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Pf re ace 

Our original purpose in writing this book was to provide a text for the under- 
graduate linear algebra course at the Massachusetts Institute of Technology. This 
course was designed for mathematics majors at the junior level, although three- 
fourths of the students were drawn from other scientific and technological disciplines 
and ranged from freshmen through graduate students. This description of the 
M.I.T. audience for the text remains generally accurate today. The ten years since 
the first edition have seen the proliferation of linear algebra courses throughout 
the country and have afforded one of the authors the opportunity to teach the 
basic material to a variety of groups at Brandeis University, Washington Univer- 
sity (St. Louis), and the University of California (Irvine). 

Our principal aim in revising Linear Algebra has been to increase the variety 
of courses which can easily be taught from it. On one hand, we have structured the 
chapters, especially the more difficult ones, so that there are several natural stop- 
ping points along the way, allowing the instructor in a one-quarter or one-semester 
course to exercise a considerable amount of choice in the subject matter. On the 
other hand, we have increased the amount of material in the text, so that it can be 
used for a rather comprehensive one-year course in linear algebra and even as a 
reference book for mathematicians. 

The major changes have been in our treatments of canonical forms and inner 
product spaces. In Chapter 6 we no longer begin with the general spatial theory 
which underlies the theory of canonical forms. We first handle characteristic values 
in relation to triangulation and diagonalization theorems and then build our way 
up to the general theory. We have split Chapter 8 so that the basic material on 
inner product spaces and unitary diagonalization is followed by a Chapter 9 which 
treats sesqui-linear forms and the more sophisticated properties of normal opera- 
tors, including normal operators on real inner product spaces. 

We have also made a number of small changes and improvements from the 
first edition. But the basic philosophy behind the text is unchanged. 

We have made no particular concession to the fact that the majority of the 
students may not be primarily interested in mathematics. For we believe a mathe- 
matics course should not give science, engineering, or social science students a 
hodgepodge of techniques, but should provide them with an understanding of 
basic mathematical concepts. 

. . . 
am 
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On the other hand, we have been keenly aware of the wide range of back- 
grounds which the students may possess and, in particular, of the fact that the 
students have had very little experience with abstract mathematical reasoning. 
For this reason, we have avoided the introduction of too many abstract ideas at 
the very beginning of the book. In addition, we have included an Appendix which 
presents such basic ideas as set, function, and equivalence relation. We have found 
it most profitable not to dwell on these ideas independently, but to advise the 
students to read the Appendix when these ideas arise. 

Throughout the book we have included a great variety of examples of the 
important concepts which occur. The study of such examples is of fundamental 
importance and tends to minimize the number of students who can repeat defini- 
tion, theorem, proof in logical order without grasping the meaning of the abstract 
concepts. The book also contains a wide variety of graded exercises (about six 
hundred), ranging from routine applications to ones which will extend the very 
best students. These exercises are intended to be an important part of the text. 

Chapter 1 deals with systems of linear equations and their solution by means 
of elementary row operations on matrices. It has been our practice to spend about 
six lectures on this material. It provides the student with some picture of the 
origins of linear algebra and with the computational technique necessary to under- 
stand examples of the more abstract ideas occurring in the later chapters. Chap- 
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats 
linear transformations, their algebra, their representation by matrices, as well as 
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of 
polynomials over a field, the ideals in that algebra, and the prime factorization of 
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter- 
polation formula. Chapter 5 develops determinants of square matrices, the deter- 
minant being viewed as an alternating n-linear function of the rows of a matrix, 
and then proceeds to multilinear functions on modules as well as the Grassman ring. 
The material on modules places the concept of determinant in a wider and more 
comprehensive setting than is usually found in elementary textbooks. Chapters 6 
and 7 contain a discussion of the concepts which are basic to the analysis of a single 
linear transformation on a finite-dimensional vector space; the analysis of charac- 
teristic (eigen) values, triangulable and diagonalizable transformations; the con- 
cepts of the diagonalizable and nilpotent parts of a more general transformation, 
and the rational and Jordan canonical forms. The primary and cyclic decomposition 
theorems play a central role, the latter being arrived at through the study of 
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial 
domain, the computation of invariant factors and elementary divisors of a matrix, 
and the development of the Smith canonical form. The chapter ends with a dis- 
cussion of semi-simple operators, to round out the analysis of a single operator. 
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers 
the basic geometry, relating orthogonalization to the idea of ‘best approximation 
to a vector’ and leading to the concepts of the orthogonal projection of a vector 
onto a subspace and the orthogonal complement of a subspace. The chapter treats 
unitary operators and culminates in the diagonalization of self-adjoint and normal 
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and 
self-adjoint operators on an inner product space, moves on to the spectral theory 
of normal operators and then to more sophisticated results concerning normal 
operators on real or complex inner product spaces. Chapter 10 discusses bilinear 
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as 
well as groups preserving non-degenerate forms, especially the orthogonal, unitary, 
pseudo-orthogonal and Lorentz groups. 

