgn u)A(l, al) . . . A(n, an) D(I). 
c 1 

Of course 1 denotes the n X n identity matrix. 
From (5-14) we see that there is precisely one determinant function 

on n X n matrices over K. If we denote this function by det, it is given by 

(5-15) det (A) = 2 (sgn u)A(l, ~1) . . . A(n, an) 
c 

the sum being extended over the distinct permutations u of degree n. We 
can formally summarize as follows. 

Theorem 2. Let K be a commutative ring with identity and let n be a 
positive integer. There is precisely one determinant function on the set of 
n X n matrices over K, and it is the function det dejined by (5-15). If D is 
any alternating n-linear function on Knxn, then for each n X n matrix A 

D(A) = (det A)D(I). 

This is the theorem we have been seeking, but we have left a gap in 
the proof. That gap is the proof that for a given permutation u, when we 
pass from (1, 2, . . . , n) to (~1, ~2, . . . , an) by interchanging pairs, the 
number of interchanges is always even or always odd. This basic com- 
binatorial fact can be proved without any reference to determinants; 
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however, we should like to point out how it follows from the existence of 
a determinant function on n X n matrices. 

Let us take K to be the ring of integers. Let D be a determinant 
function on n X n matrices over K. Let u be a permutation of degree n, . 

and suppose we pass from (1, ‘2, . . . , n) to (~1, ~2, . . . , an) by m inter- 
changes of pairs (i, j), i # j. As we showed in (5-13) 

(-1)” = D(E,~, . . . ;hJ 

that is, the number ( -l)n must be the value of D on the matrix with 
rows ccl, . . . , con. If 

D(Q, . . .,Em) = 1, 
then m must be even. If 

D(e,l, . . .,Em) = --I, 
then m must be odd. 

Since we have an explicit formula for the determinant of an n X n 

matrix and this formula involves the permutations of degree n, let us 
conclude this section by making a few more observations about permu- 
tations. First, let us note that there are precisely n! = 1 . 2 + . . n permu- 
tations of degree n. For, if u is such a permutation, there are n possible 
choices for ul; when this choice has been made, there are (n - 1) choices 
for ~2, then (n - 2) choices for ~3, and so on. So there are 

n(n - l)(n - 2) . . . 2 . 1 = n! 

permutations u. The formula (5-15) for det (A) thus gives det (A) as a 
sum of n! terms, one for each permutation of degree n. A given term is a 
product 

A(1, al) . . . A(n, on) 

of n entries of A, one entry from each row and one from each column, 
and is prefixed by a I+’ or ’ -’ sign according as u is an even or odd 
permutation. 

When permutations are regarded as one-one functions from the set 
{1,2, . . * , n} onto itself, one can define a product of permutations. The 
product of u and r will simply be the composed function UT defined by 

(UT)(i) = U(T(i)). 

If t denotes the identity permutation, c(i) = i, then each u has an inverse 
u-r such that 

fJf-l = u-b = e. 

One can summarize these observations by saying that, under the opera- 
tion of composition, the set of permutations of degree n is a group. This 
group is usually called the symmetric group of degree n. 

From the point of view of products of permutations, the basic prop- 
 ̂erty of the sign of a permutation is that 

(5-16) sgn (UT) = (sgn u) (sgn T). 
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In other words, UT is an even permutation if u and r are either both even 
or both odd, while (~7 is odd if one of the two permutations is odd and the 
other is even. One can see this from the definition of the sign in terms of 
successive interchanges of pairs (i, j). It may also be instructive if we 
point out how sgn (UT) = (sgn u)(sgn 7) follows from a fundamental 
property of determinants. 

Let K be the ring of integers and let u and r be permutations of 
degree n. Let tl, . . . , E~ be the rows of the n X n identity matrix over K, 
let A be the matrix with rows E,~, . . . , em, and let B be the matrix with 
rows E,~, . . . , Ed,. The ith row of A contains exactly one non-zero entry, 
namely the 1 in column ri. From this it is easy to see that e,i is the ith 
row of the product matrix AB. Now 

det (A) = sgn 7, det (B) = sgn u, and det (Al?) = sgn (UT). 

So we shall have sgn (UT) = (sgn u)(sgn 7) as soon as we prove the 
following. 

Theorem 3. Let K be a commutative ring with identity, and let A and 
B be n X n matrices over K. Then 

det (AB) = (det A)(det B). 

Proof. Let B be a fixed n X n matrix over K, and for each n X n 
matrix A define D(A) = det(AB). If we denote the rows of A by al, . . . , 
CY,, then 

D(w, . . . , a,) = det (arIB, . . . , GB). 

Here qB denotes the 1 X n matrix which is the product of the 1 X n 

matrix cq and the n X n matrix B. Since 

(cai + a:)B = ccuiB + c&B 

and det is n-linear, it is easy to see that D is n-linear. If CG = q, then 
CX~B = cyjB, and since det is alternating, 

WI, . . . , a,) = 0. 

Hence, D is alternating. Now D is an alternating n-linear function, and 
by Theorem 2 

D(A) = (det A)D(I). 

But D(I) = det (IB) = det B, so 

det (AB) = D(A) = (det A)(det B). 1 

The fact that sgn (UT) = (sgn ~)(sgn T) is only one of many corollaries 
to Theorem 3. We shall consider some of these corollaries in the next 
section. 
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Exercises 

1. If K is a commutative ring with identity and A is the matrix over K given by 

A=[:; j 3 

show that det A = 0. 

2. Prove that the determinant of the Vandermonde matrix 

is (6 - a)(c - a)(c - b). 

1 a a2 

[ 1 1 b b2 
1 c c2 

3. List explicitly the six permutations of degree 3, state which are odd and which 
are even, and use this to give the complete formula (5-15) for the determinant of a 
3 X 3 matrix. 

4. Let u and r be the permutations of degree 4 defined by al = 2, a2 = 3, 
a3 = 4, u4 = 1, 71 = 3, 72 = 1, 73 = 2, 74 = 4. 

(a) Is (T odd or even? Is r odd or even? 
(b) Find UT and TU. 

5. If A is an invertible n X n matrix over a field, show that det A # 0. 

6. Let A be a 2 X 2 matrix over a field. Prove that det (I + A) = 1 + det A 
if and only if trace (A) = 0. 

7. An n X n matrix A is called triangular if Aii = 0 whenever i > j or if 
Aii = 0 whenever i < j. Prove that the determinant of a triangular matrix is the 
product AIlA . . . A,, of its diagonal entries. 

8. Let A be a 3 X 3 matrix over the field of complex numbers. We form the 
matrix zl - A with polynomial entries, the i, j entry of this matrix being the 
polynomial 6+r - Ai+ If j = det (21 - A), show that j is a manic polynomial 
of degree 3. If we write 

j = (x - Cl) (z - cz)(z - c3) 

with complex numbers cl, cz, and c3, prove that 

ci + c2 + c3 = trace (A) and clczc3 = det A. 

9. Let n be a positive integer and F a field. If u is a permutation of degree n, 

prove that the function 

T(z1, . . . , 2,) = (2,1, . . . ,2.n) 

is an invertible linear operator on F”. 

10. Let F be a field, n a positive integer, and S the set of n X n matrices over F. 
Let V be the vector space of all functions from S into F. Let W be the set of alter- 
nating n-linear functions on S. Prove that W is a subspace of V. What is the dimen- 
sion of W? 
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11. Let T be a linear operator on Fn. Define 

Mai, . . . , a,) = det (Toll, . . , , Ta.). 