We feel that any course which uses this text should cover Chapters 1, 2, and 3 
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual 
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and 
determinants, may be treated with varying degrees of thoroughness. In fact, 
polynomial ideals and basic properties of determinants may be covered quite 
sketchily without serious damage to the flow of the logic in the text; however, our 
inclination is to deal with these chapters carefully (except the results on modules), 
because the material illustrates so well the basic ideas of linear algebra. An ele- 
mentary course may now be concluded nicely with the first four sections of Chap- 
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to 
be included, a more extensive coverage of Chapter 6 is necessary. 

Our indebtedness remains to those who contributed to the first edition, espe- 
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp, 
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby. 
In addition, we would like to thank the many students and colleagues whose per- 
ceptive comments led to this revision, and the staff of Prentice-Hall for their 
patience in dealing with two authors caught in the throes of academic administra- 
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill 
and her tireless efforts in typing the revised manuscript. 

K. M. H. / R. A. K. 
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2. Let a, b, and c be elements of a field F, and let A be the following 3 X 3 matrix 
over F: 0 0 c 

A= 10 b. [ 1 0 1 a 

Prove that the characteristic polynomial for A is x3 - uz2 - bx - c and that this 
is also the minimal polynomial for A. 

3. Let A be the 4 X 4 real matrix 

*-[Ii 1; -i i]. 

Show that the characteristic polynomial for A is x2(x - 1)2 and that it is also 
the minimal polynomial. 

4. Is the matrix A of Exercise 3 similar over the field of complex numbers to a 
diagonal matrix? 

5. Let V be an n-dimensional vector space and let T be a linear operator on V. 
Suppose that there exists some positive integer k so that Tk = 0. Prove that 
T” = 0. 

6. Find a 3 X 3 matrix for which the minimal polynomial is x2. 

7. Let n be a positive integer, and let V be the space of polynomials over R 
which have degree at most n (throw in the O-polynomial). Let D be the differentia- 
tion operator on V. What is the minimal polynomial for D? 

8. Let P be the operator on R2 which projects each vector onto the x-axis, parallel 
to the y-axis: P(x, y) = (x, 0). Show that P is linear. What is the minimal poly- 
nomial for P? 

9. Let A be an n X n matrix with characteristic polynomial 

f = (x - c#* ’ ‘(x - c&k 
Show that 

Cl& + * * * + ckdk = trace (A). 

10. Let V be the vector space of n X n matrices over the field F. Let A be a fixed 
n X n matrix. Let T be the linear operator on V defined by 

T(B) = AB. 

Show that the minimal polynomial for T is the minimal polynomial for A. 

11. Let A and B be n X n matrices over the field F. According to Exercise 9 of 
Section 6.1, the matrices AB and BA have the same characteristic values. Do 
they have the same characteristic polynomial? Do they have the same minimal 
polynomial? 