(a) Show that DT is an alternating n-linear function. 
(b) If 

c = det (TEE, . . . , TE,) 

show that for any n vectors crl, . . . , cr., we have 

det (!!‘cui, . . . , Tcr,) =cdet((~~,...,(~J. 

(c) If @ is any ordered basis for Fn and A is the matrix of T in the ordered 
basis CR, show that det A = c. 

(d) What do you think is a reasonable name for the scalar c? 

12. If u is a permutation of degree n and A is an n X n matrix over the field F 
with row vectors 01, . . . , ayn, let a(A) denote the n X n matrix with row vectors 
a&l, . . . ) Gn. 

(a) Prove that u(AB) = u(A)B, and in particular that u(A) = a(l 
(b) If T is the linear operator of Exercise 9, prove that the matrix of T in 

the standard ordered basis is u(l). 
(c) Is u-l(I) the inverse matrix of u(I)? 
(d) Is it true that u(A) is similar to A? 

13. Prove that the sign function on permutations is unique in the following sense. 
If f is any function which assigns to each permutation of degree n an integer, and 
if I = f(u)f(~), then f is identically 0, or f is identically 1, or f is the sign 
function. 

5.4. Additional Properties of Determinants 

In this section we shall relate some of the useful properties of the 
determinant function on n X n matrices. Perhaps the first thing we should 
point out is the following. In our discussion of det A, the rows of A have 
played a privileged role. Since there is no fundamental difference between 
rows and columns, one might very well expect that det A is an alternating 
n-linear function of the columns of A. This is the case, and to prove it, 
it suffices to show that 

(5-17) det (At) = det (A) 

where At denotes the transpose of A. 
If u is a permutation of degree n, 

At@, ui) = A(&, i). 

From the expression (5-15) one then has 

det (At) = L: (sgn u)A(al, 1) . * - A(un, n). 
c 

When i = u-‘j, A(&, i) = A(j, u-‘j). Thus 

A(u1, 1) . . . A(un, n) = A(l, a-ll) . . . A(n, u-h). 
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Since au-l is the identity permutation, 

(sgn c)(sgnu-‘) = 1 or sgn (u-l) = sgn (u). 

Furthermore, as u varies over all permutations of degree n, so does u--l. 
Therefore 

det (At) = Z (sgn u-‘)A(l, a-ll) . . . A (n, u-%x) 
c7 

= det A 

proving (5-17). 
On certain occasions one needs to compute specific determinants. 

When this is necessary, it is frequently useful to take advantage of the 
following fact. If B is obtained from A by adding a multiple of one row of A 
to another (or a multiple of one column to another), then 

(5-18) det B = detA. 

We shall prove the statement about rows. Let B be obtained from A by 
adding caj to cyi, where i < j. Since det is linear as a function of the ith row 

det B = det A + c det ((~1, . . . , orj, . . . , aj, . . . , a,) 
= det A. 

Another useful fact is the following. Suppose we have an n X n matrix 
of the block form 

A B II 1 0 c 

where A is an r X r matrix, C is an s X s matrix, B is T X s, and 0 denotes 
the s X r zero matrix. Then 

(5-19) = (det A)(det C). 

To prove this, define 

D(A, B, C) = det t z [ 1 . 

If we fix A and B, then D is alternating and s-linear as a function of the 
rows of C. Thus, by Theorem 2 

D(A, B, C) = (det C)D(A, B, I) 

where I is the s X s identity matrix. By subtracting multiples of the rows 
of I from the rows of B and using the statement above (5-M), we obtain 

D(A, B, I) = D(A, 0, I). 

Now D(A, 0,1) is clearly alternating and r-linear as a function of the rows 
of A. Thus 

D(A, 0, I) = (det A)D(I, 0, I). 
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But D(I, 0, 1) = 1, so 

D(A, B, C) = (det C)D(A, B, I) 
= (det C)D(A, 0, I) 
= (det C)(det A). 

By the same sort of argument, or by taking transposes 

(5-20) det A ’ [ 1 B C 
= (det A)(det C). 

EXAMPLE 6. Suppose K is the field of rational numbers and we wish 
to compute the determinant of the 4 X 4 matrix 

l-l 

c ; ; 

2 3 

A = -; 1 2 3 -;a 1 0 

By subtracting suitable multiples of row 1 from rows 2, 3, and 4, we 
obtain the matrix 

[i -; 1; i] 

which we know by (5-18) will have the same determinant as A. If we 
subtract $ of row 2 from row 3 and then subtract 3 of row 2 from row 4, 
we obtain 

B-k -; 1; I;] 

and again det B = det A. The block form of B tells us that 

d&A = det B = 1: -ill-i -iI = 4(32) = 128. 

Now let n > 1 and let A be an n X n matrix over K. In Theorem 1, 
we showed how to construct a determinant function on n X n matrices, 
given one on (n - 1) X (n - 1) matrices. Now that we have proved the 
uniqueness of the determinant function, the formula (5-4) tells us the 
following. If we fix any column index j, 

det A = iz, (-l)“+iAij det A(+). 

The scalar (-l)‘+i det A(ilj) is usually called the i, j cofactor of A or 
the cofactor of the i, j entry of A. The above formula for det A is then 
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called the expansion of det A by cofactors of the jth column (or sometimes 
the expansion by minors of the jth column). If we set 

Cij = (- l)i+’ det A (ilj) 

then the above formula says that for each j 

det A = $ AijCij 
i=l 

where the cofactor Cii is (- l);+i times the determinant of the (n - 1) X 
(n - 1) matrix obtained by deleting the ith row and jth column of A. 

If j # k, then 

5 AJTij = 0. 
i=l 

For, replace the jth column of A by its kth column, and call the resulting 
matrix B. Then B has two equal columns and so det B = 0. Since B(ilj) = 
A($‘), we have 

0 = det B 

= iEl (-l)i+‘Bii det B(ilj) 

= iil (- l)“+iAik det A (ilj) 

These properties of the cofactors can be summarized by 

(5-21) i AikCii = bjk det A. 
i=l 

The n X n matrix adj A, which is the transpose of the matrix of co- 
factors of A, is called the classical adjoint of A. Thus 

(5-22) (adj A)ij = Cji = (-l)i+j det A(jli). 

The formulas (5-21) can be summarized in the matrix equation 

(5-23) (adj A)A = (det A)I. 

We wish to see that A(adj A) = (det A)1 also. Since At(ilj) = A(jli)l, 
we have 

(- l)i+j det At(ilj) = (- l)j+i det A(jli) 

which simply says that the i, j cofactor of At is thej, i cofactor of A. Thus 

(5-24) adj (At) = (adj A)t 

By applying (5-23) to At, we obtain 

(adj At)At = (det At)1 = (det A)1 
and transposing 

A(adj At)t = (det A)I. 



160 Determinants Chap. 5 

Using (5-24), we have what we want: 

(5-25) A(adj A) = (det A)I. 

As for matrices over a field, an n X n matrix A over K is called 
invertible over K if there is an n X n matrix A-l with entries in K 
such that AA-’ = A-‘A = I. If such an inverse matrix exists it is unique; 
for the same argument used in Chapter 1 shows that when BA = AC = I 
we have B = C. The formulas (5-23) and (5-25) tell us the following about 
invertibility of matrices over K. If the element det A has a multiplicative 
inverse in K, then A is invertible and A-l = (det A)-’ adj A is the unique 
inverse of A. Conversely, it is easy to see that if A is invertible over K, 
the element det A is invertible in K. For, if BA = I we have 

1 = det I = det (AB) = (det A) (det B). 

What we have proved is the following. 

Theorem 4. Let A be an n X n matrix over K. Then A is invertible 
over Ei if and only if det A is invertible in K. When A is invertible, the unique 
inverse for A is 

A-l = (det A)-’ adj A. 

In particular, an n X n matrix over a Jield is invertible if and only if its 
determinant is different from zero. 

We should point out that this determinant criterion for invertibility 
proves that an n X n matrix with either a left or right inverse is invertible. 
This proof is completely independent of the proof which we gave in Chap- 
ter 1 for matrices over a field. We should also like to point out what in- 
vertibility means for matrices with polynomial entries. If K is the poly- 
nomial ring F[x], the only elements of K which are invertible are the 
non-zero scalar polynomials. For if f and g are polynomials and fg = 1, 
we have deg f + deg g = 0 so that deg f = deg g = 0, i.e., f and g are 
scalar polynomials. So an n X n matrix over the polynomial ring F[x] is 
invertible 01 er F [x] if and only if its determinant is a non-zero scalar 
polynomial. 

EXAMPLE 7. Let K = R[x], the ring of polynomials over the field of 
real numbers. Let 

A= 
[ 

x2+2 x+1 
x-l 1 1) B=[xZ;:3 .,a]* 

Then, by a short computation, det A = x + 1 and det B = -6. Thus A 
is not invertible over K, whereas B is invertible over K. Note that 

-x 1 

- 

adj A 1 2 -x 

- 2 

= = -x + 1 x2 + x 1 ? adj B -x2 + 2x - 3 x2 - 1 1 
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and (adj A)A = (J: + l)1, (adj B)B = -61. Of course, 

-x - 2 
1-x2 . 1 

EXAMPLE 8. Let K be the ring of integers and 

Then det A = -2 and 

adj A = [-i -91. 

Thus A is not invertible as a matrix over the ring of integers; however, 
we can also regard A as a matrix over the field of rational numbers. If we 
do, then A is invertible and 

A-’ = -f [-; -;] = [-3 ;]* 

In connection with invertible matrices, we should like to mention one 
further elementary fact. Similar matrices have the same determinant, 
that is, if P is invertible over K and I3 = P-‘AP, then det B = det A. 
This is clear since 

det (P-‘AP) = (det P-l)(det A)(det P) = det A. 

This simple observation makes it possible to define the determinant of 
a linear operator on a finite dimensional vector space. If T is a linear 
operator on V, we define the determinant of T to be the determinant of 
any n X n matrix which represents T in an ordered basis for V. Since all 
such matrices are similar, they have the same determinant and our defini- 
tion makes sense. In this connection, see Exercise 11 of section 5.3. 

We should like now to discuss Cramer’s rule for solving systems of 
linear equations. Suppose A is an n X n matrix over the field F and we 
wish to solve the system of linear equations AX = Y for some given 
n-tuple (yl, . . . , y,). If AX = Y, then 

(adj A)AX = (adj A)Y 
and so 

(det A)X = (adj A)Y. 
Thus 

(det Ah = iil (4 A)jiyi 

= igl ( -l)ifjyi det A(iJj). 

This last expression is the determinant of the n X n matrix obtained by 
replacing the jth column of A by Y. If det A = 0, all this tells us nothing; 
however, if det A # 0, we have what is known as Cramer’s rule. Let A 



Determinants Chap, 5 

be an n X n matrix over the field F such that det A # 0. If yl, . . . , y,, 
are any scalars in F, the unique solution X = A-1Y of the system of 
equations AX = Y is given by 

det Bj 
xi==’ j= l,...,n 

where Bj is the n X n matrix obtained from A by replacing thejth column 
of A by Y. 

In concluding this chapter, we should like to make some comments 
which serve to place determinants in what we believe to be the proper 
perspective. From time to time it is necessary to compute specific deter- 
minants, and this section has been partially devoted to techniques which 
will facilitate such work. However, the principal role of determinants in 
this book is theoretical. There is no disputing the beauty of facts such as 
Cramer’s rule. But Cramer’s rule is an inefficient tool for solving systems 
of linear equations, chiefly because it involves too many computations. 
So one should concentrate on what Cramer’s rule says, rather than on 
how to compute with it. Indeed, while reflecting on this entire chapter, 
we hope that the reader will place more emphasis on understanding what 
the determinant function is and how it behaves than on how to compute 
determinants of specific matrices. 

Exercises 

1. Use the classical adjoint formula to,compute the inverses of each of the fol- 
lowing 3 X 3 real matrices. 

2. Use Cramer’s rule to solve each of the following systems of linear equations 
over the field of rational numbers. 

(a) x+ y+ c=ll 
2x--y- z= 0 
3x + 4y + 22 = 0. 

(b) 3x - 2y = 7 
3y - 22 = 6 
32 - 2x = -1. 

3. An n X n matrix A over a field F is skew-symmetric if At = --A. If A is a 
skew-symmetric n X n matrix with complex entries and n is odd, prove that 
det A = 0. 

4. An n X n matrix A over a field F is called orthogonal if BAl = I. If A is 
orthogonal, show that det A = fl. Give an example of an orthogonal matrix 
for which det A = -1. 
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5. AAn n X n matrix A over the field of complex numbers is said to be unitary 

if AA* = I (A* denotes the conjugate transpose of A). If A is unitary, show 
that ldet Al = 1. 

6. Let T and U be linear operators on the finite dimensional vector space V. Prove 
(a) det (TU) = (det T)(det U); 
(b) T is invertible if and only if det T # 0. 

7. Let A be an n X n matrix over K, a commutative ring with identity. Suppose 
A has the block form 

[ :I 
A1 0 .a. 0 

A = 0 Az ... 0 
. . . . 
0 0 . . . k, 

where Ai is an ri X ri matrix. Prove 

det A = (det AJ(det AZ) . . . (det Ak), 

8. Let V be the vector space of n X n matrices over the field F. Let B be a fixed 
element of V and let TB be the linear operator on V defined by Te(A) = AB - BA. 
Show that det Tg = 0. 

9. Let A be an n X n matrix over a field, A # 0. If r is any positive integer 
between 1 and n, an r X r submatrix of A is any r X r matrix obtained by deleting 
(n - r) rows and (n - T) columns of A. The determinant rank of A is the 
largest positive integer r such that some r X r submatrix of A has a non-zero 
determinant. Prove that the determinant rank of A is equal to the row rank of 
A ( = column rank A). 

10. Let A be an n X n matrix over the field F. Prove that there are at most n 
distinct scalars c in F such that det (cl - A) = 0. 

11. Let A and B be n X n matrices over the field F. Show that if A is invertible 
there are at most n scalars c in F for which the matrix CA + B is not invertible. 

12. If V is the vector space of n X n matrices over F and B is a fixed n X n matrix 
over F, let LB and Rg be the linear operators on V defined by LB(A) BA and 
Re(A) = AB. Show that 

(a) det LB = (det B)“; 
(b) det RE, = (det B)“. 

13. Let V be the vector space of all n X n matrices over the field of complex 
numbers, and let B be a fixed n X n matrix over C. Define a linear operator 121~ 
on V by MB(A) = BAB*, where B* = F. Show that 

det MB = ldet B12”. 