6.4. Invariant Subspaces 

In this section, we shall introduce a few concepts which are useful in 
attempting to analyze a linear operator. We shall use these ideas to obtain 
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characterizations of diagonalizable (and triangulable) operators in terms 
of their minimal polynomials. 

199 

Definition. Let V be a vector space and T a linear operator on V. If 
W is a subspace of V, we say that W is invariant under T if for each vector 
a: in W the vector Tel is in W, i.e., if T(W) is contained in W. 

EXAMPLE 6. If T is any linear operator on V, then V is invariant 
under T, as is the zero subspace. The range of T and the null space of T 
are also invariant under T. 

EXAMPLE 7. Let F be a field and let D be the differentiation operator 
on the space F[z] of polynomials over F. Let n be a positive integer and 
let W be the subspace of polynomials of degree not greater than n. Then W 
is invariant under D. This is just another way of saying that D is ‘degree 
decreasing.’ 

EXAMPLE 8. Here is a very useful generalization of Example 6. Let T 
be a linear operator on V. Let U be any linear operator on V which com- 
mutes with T, i.e., TU = UT. Let W be the range of U and let N be the 
null space of U. Both W and N are invariant under T. If a is in the range 
of U, say (Y = Up, then Ta! = T(UP) = U(Tfi) so that Ta! is in the range 
of U. If a is in N, then U(TCU) = T(UCX) = T(0) = 0; hence, TCY is in N. 

A particular type of operator which commutes with T is an operator 
U = g(T), where g is a polynomial. For instance, we might have U = 
T - cI, where c is a characteristic value of T. The null space of U is 
familiar to us. We see that this example includes the (obvious) fact that 
the space of characteristic vectors of T associated with the characteristic 
value c is invariant under T. 

EXAMPLE 9. Let T be the linear operator on R2 which is represented 
in the standard ordered basis by the matrix 

A= 0 --I [ 1 1 0’ 

Then the only subspaces of R2 which are invariant under T are R2 and the 
zero subspace. Any other invariant subspace would necessarily have 
dimension 1. But, if W is the subspace spanned by some non-zero vector (Y, 
the fact that W is invariant under T means that CY is a characteristic 
vector, but A has no real characteristic values. 

When the subspace W is invariant under the operator T, then T 
induces a linear operator Tw on the space W. The linear operator Tw is 
defined by T&a) = T(a), f or Q in W, but Tw is quite a different object 
from T since its domain is W not V. 

When V is finite-dimensional, the invariance of W under T has a 
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simple matrix interpretation, and perhaps we should mention it at this 
point. Suppose we choose an ordered basis a3 = {(Ye, . . . , ar,> for V such 
that a’ = (011, . . . , CY,.~ is an ordered basis for W (r = dim IV). Let A = 
[T]a so that 

Taj = i Aijai. 
i=l 

Since W is invariant under T, the vector Taj belongs to W for j 5 r. This 
means that 

(6-9) 

In other words, Aij = 0 if j 5 r and i > r. 
Schematically, A has the block form 

(B-10) 

where B is an r X r matrix, C is an r X (n - r) matrix, and D is an 
(n - T) X (n - r) matrix. The reader should note that according to 
(6-9) the matrix B is precisely the matrix of the induced operator Tw in 
the ordered basis (R’. 

Most often, we shall carry out arguments about T and TTV without 
making use of the block form of the matrix A in (6-10). But we should note 
how certain relations between Tw and T are apparent from that block form. 

Lemma. Let W be an invariant subspace for T. The characteristic 
polynomial for the restriction operator TTV divides the characteristic polynomial 
for T. The minimal polynomial for TW divides the minimal polynomial for T. 

hoof. We have 
B C 

A= 0 D II 1 
where A = [T]@ and B = [Tw]a/. Because of the block form of the matrix 

det (XI -A) = det(zI - B) det (~1 - D). 

That proves the statement about characteristic polynomials. Notice that 
we used I to represent identity matrices of three different sizes. 

The lath power of the matrix A has the block form 

Ak = Bk Ck [ 1 0 D” 

where Ch is some r X (n - r) matrix. Therefore, any polynomial which 
annihilates A also annihilates B (and D too). So, the minimal polynomial 
for B divides the minimal polynomial for A. 1 

EXAMPLE 10. Let T be any linear operator on a finite-dimensional 
space I’. Let W be the subspace spanned by all of the characteristic vectors 
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of T. Let cl, . . . , ck be the distinct characteristic values of T. For each i, 
let Wi be the space of characteristic vectors associated with the charac- 
teristic value ci, and let & be an ordered basis for Wi. The lemma before 
Theorem 2 tells us that a’ = (@I, . . . , @k) is an ordered basis for W. In 
particular, 

dim W = dim WI + . . . + dim Wk. 

Let 63 = {(or, . . . , G+} so that the first few a’s form the basis @I, the next 
few &, and so on. Then 

Tcri = ticxi, i=l 7 . . f I r 

where (tl, . . . , t,.) = (Cl, cl, . . . , cl, . . . , ck, ck, . . . , ck) with ci repeated 
dim Wi times. 

Now W is invariant under T, since for each LIP in W we have 

a = ZlcQ + . . * + &.cYp 
Tat = tp,cq + . . . + trx,cx,. 

Choose any other vectors CX,+~, . . . , (Y% in V such that & = ((~1, . . . , oc,} 
is a basis for V. The matrix of T relative to u?, has the block form (6-lo), and 
the matrix of the restriction operator Tw relative to the basis 63’ is 

t1 0 ..* 0 B = 0 tz ... 0 
L I 
. . . . 
; (j . . . t:, 

The characteristic polynomial of B (i.e., of Tw) is 

where ei = dim Wi. Furthermore, g dividesf, the characteristic polynomial 
for T. Therefore, the multiplicity of ci as a root off is at least dim WC 

All of this should make Theorem 2 transparent. It merely says that T 
is diagonalizable if and only if r = n, if and only if el + . . . f ck = n. It 
does not help us too much with the non-diagonalizable case, since we don’t 
know the matrices C and D of (B-10). 

DeJinition. Let W be an invariant subspace for T and let o( be a vecto? 
in V. The T-conductor of LY into W is the set $(cY; W), which consists of 

all polynomials g (over the scalar jield) such that g(T)oc is in W. 

Since the operator T will be fixed throughout most discussions, we 
shall usually drop the subscript T and write S (a ; W) . The authors usually 
call that collection of polynomials the ‘stuffer’ (das einstopjende Ideal). 
‘Conductor’ is the more standard term, preferred by those who envision 
a less aggressive operator g(T), gently leading the vector 01 into W. In the 
special case W = (0) the conductor is called the T-annihilator of 01. 
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Lemma. If W is an invariant subspace for T, then W is invariant 
under every polynomial in T. Thus, for each a in V, the conductor S(a; W) is 
an ideal in the polynomial algebra F[x]. 

Proof. If p is in W, then TP is in W. Consequently, T(T@) = T2fl 
is in W. By induction, Tk/3 is in W for each Ic. Take linear combinations to 
see that f( T&3 is in W for every polynomial f. 

The definition of X(cr; W) makes sense if W is any subset of li. If W is 
a subspace, then S((Y; W) is a subspace of F[z], because 

(cf + g)(T) = cf0”) + g(T). 

If W is also invariant under T, let g be a polynomial in S(a; W), i.e., let 
g( T)a be in W. If f is any polynomial, thenf(T) [g(T)a] will be in W. Since 

(fg)(T) = fU’)dT) 

fg is in X(or; W). Thus the conductor absorbs multiplication by any poly- 
nomial. 1 

The unique manic generator of the ideal S(oc; W) is also called the 
T-conductor of cy into W (the T-annihilator in case W = (0)). The 
T-conductor of a: into W is the manic polynomial g of least degree such that 
g(T)a is in W. A polynomialf is in S(a; W) if and orlly if g divides f. Note 
that the conductor S(cr; W) always contains the minimal polynomial for T; 
hence, every T-conductor divides the minimal polynomial for T. 