Now let H be the set of all Hermitian matrices in V, A being Hermitian if 
A = A*. Then H is a vector space over the field of real numbers. Show that the 
function Te defined by T&A) = BAB* is a linear operator on the real vector 
space H, and then show that det Te = ldet B12”. (Hint: In computing det TB, 
show that V has a basis consisting of Hermitian matrices and then show that 
det TB = det MB.) 
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14. Let A, B, C, D be commuting n X n matrices over the field F. Show that the 
determinant of the 2n X 2n matrix 

A B [ 1 C D 
is det (AD - BC). 

5.5. Modules 

If K is a commutative ring with identity, a module over K is an alge- 
braic system which behaves like a vector space, with K playing the role 
of the scalar field. To be precise, we say that V is a module over K (or a 
K-module) if 

1. there is an addition (ac, fi) -+ QI + /3 on V, under which V is a 
commutative group; 

2. there is a multiplication (c, a) + ca of elements a! in V and c in K 
such that 

(Cl + c&-i = Cla! + czff 

c(w + %) = Cal + cc% 

(ClCJ(Y = Cl(CZ(Y) 

la = (Y. 

For us, the most important K-modules will be the n-tuple modules Kn. 
The matrix modules KmX” will also be important. If V is any module, we 
speak of linear combinations, linear dependence and linear independence, 
just as we do in a vector space. We must be careful not to apply to V any 
vector space results which depend upon division by non-zero scalars, the 
one field operation which may be lacking in the ring K. For example, if 
w, . . f , ak are linearly dependent, we cannot conclude that some ai is a 
linear combination of the others. This makes it more difficult to find bases 
in modules. 

A basis for the module V is a linearly independent subset which 
spans (or generates) the module. This is the same definition which we gave 
for vector spaces; and, the important property of a basis 6~ is that each 
element of V can be expressed uniquely as a linear combination of (some 
finite number of) elements of a. If one admits into mathematics the Axiom 
of Choice (see Appendix), it can be shown that every vector space has a 
basis. The reader is well aware that a basis exists in any vector space 
which is spanned by a finite number of vectors. But this is not the case 
for modules. Therefore we need special names for modules which have 
bases and for modules which are spanned by finite numbers of elements. 

Dejinition. The K-module V is called a free module if it has a basis. 
If V has afinite basis containing n elements, then V is called a free K-module 

with n generators. 
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J 

Canonical Forms 

6.1. Introduction 

We have mentioned earlier that our principal aim is to study linear 
transformations on finite-dimensional vector spaces. By this time, we have 
seen many specific examples of linear transformations, and we have proved 
a few theorems about the general linear transformation. In the finite- 
dimensional case we have utilized ordered bases to represent such trans- 
formations by matrices, and this representation adds to our insight into 
their behavior. We have explored the vector space L(V, IV), consisting of 
the linear transformations from one space into another, and we have 
explored the linear algebra L( 8, V), consisting of the linear transformations 
of a space into itself. 

In the next two chapters, we shall be preoccupied with linear operators. 
Our program is to select a single linear operator T on a finite-dimensional 
vector space V and to ‘take it apart to see what makes it tick.’ At this 
early stage, it is easiest to express our goal in matrix language: Given the 
linear operator T, find an ordered basis for V in which the matrix of T 
assumes an especially simple form. 

Here is an illustration of what we have in mind. Perhaps the simplest 
matrices to work with, beyond the scalar multiples of the identity, are the 
diagonal matrices : Cl 0 0 f.. 0 0 c2 0 *** 0 
(6-l) . . . . . . 

181 



182 Elementary Canonical Forms Chap. 6 

Let T be a linear operator on an n-dimensional space V. If we could find 
an ordered basis @ = {al, . . . , (Y,,} for V in which T were represented by 
a diagonal matrix D (6-l), we would gain considerable information about T. 
For instance, simple numbers associated with T, such as the rank of T or 
the determinant of T, could be determined with little more than a glance 
at the matrix D. We could describe explicitly the range and the null space 
of T. Since [T],B = D if and only if 

W-2) TCY~ = ck(Yk, k=l,...,n 

the range would be the subspace spanned by those ark’s for which ck # 0 
and the null space would be spanned by the remaining ak’s. Indeed, it 
seems fair to say that, if we knew a basis a3 and a diagonal matrix D such 
that [T]a = D, we could answer readily any question about T which 
might arise. 

Can each linear operator T be represented by a diagonal matrix in 
some ordered basis? If not, for which operators T does such a basis exist? 
How can we find such a basis if there is one? If no such basis exists, what 
is the simplest type of matrix by which we can represent T? These are some 
of the questions which we shall attack in this (and the next) chapter. The 
form of our questions will become more sophisticated as we learn what 
some of the difficulties are. 

6.2. Characteristic Values 

The introductory remarks of the previous section provide us with a 
starting point for our attempt to analyze the general linear operator T. 
We take our cue from (6-a), which suggests that we should study vectors 
which are sent by T into scalar multiples of themselves. 

DeJinition.. Let V be a vector space over the field. F and let T be a linear 
operator on V. .A characteristic value of T is a scalar c in F such that 
there is a non-zero vector a! in V with Tcr = car. If c is a characteristic value of 
T, then 

(a) any (Y such that TLY = ccr is called a characteristic vector of T 
associated with the characteristic value c; 

(b) the collection of all a such that Ta = cat is called the characteristic 

space associated with c. 

Characteristic values are often called characteristic roots, latent roots, 
eigenvalues, proper values, or spectral values. In this book we shall use 
only the name ‘characteristic values.’ 

If T is any linear operator and c is any scalar, the set of vectors (Y such 
that TCY = C(Y is a subspace of V. It is the null space of the linear trans- 
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formation (5” - cl). We call c a characteristic value of T if this subspace 
is different from the zero subspace, i.e., if (T - ~1) fails to be 1: 1. If the 
underlying space V is finite-dimensional, (T - cl) fails to be 1: 1 precisely 
when its determinant is different from 0. Let us summarize. 

Theorem 1. Let T be a linear operator on a finite-dimensional space V 
and let c be a scalar. The following are equivalent. 

(i) c is a characteristic value of T. 
(ii) The operator (T - c1) is singular (not invertible). 

(iii) det (T - c1) = 0. 

The determinant criterion (iii) is very important because it tells us 
where to look for the characteristic values of T. Since det (T - cl) is a 
polynomial of degree n in the variable c, we will find the characteristic 
values as the roots of that polynomial. Let us explain carefully. 

If 63 is any ordered basis for V and A = [T]a, then (T - cl) is in- 
vertible if and only if the matrix (A - cl) is invertible. Accordingly, we 
make the following definition. 

Dejinition. If A is an n X n matrix over the$eld F, a characteristic 
value of A in F is a scalar c in F such that the matrix (A - c1) is singular 
(not invertible). 

Since c is a characteristic value of A if and only if det (A - cI) = 0, 
or equivalently if and only if det (~1 - A) = 0, we form the matrix 
(21 - A) with polynomial entries, and consider the polynomial f = 
det (21 - A). Clearly the characteristic values of A in F are just the 
scalars c in F such that f(c) = 0. For this reason f is called the charac- 

teristic polynomial of A. It is important to note that f is a manic poly- 
nomial which has degree exactly n. This is easily seen from the formula 
for the determinant of a matrix in terms of its entries. 

Lemma. Similar matrices have the same characteristic polynomial. 

Proof. If B = P-IAP, then 

det (XI - B) = det (XI - P-IAP) 
= det (P-‘(xl - A)P) 
= det P-l . det (XI - A) . det P 
= det (x1 - A). 1 

This lemma enables us to define sensibly the characteristic polynomial 
of the operator T as the characteristic polynomial of any n X n matrix 
which represents T in some ordered basis for V. Just as for matrices, the 
characteristic values of T will be the roots of the characteristic polynomial 
for T. In particular, this shows us that T cannot have more than n distinct 
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characteristic -values. It is important to point out that T may not have any 
characteristic values. 

EXAMPLE 1. Let T be the linear operator on R2 which is represented 
in the standard ordered basis by the matrix 

A= 0 -1 [ 1 1 0’ 

The characteristic polynomial for T (or for A) is 

det (~1 -A) = -T i 
I I 

= x2 + 1. 

Since this polynomial has no real roots, T has no characteristic values. 
If U is the linear operator on C2 which is represented by A in the standard 
ordered basis, then U has two characteristic values, i and -i. Here we 
see a subtle point. In discussing the characteristic values of a matrix 
A, we must be careful to stipulate the field involved. The matrix A above 
has no characteristic values in R, but has the two characteristic values 
i and -i in C. 

EXAMPLE 2. Let A be the (real) 3 X 3 matrix 

3 1 -1 

[ 1 2 2 -1. 
22 0 

Then the characteristic polynomial for A is 

2-3 -1 1 
-2 x-2 1 =23-522+82-4=((z-l)(x-2)2. 
-2 -2 x 

Thus the characteristic values of A are 1 and 2. 
Suppose that T is the linear operator on R3 which is represented by A 

in the standard basis. Let us find the characteristic vectors of T associated 
with the characteristic values, 1 and 2. Now 

2 1 -1 
A-I= 2 1 -1. [ 1 2 2 -1 

It is obvious at a glance that A - I has rank equal to 2 (and hence T - I 
has nullity equal to 1). So the space of characteristic vectors associated 
with the characteristic value 1 is one-dimensional. The vector cy1 = (1, 0, 2) 
spans the null space of T - 1. Thus Ta = (\I if and only if a! is a scalar 
multiple of CQ, Now consider 

1 1 -1 
A-21= 2 0 -1. [ 1 2 2 -2 
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Evidently A - 21 also hams rank 2, so that the space of characteristic 
vectors associated with the characteristic value 2 has dimension 1. Evi- 
dently Ta = 2a! if and only if (Y is a scalar multiple of LYZ = (1, 1, 2). 

DeJinition. Let T be a linear operator on the jinite-dimensional space , 
V. We say that T is diagonalizable if there is a basis for V each vector 
of which is a characteristic vector of T. 

The reason for the name should be apparent; for, if there is an ordered 
basis iB = {al, . . . , CY~} for V in which each cri is a characteristic vector of 
T, then the matrix of T in the ordered basis CR is diagonal. If Tori = ciai, 
then 

rs 0 **. 0 1 

We certainly do not require that the scalars cl, . . . , c, be distinct; indeed, 
they may all be the same scalar (when T is a scalar multiple of the identity 
operator). 

One could also define T to be diagonalizable when the characteristic 
vectors of T span V. This is only superficially different from our definition, 
since we can select a basis out of any spanning set of vectors. 

For Examples 1 and 2 we purposely chose linear operators T on Rn 
which are not diagonalizable. In Example 1, we have a linear operator on 
R2 which is not diagonalizable, because it has no characteristic values. 
In Example 2, the operator T has characteristic values; in fact, the charac- 
teristic polynomial for T factors completely over the real number field: 
f = (X - 1) (X - Z)z. Nevertheless T fails to be diagonalizable. There is 
only a one-dimensional spatce of characteristic vectors associated with each 
of the two characteristic values of T. Hence, we cannot possibly form a 
basis for R3 which consists of characteristic vectors of T. 

Suppose that T is a diagonalizable linear operator. Let cl, . . . , ck be 
the distinct characteristic values of T. Then there is an ordered basis @ in 
which T is represented by a diagonal matrix which has for its diagonal 
entries the scalars ci, each repeated a certain number of times. If ci is 
repeated di times, then (we may arrange that) the matrix has the block 
form 

rclIl 0 . - - 0 1 

(6-3) 

where Ii is the dj X dj identity matrix. From that matrix we see two things. 
First, the characterist’ic polynomial for T is the product of (possibly 
repeated) linear factors: 
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f = (2 - Cl)dl * * * (z - cp. 

Chap. 6 

If the scalar field F is algebraically closed, e.g., the field of complex num- 
bers, every polynomial over F can be so factored (see Section 4.5); however, 
if F is not algebraically closed, we are citing a special property of T when 
we say that its characteristic polynomial has such a factorization. The 
second thing we see from (6-3) is that di, the number of times which ci is 
repeated as root off, is equal to the dimension of the space of characteristic 
vectors associated with the characteristic value ci. That is because the 
nullity of a diagonal matrix is equal to the number of zeros which it has on 
its main diagonal, and the matrix [T - c& has di zeros on its main 
diagonal. This relation between the dimension of the characteristic space 
and the multiplicity of the characteristic value as a root off does not seem 
exciting at first; however, it will provide us with a simpler way of deter- 
mining whether a given operator is diagonalizable. 

Lemma. Suppose that Tcu = ca. If f is any polynomial, then f(T)a = 
f(C)CY. 

Proof. Exercise. 

Lemma. Let T be a linear operator on the finite-dimensional space V. 
Let cl, . . . , ck be the distinct characteristic values of T and let Wi be the space 
of characteristic vectors associated with the characteristic value Ci. If W = 
WI + .** + wk, then 

dimW = dimW1+ ... +dimWk. 

In. fact, if @i is an ordered basis for Wi, then 63 = (&Al, . . . , @k) is an ordered 
basis for W. 

Proof. The space W = WI + . . . + Wk is the subspace spanned 
by all of the characteristic vectors of T. Usually when one forms the sum 
W of subspaces Wi, one expects that dim W < dim WI + . . ’ + dim Wk 
because of linear relations which may exist between vectors in the various 
spaces. This lemma states that the characteristic spaces associated with 
different characteristic values are independent of one another. 

Suppose that (for each i) we have a vector pi in Wi, and assume that 
Pl+ ... + PE = 0. We shall show that pi = 0 for each i. Let f be any 
polynomial. Since Tpi = ci@i, the preceding lemma tells us that 

0 = f(T)0 = f(T)PI + .-. +f(T)Pb 
= f(c,)P, + * * * + f (c/&L 

Choose polynomials fi, . . . , fk such that 

fi(Cj) = 6ij = {t: f z i. 
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Then 

Now, let 63; be an ordered basis for Wi, and let @ be the sequence 
63 = (ah, . . . ) 63,). Then @ spans the subspace W = WI + . . . + Wk. 
Also, & is a linearly independent sequence of vectors, for the following 
reason. Any linear relation between the vectors in (a will have the form 
p1+ *-* + 8k = 0, where & is some linear combination of the vectors in 
ai. From what we just did, we know that 6; = 0 for each i. Since each @i 
is linearly independent, we see that we have only the trivial linear relation 
between the vectors in C% 1 

Theorem 2. Let T be a linear operator on a finite-dimensional space V. 
Let cl, . . . , ck be the distinct characteristic values of T and let Wi be the null 
space of (T - CiI). The following are equivalent. 