As the first illustration of how to use the conductor X((Y; W), we shall 
characterize triangulable operators. The linear operator T is called tri- 

angulahle if there is an ordered basis in which T is represented by a 
triangular matrix. 

Lemma. Let V be a jinite-dimensional vector space over the field F. 
Let T be a linear operator on V such that the minimal polynomial for T is a 
product of linear factors 

p = (x - C1)” . . . (x - Ck)‘k, ci in F. 

Let W be a proper (W # V) subspace of V which is invariant under T. There 
exists a vector CY in V such that 

(a) a is not in W; 
(b) (T - cI)a: is in W, for some characteristic value c of the operator T. 

Proof. What (a) and (b) say is that the T-conductor of cx into W 
is a linear polynomial. Let p be any vector in V which is not in W. Let g be 
the T-conductor of p into W. Then g divides p, the minimal polynomial 
for T. Since p is not in W, the polynomial g is not constant. Therefore, 

g = (x - C@ . . . (x - cjp 
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where at least one of the integers ei is positive. Choose j so that ej > 0. 
Then (X - cj) divides g : 

g = (x - Cj)h. 

By the definition of g, the vector LY = h(T)/? cannot be in W. But 

(T - C~I)CX = (T - cjI)h(T)p 

= dT)P 
is in W. 1 

Theorem 5. Let V be a Jinite-dimensional vector space over the Jield F 
and let T be a linear operator on V. Then T is triangulable if and only if the 

minimal polynomial for T is a product of linear polynomials over F. 

Proof. Suppose that the minimal polynomial factors 

p = (x - c1)” * . . (x - Ck)“. 

By repeated application of the lemma above, we shall arrive at an ordered 
basis CR = {al, . . . , cu,} in which the matrix representing T is upper- 
triangular: 

all 

i* 

al2 al3 f. . ah 
a23 . . . 

[T]a = “0 “0’” a33 . . . 
a2n 

(6-11) 1 a3n . . . . (j ; ; . . . arm iJ 
Now (6-11) merely says that 

(6-12) Tai = algal + . . . + ajjai, l<j_<n 

that is, Taj is in the subspace spanned by (~1, . . . , aj. TO find (~1, . . . , (Y,, 
we start by applying the lemma to the subspace W = {0}, to obtain the 
vector (~1. Then apply the lemma to W1, the space spanned by (~1, and we 
obtain (~2. Next apply the lemma to W2, the space spanned by (Y~ and W. 
Continue in that way. One point deserves comment. After LYE, . . . , ori have 
been found, it is the triangular-type relations (6-12) for j = 1, . . . , i 
which ensure that the subspace spanned by cyl, . . . , ai is invariant under 
T. 

If T is triangulable, it, is evident that the characteristic polynomial for 
T has the form 

j = (x - cp . . . (x - cp, ci in F. 

Just look at the triangular matrix (6-11). The diagonal entries all, . . . , al, 

are the characteristic values, with ci repeated di times. But, if j can be SO 

factored, so can the minimal polynomial p, because it divides j. 1 

Corollary. Let F be an algebraically closed field, e.g., the complex num- 
ber field. Every II X 11 matrix over F is similar over F to a triangular matrix. 
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Theorem 6. Let V be a finite-dimensional vector space over the Jield F 
and let T be a linear operator on V. Then T is diagonalizable if and only if the 
minimal polynomial for T has the form 

p = (x - Cl) . ’ * (x - Ck) 

where cl, . . . , Ck are distinct elements of F. 