(i) T is diagonalizable. 
(ii) The characteristic polynomial for T is 

f = (x - Cl)dl . * * (x - Ck)dk 

and dim Wi = di, i = 1, . . . , k. 
(iii) dim W1 + . . . -I- dim wk = dim V. 

Proof. We have observed that (i) implies (ii). If the characteristic 
polynomial f is the product of linear factors, as in (ii), then dl + . . . + 
dk = dim V. For, the sum of the d{s is the degree of the characteristic 
polynomial, and that degree is dim V. Therefore (ii) implies (iii). Suppose 
(iii) holds. By the lemma, we must have V = WI + . . . + Wk, i.e., the 
characteristic vectors of T span V. 1 

The matrix analogue of Theorem 2 may be formulated as follows. Let 
A be an n X n matrix with entries in a field F, and let cl, . . . , ck be the 
distinct characteristic values of A in F. For each i, let Wi be the space of 
column matrices X (with entries in F) such that 

(A - cJ)X = 0, 

and let ai be an ordered basis for Wi. The bases 6~1, . . . , 6338 collectively 
string together to form the sequence of columns of a matrix P: 

P = [PI, Pz, . . .] = (al, . . . , a,). 

The matrix A is similar over F to a diagonal matrix if and only if P is a 
square matrix. When P is square, P is invertible and P-‘AP is diagonal. 

EXAMPLE 3. Let T be the linear operator on R3 which is represented in 
the standard ordered basis by the matrix 



188 Elementary Canonical Forms Chap. 6 

A=[-% 1: 21. 

Let us indicate how one might compute the characteristic polynomial, 
using various row and column operations: 

x-5 6 6 

1 x-4 -2 

-3 6 x+4 

x-5 0 6 

= 1 x-2 -2 

-3 2-x x+4 

X- 5 0 6 

z (x - 2) 1 1 -2 

-3 -1 x+4 

x-5 0 6 

= (x - 2) 1 1 -2 

-2 0 x+2 

= (x - 2) 1:; 5 x t 2/ 

We know that A - I is singular and obviously rank (A - I) 2 2. There- 
fore, rank (A - 1) = 2. It is evident that rank (A - 21) = 1. 

Let WI, W2 be the spaces of characteristic vectors associated with the 
characteristic values 1, 2. We know that dim WI = 1 and dim Wz = 2. By 
Theorem 2, T is diagonalizable. It is easy to exhibit a basis for R3 in which 
T is represented by a diagonal matrix. The null space of (T - 1) is spanned 
by the vector (Ye = (3, -1,3) and so {aI} is a basis for WI. The null space 
of T - 21 (i.e., the space W2) consists of the vectors (21, x2, x3) with x1 = 
2x2 + 2x3. Thus, one example of a basis for WZ is 

ffz = (2, 1, 0) 
a3 = (2,0, 1). 

If a3 = {q cyz, a3 >, then [T]a is the diagonal matrix 
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1 0 0 
D= 0 2 0. [ 1 0 0 2 

The fact that T is diagonalizable means that the original matrix A is 
similar (over R) to the diagonal matrix D. The matrix P which enables us 
to change coordinates from the basis 03 to the standard basis is (of course) 
the matrix which has the transposes of CYI, (YZ, (~3 as its column vectors: 

3 2 2 
P= -1 10. [ 1 3 0 1 

Furthermore, AP = PD, so that 

P-‘AP = D. 

Exercises 

1. In each of the following cases, let T be the linear operator on R2 which is 
represented by the matrix A in the standard ordered basis for R2, and let U be 
the linear operator on C2 represented by A in the standard ordered basis. Find the 
characteristic polynomial for T and that for U, find the characteristic values of 
each operator, and for each such characteristic value c find a basis for the cor- 
responding space of characteristic vectors. 

2. Let V be an n-dimensional vector space over F. What is the characteristic 
polynomial of the identity operator on V? What is the characteristic polynomial 
for the zero operator? 

3. Let A be an n X n triangular matrix over the field F. Prove that the charac- 
teristic values of A are the diagonal entries of A, i.e., the scalars Aii. 

4. Let T be the linear operator on R3 which is represented in the standard ordered 
- basis by the matrix 

[ -16 -9 -8 4 8 3 4 4. 7 1 
Prove that T is diagonalizable by exhibiting a basis for R3, each vector of which 
is a characteristic vector of T. 

5. Let 

Is A similar over the field R to a diagonal matrix? Is A similar over the field C to a 
diagonal matrix? 
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6. Let T be the linear operator on R4 which is represented in the standard ordered 
basis by the matrix 

0 0 0 0 
a 0 0 0 

[ I 

0 b 0 0’ 
0 0 c 0 

Under what conditions on a, b, and c is T diagonalizable? 

i’. Let T be a linear operator on the n-dimensional vector space V, and suppose 
that T has n distinct characteristic values. Prove that T is diagonalizable. 

8. Let A and B be n X n matrices over the field F. Prove that if (I - AB) is 
invertible, then I - BA is invertible and 

(I - BA)-’ = 1 + B(I - AB)-‘A. 

9. Use the result of Exercise 8 to prove that, if A and B are n X n matrices 
over the field F, then AB and BA have precisely the same characteristic values in F. 

10. Suppose that A is a 2 X 2 matrix with real entries which is symmetric (Al = A). 
Prove that A is similar over R to a diagonal matrix. 

11. Let N be a 2 X 2 complex matrix such that N2 = 0. Prove that either N = 0 
or N is similar over C to 

[ 1 0 0. 
1 0 

12. Use the result of Exercise 11 to prove the following: If A is a 2 X 2 matrix 
with complex entries, then A is similar over C to a matrix of one of the two types 

13. Let V be the vector space of all functions from R into R which are continuous, 
i.e., the space of continuous real-valued functions on the real line. Let T be the 
linear operator on V defined by 

(Tf)(x> = /d” f(t) dt. 

Prove that T has no characteristic values. 

14. Let A be an n X n diagonal matrix with characteristic polynomial 

(z - cl)dl e . . (z - c,+, 

where cl, . . . , ck are distinct. Let V be the space of n X n matrices B such that 
AB = BA. Prove that the dimension of V is d: + . . . + di. 

15. Let V be the space of n X n matrices over F. Let A be a fixed n X n matrix 
over F. Let T be the linear operator ‘left multiplication by A’ on V. Is it true that 
A and T have the same characteristic values? 

6.3. Annihilating Polynomials 

In attempting to analyze a linear operator T, one of the most useful 
things to know is the class of polynomials which annihilate T. Specifically, 
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suppose T is a linear operator on I’, a vector space over the field F. If p is a 
polynomial over F, then p(T) is again a linear operator on V. If Q is another 
polynomial over F, then 

(P + d(T) = P(T) + 0’) 
(P~U’) = PO%(T). 
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Therefore, the collection of polynomials p which annihilate T, in the sense 
that 

~6”) = 0, 

is an ideal in the polynomial algebra F[z]. It may be the zero ideal, i.e., it 
may be that T is not annihilated by any non-zero polynomial. But, that 
cannot happen if the space V is finite-dimensional. 

Suppose T is a linear operator on the n-dimensional space V. Look at 
the first (n2 + 1) powers of T: 

I, T, T2, . . . , Tn=. 

This is a sequence of n2 + 1 operators in L(V, V), the space of linear 
operators on V. The space L(V, V) has dimension n2. Therefore, that 
sequence of n2 + 1 operators must be linearly dependent, i.e., we have 

col + clT + . . . + cn~T”’ = 0 

for some scalars ci, not all zero. So, the ideal of polynomials which annihilate 
T contains a non-zero polynomial of degree n2 or less. 

According to Theorem 5 of Chapter 4, every polynomial ideal consists 
of all multiples of some fixed manic polynomial, the generator of the ideal. 
Thus, there corresponds to the operator T a manic polynomial p with this 
property : If f is a polynomial over F, then f(T) = 0 if and only if f = pg, 
where g is some polynomial over F. 

Definition. Let T be a linear operator on a jinite-dimensional vector 
space V over the Jield F. The minimal polynomial for T is the (unique) 
manic generator of the ideal of polynomials over F which annihilate T. 

The name ‘minimal polynomial’ stems from the fact that the generator 
of a polynomial ideal is characterized by being the manic polynomial of 
minimum degree in the ideal. That means that the minimal polynomial p 
for the linear operator T is uniquely determined by these three properties: 

(1) p is a manic polynomial over the scalar field F. 

(2) P(T) = 0. 
(3) No polynomial over F which annihilates T has smaller degree than 

p has. 

If A is an n X n matrix over F, we define the minimal polynomial 
for A in an analogous way, as the unique manic generator of the ideal of all 
polynomials over F which annihilate A. If the operator T is represented in 
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some ordered basis by the matrix A, then T and A have the same minimal 
polynomial, That is because f(T) is represented in the basis by the matrix 
f(A), so that f(T) = 0 if and only if f(A) = 0. 

From the last remark about operators and matrices it follows that 
similar matrices have the same minimal polynomial. That fact is also clear 
from the definitions because 

f(P-IAP) = P-lf(A)P 

for every polynomial f. 
There is another basic remark which we should make about minimal 

polynomials of matrices. Suppose that A is an n X n matrix with entries 
in the field F. Suppose that F1 is a field which contains F as a subfield. (For 
example, A might be a matrix with rational entries, while F1 is the field of 
real numbers. Or, A might be a matrix with real entries, while F1 is the 
field of complex numbers.) We may regard A either as an n X n matrix 
over F or as an n X n matrix over F,. On the surface, it might appear that 
we obtain two different minimal polynomials for A. Fortunately that is 
not the case; and we must see why. What is the definition of the minimal 
polynomial for A, regarded as an n X n matrix over the field F? We 
consider all manic polynomials with coefficients in F which annihilate A, 

and we choose the one of least degree. If f is a manic polynomial over F: 

(6-4) 
k-l 

f = xk + 2 aixi 
j=o 

then j(A) = 0 merely says that we have a linear relation between the 
powers of A: 

(6-5) Ak + ak-,Ak-’ + ..a + alA + aOI = 0. 

The degree of the minimal polynomial is the least positive integer k such 
that there is a linear relation of the form (6-5) between the powers I, 
A *‘, Ak. Furthermore, by the uniqueness of the minimal polynomial, 
thkre is for that k one and only one relation of the form (6-5); i.e., once the 
minimal k is determined, there are unique scalars ao, . . . , ak-1 in F such 

that (6-5) holds. They are the coefficients of the minimal polynomial. 
Now (for each k) we have in (6-5) a system of n2 linear equations for 

the ‘unknowns ao, . . . , ak-1. Since the entries of A lie in F, the coefficients 
of the system of equations (6-5) are in F. Therefore, if the system has a 
solution with ao, . . . , ak-l in F1 it has a solution with ao, . . . , ak-1 in F. 

(See the end of Section 1.4.) It should now be clear that the two minimal 
polynomials are the same. 

What do we know thus far about the minimal polynomial for a lineaa 
operator on an n-dimensional space? Only that its degree does not exceed 
n2. That turns out to be a rather poor estimate, since the degree cannot 
exceed n. We shall prove shortly that the operator is annihilated by its 
characteristic polynomial. First, let us observe a more elementary fact. 
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Theorem 3. Let T be a linear operator on an n-dimensional vector 
space V [or, let A be an n X n matrix]. The characteristic and minimal 
polynomials for T [for A] have the same roots, except for multiplicities, 

Proof. Let p be the minimal polynomial for T. Let c be a scalar. 
What we want to show is that p(c) = 0 if and only if c is a characteristic 
value of T. 

First, suppose p(c) = 0. Then 

P = (5 - &? 

where q is a polynomial. Since deg q < deg p, the definition of the minimal 
polynomial p tells us that q(T) # 0. Choose a vector /3 such that q(T)@ # 0. 
Let a! = q(T)/3. Then 

0 = PU’M 

= 6” - ~~MTM 
= (T - cI)ct 

and thus, c is a characteristic value of T. 
Now, suppose that c is a characteristic value of T, say, TCX = ccv with 

a # 0. As we noted in a previous lemma, 

PO’% = P(+. 

Since p(T) = 0 and (Y # 0, we have p(c) = 0. 1 

Let T be a diagonalizable linear operator and let cl, . . . , ck be the 
distinct characteristic values of T. Then it is easy to see that the minimal 
polynomial for T is the polynomial 

p = (x - Cl) * * * (x - Ck). 

If (Y is a characteristic vector, then one of the operators T - cJ, . . . , 
T - cJ sends (Y into 0. Therefore 

(T - cJ) . . . (T - cJ)ar = 0 

for every characteristic vector a. There is a basis for the underlying space 
which consists of characteristic vectors of T; hence 

p(T) = (T - cJ) . . . (T - cJ) = 0. 

What we have concluded is this. If T is a diagonalizable linear operator, 
then the minimal polynomial for T is a product of distinct linear factors. 
As we shall soon see, that property characterizes diagonalizable operators. 

EXAMPLE 4. Let’s try to find the minimal polynomials for the operators 
in Examples 1, 2, and 3. We shall discuss them in reverse order. The oper- 
ator in Example 3 was found to be diagonalizable with characteristic 
polynomial 

f = (x - 1)(x - 2)2. 
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From the preceding paragraph, we know that the minimal polynomial for 
T is 

p = (x - l)(z - 2). 

The reader might find it reassuring to verify directly that 

(A - I)(A - 2I) = 0. 

In Example 2, the operator T also had the characteristic polynomial 
f = (X - 1)(x - 2)z. But, this T is not diagonalizable, so we don’t know 
that the minimal polynomial is (Z - 1) (Z - 2). What do we know about 
the minimal polynomial in this case? From Theorem 3 we know that its 
roots are 1 and 2, with some multiplicities allowed. Thus we search for p 
among polynomials of the form (X - l)k(~ - 2)z, k 2 1, I 2 1. Try (cc - 1) 
(x - 2): 

(A-I)@-21) 3 a z]E i 31 

2 0 -1 
= 2 0 -1. [ 1 4 0 -2 

Thus, the minimal polynomial has degree at least 3. So, next we should try 
either (II: - 1)s1(x - 2) or (X - 1) (x - 2)z. The second, being the charac- 
teristic polynomial, would seem a less random choice. One can readily 
compute that (A - I)(A - 21)2 = 0. Thus the minimal polynomial for T 
is its characteristic polynomial. 

In Example 1 we discussed the linear operator T on R2 which is 
represented in the standard basis by the matrix 

A= 0 -1 [ 1 1 0’ 

The characteristic polynomial is x2 + 1, which has no real roots. To 
determine the minimal polynomial, forget about T and concentrate on A. 
As a complex 2 X 2 matrix, A has the characteristic values i and -i. 
Both roots must appear in the minimal polynomial. Thus the minimal 
polynomial is divisible by x2 + 1. It is trivial to verify that A2 + I = 0. 
So the minimal polynomial is x2 + 1. 