Proof. We have noted earlier that, if T is diagonalizable, its 
minimal polynomial is a product of distinct linear factors (see the discussion 
prior to Example 4). To prove the converse, let W be the subspace spanned 
by all of the characteristic vectors of T, and suppose W # V. By the lemma 
used in the proof of Theorem 5, there is a vector a not in W and a charac- 
teristic value cj of T such that the vector 

/3 = (T - cJ)a! 

lies in W. Since p is in W, 

fl = fll+ -*' + pk 

where Toi = c&, 1 5 i 5 Ic, and therefore the vector 

h(T)P = h(c& + * * * + h(‘A)k& 

is in W, for every polynomial h. 
Now p = (IL: - cj)q, for some polynomial q. Also 

4 - q(cj) = (5 - cj)h. 
We have 

p(T)a - p(cJar = h(T)(T - cJ)a = h(TM 

But h(T)0 is in W and, since 

0 = p(T)a = (T - cjI)q(T), 

the vector ~(T)cI is in W. Therefore, Q(~)LY is in W. Since a! is not in W, we 
have q(cj) = 0. That contradicts the fact that p has distinct roots. 1 

At the end of Section 6.7, we shall give a different proof of Theorem 6. 
In addition to being an elegant result, Theorem 6 is useful in a computa- 
tional way. Suppose we have a linear operator T, represented by the matrix 
A in some ordered basis, and we wish to know if T is diagonalizable. We 
compute the characteristic polynomial f. If we can factor j: 

we have two different methods for determining whether or not T is diago- 
nalizable. One method is to see whether (for each i) we can find di inde- 
pendent characteristic vectors associated with the characteristic value ci. 
The other method is to check whether or not (T - cJ) . . . (T - cd) is 
the zero operator. 

Theorem 5 provides a different proof of the Cayley-Hamilton theorem. 
That theorem is easy for a triangular matrix. Hence, via Theorem 5, we 
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obtain the result for any matrix over an algebraically closed field. Any 
field is a subfield of an algebraically closed field. If one knows that result, 
one obtains a proof of the Cayley-Hamilton theorem for matrices over any 
field. If we at least admit into our discussion the Fundamental Theorem of 
Algebra (the complex number field is algebraically closed), then Theorem 5 
provides a proof of the Cayley-Hamilton theorem for complex matrices, 
and that proof is independent of the one which we gave earlier. 

Exercises 

1. Let T be the linear operator on R2, the matrix of which in the standard ordered 
basis is 

A= ; -g. [ 1 
(a) Prove that the only subspaces of R2 invariant under T are R2 and the 

zero subspace. 
(b) If U is the linear operator on C2, the matrix of which in the standard 

ordered basis is A, show that U has l-dimensional invariant subspaces. 

2. Let W be an invariant subspace for T. Prove that the minimal polynomial 
for the restriction operator Tw divides the minimal polynomial for T, without 
referring to matrices. 

3. Let c be a characteristic value of T and let W be the space of characteristic 
vectors associated with the characteristic value c. What is the restriction opera- 
tor Tw? 

4. Let 
0 1 0 

A= 2 -2 2. [ 1 2 -3 2 

Is A similar over the field of real numbers to a triangular matrix? If so, find such a 
triangular matrix. 

5. Every matrix A such that A2 = A is similar to a diagonal matrix. 

6. Let T be a diagonalizable linear operator on the n-dimensional vector space V, 
and let W be a subspace which is invariant under T. Prove that the restriction 
operator TW is diagonalizable. 

7. Let T be a linear operator on a finite-dimensional vector space over the field 
of complex numbers. Prove that T is diagonalizable if and only if T is annihilated 
by some polynomial over C which has distinct roots. 

8. Let T be a linear operator on V. If every subspace of V is invariant under T, 
then T is a scalar multiple of the identity operator. 

9. Let T be the indefinite integral operator 

(U)(x) = rfC0 a 
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on the space of continuous functions on the interval [0, I]. Is the space of poly- 
nomial functions invariant under T? The space of differentiable functions? The 
space of functions which vanish at z = a? 

10. Let A be a 3 X 3 matrix with real entries. Prove that, if A is not similar over R 
to a triangular matrix, then A is similar over C to a diagonal matrix. 