Theorem 4 (Cayley-Hamilton). Let T be a linear operator on a 
jinite dimensional vector space V. If f is the characteristic polynomial for T, 
then f(T) = 0; in other words, the minimal polynomial divides the charac- 
teristic polynowlial for T. 

Proof. Later on we shall give two proofs of this result independent 
of the one to be given here. The present proof, although short, may be 
difficult to understand. Aside from brevity, it has the virtue of providing 
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an illuminating and far from trivial application of the general theory of 
determinants developed in Chapter 5. 

Let K be the commutative ring with identity consisting of all poly- 
nomials in T. Of course, K is actually a commutative algebra with identity 
over the scalar field. Choose an ordered basis {cyl, . . . , cr,} for V, and let A 
be the matrix which represents T in the given basis. Then 

These equations may be written in the equivalent form 

jS, (6ijT - AjJ)aj = 0, lliln. 

Let B denote the element of Knxn with entries 

When n = 2 
Bii = 6ijT - AjJ. 

and 

B = T - Ad -&uI 

[ - A121 T - AnzI 1 
det B = (T - Ad) (T - Ad) - AlsAd 

= T2 - (An + A&” + (An& - Add 

= f(T) 

where f is the characteristic polynomial: 

f = x2 - (trace A)z + det A. 

For the case n > 2, it is also clear that 

det B = f(T) 

since f is the determinant ,of the matrix XI - A whose entries are the 
polynomials 

(zI - A)ii = 6ii~ - Aji. 

We wish to show thatf(T) = 0. In order thatf(T) be the zero operator, 
it is necessary and sufficient that (det B)cY~ = 0 for k = 1, . . . , n. By the 
definition of B, the vectors CQ, . . . , (Y,, satisfy the equations 

(6-6) g Bijaj = 0, lIi<?%. 
j=l 

When n = 2, it is suggestive to write (6-6) in the form 

[ 

T - Ad -Ad 

- AnI T - Aid] [I:] = [:I’ 

In this case, the classical adjoint, adj B is the matrix 

T - AzzI Ad 

AJ T - Ad 1 
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and 
BB = det B 0 

[ 0 detB * 1 
Hence, we have 

(det B) [z:] = @B) [z:] 

0 = [I 0’ 

In the general case, let B = adj B. Then by (6-6) 

2 BbjBijcUj = 0 
j=l 

for each pair k, i, and summing on i, we have 

0 = i i BkiBijaj 
i=l j=l 

Therefore 

0 = jil Lj(det B)aj 

= (det B)Q l<IcIn. 1 

The Cayley-Hamilton theorem is useful to us at this point primarily 
because it narrows down the search for the minimal polynomials of various 
operators. If we know the matrix A which represents T in some ordered 
basis, then we can compute the characteristic polynomial j. We know that 
the minimal polynomial p divides f and that the two polynomials have the 
same roots. There is no method for computing precisely the roots of a 
polynomial (unless its degree is small); however, if j factors 

(6-7) j = (z - cl)dl . . . (r - c#r, cl, . . . , q distinct, di > 1 

then 

(6-8) p = (x - cp * * f (x - Ck)‘k, 1 2 rj 2 dj. 

That is all we can say in general. If j is the polynomial (6-7) and has 
degree n, then for every polynomial p as in (6-8) we can find an n X n 
matrix which has j as its characteristic polynomial and p as its minimal 
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polynomial. We shall not prove this now. But, we wa.nt to emphasize the 
fact that the knowledge that the characteristic polynomial has the form 
(6-7) tells us that the minimal polynomial has the form (6-8), and it tells us 
nothing else about p. 
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EXAMPLE 5. Let A be the 4 X 4 (rational) matrix 

0 1 0 1 

A= [ 1 0 1 

0 10 
1 0 1 0 1 1’ 

0 

The powers of A are easy to compute: 

2 0 2 0 

A2= [ ’ 2 ’ 2 0 2 
0 2 0 2 1 0 

2 

0 4 0 4 

As%= [ 4 ’ 4 

0 4 0 4’ 
4 0 4 ’ 1 0 

Thus A3 = 4A, i.e., if p = 9 - 42 = ~(2 + 2)(s - 2), then p(A) = 0. 
The minimal polynomial for A must divide p. That minimal polynomial is 
obviously not of degree 1, since that would mean that A was a scalar 
multiple of the identity. Hence, the candidates for the minimal polynomial 
are: p, Z(Z + 2), Z(Z - 2), ~9 - 4. The three quadratic polynomials can be 
eliminated because it is obvious at a glance that A2 # -2A, A2 # 2A, 
A2 # 41. Therefore p is the minimal polynomial for A. In particular 0, 2, 
and -2 are the characteristic values of A. One of the factors x, x - 2, 
x + 2 must be repeated twice in the characteristic polynomial. Evidently, 
rank (A) = 2. Consequently there is a two-dimensional space of charac- 
teristic vectors associated with the characteristic value 0. From Theorem 
2, it should now be clear that the characteristic polynomial is x2(x2 - 4) 
and that A is similar over the field of rational numbers to the matrix 000 0 000 0 [ 1 002 0’ 

0 0 0 -2 

Exercises 

1. Let V be a finite-dimensional vector space. What is the minimal polynomial 
for the identity operator on V? What is the minimal polynomial for the zero 
operator? 
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2. Let a, b, and c be elements of a field F, and let A be the following 3 X 3 matrix 
over F: 0 0 c 

A= 10 b. [ 1 0 1 a 

Prove that the characteristic polynomial for A is x3 - uz2 - bx - c and that this 
is also the minimal polynomial for A. 

3. Let A be the 4 X 4 real matrix 

*-[Ii 1; -i i]. 

Show that the characteristic polynomial for A is x2(x - 1)2 and that it is also 
the minimal polynomial. 

4. Is the matrix A of Exercise 3 similar over the field of complex numbers to a 
diagonal matrix? 

5. Let V be an n-dimensional vector space and let T be a linear operator on V. 
Suppose that there exists some positive integer k so that Tk = 0. Prove that 
T” = 0. 

6. Find a 3 X 3 matrix for which the minimal polynomial is x2. 

7. Let n be a positive integer, and let V be the space of polynomials over R 
which have degree at most n (throw in the O-polynomial). Let D be the differentia- 
tion operator on V. What is the minimal polynomial for D? 

8. Let P be the operator on R2 which projects each vector onto the x-axis, parallel 
to the y-axis: P(x, y) = (x, 0). Show that P is linear. What is the minimal poly- 
nomial for P? 

9. Let A be an n X n matrix with characteristic polynomial 

f = (x - c#* ’ ‘(x - c&k 
Show that 

Cl& + * * * + ckdk = trace (A). 

10. Let V be the vector space of n X n matrices over the field F. Let A be a fixed 
n X n matrix. Let T be the linear operator on V defined by 

T(B) = AB. 

Show that the minimal polynomial for T is the minimal polynomial for A. 

11. Let A and B be n X n matrices over the field F. According to Exercise 9 of 
Section 6.1, the matrices AB and BA have the same characteristic values. Do 
they have the same characteristic polynomial? Do they have the same minimal 
polynomial? 

6.4. Invariant Subspaces 

In this section, we shall introduce a few concepts which are useful in 
attempting to analyze a linear operator. We shall use these ideas to obtain 