11. True or false? If the triangular matrix il is similar to a diagonal matrix, then 
A is already diagonal. 

12. Let T be a linear operator on a finite-dimensional vector space over an alge- 
braically closed field F. Let f be a polynomial over F. Prove that c is a character- 
istic value of f(T) if and only if c = f(t), where t is a characteristic value of T. 

13. Let V be the space of n X n matrices over F. Let A be a fixed n X n matrix 
over F. Let T and U be the linear operators on V defined by 

T(B) = AB 
U(B) = AB - BA. 

(a) True or false? If ,2 is diagonalizable (over F), then T is diagonalizablc. 
(b) True or false? If A is diagonalizable, then U is diagonalizablc. 

6.5. Simultaneous Triangulation; 

Simultaneous Diagonalization 

Let V be a finite-dimensional space and let F be a family of linear 
operators on I’. We ask when we can simultaneously triangulate or diago- 
nalize the operators in 5, i.e., find one basis @ such that all of the matrices 
[?“]a, T in 3, are triangular (or diagonal). In the case of diagonalization, it 
is necessary that F be a commuting family of operators: UT = T U for all 
T, U in 5. That follows from the fact that all diagonal matrices commute. 
Of course, it is also necessary that each operator in 5 be a diagonalizable 
operator. In order to simultaneously triangulate, each operator in 5 must 
be triangulable. It is not necessary that 5 be a commuting family; however, 
that condition is sufficient for simultaneous triangulation (if each T caI1 be 
individually triangulated). These results follow from minor variations of 
the proofs of Theorems 5 and 6. 

The subspace W is invariant under (the family of operators) 5 if 
W is invariant under each operator in 5. 

Lemma. Let 5 be a commuting family of triangulable linear operators 
on V. Let W be a proper subspace of V u>hich is invariant under 5. There 
exists a vector CY in V such that 

(a) a! is not in W; 
(b) for each T in 5, the vector TCX is in the subspace spanned by a! and W. 

Proof. It is no loss of generality to assume that 5 contains only a 
finite number of operators, because of this observation. Let {Tl, . . . , T,} 
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be a maximal linearly independent subset of 5, i.e., a basis for the s&space 
spanned by 5. If LY is a vector such that (b) holds for each Ti, then (b) will 
hold for every operator which is a linear combination of T1, . . . , T,. 

By the lemma before Theorem 5 (this lemma for a single operator), we 
can find a vector pi (not in llr) and a scalar cl such that (TI - cJ)p, is in W. 
Let Vi be the collection of all vectors /3 in I’ such that (T, - cJ)fl is in W. 
Then VI is a subspace of V which is properly larger than W. Furthermore, 
81 is invariant under 5, for this reason. If T commutes with T1, then 

VI - d)(TP) = TV’, - c,l)P. 

If /3 is in VI, then (T1 - cJ)p is in W. Since W is invariant under each Tin 
5, we have T(T1 - cJ)fi in W, i.e., TP in VI, for all fl in VI and all Tin CF. 

Now W is a proper subspace of VI. Let Us be the linear operator on VI 
obtained by restricting T2 to the subspace VI. The minimal polynomial for 
Ux divides the minimal polynomial for Tz. Therefore, we may apply the 
lemma before Theorem 5 to that operator and the invariant subspace W. 
We obtain a vector pZ in VI (not in W) and a scalar c2 such that (T, - cJ)/~~ 
is in W. Note that 

(a) pz is not in W; 
(b) (T, - cJ)pz is in W; 
(c) (Tz - cJ)& is in IV. 

Let V, be the set of all vectors /3 in VI such that (Tz - cJ)p is in W. 
Then Vz is invariant under 5. Apply the lemma before Theorem 5 to Us, 
the restriction of T, to Vz. If we continue in this way, we shall reach a 
vector QI = pT (not in W) such that (Tj - cJ)ol is in W, j = 1, . . . , r. 1 

Theorem 7. Let V be a finite-dimensional vector space over the field F. 
Let F be a commuting family of triangulable linear operators on V. There exists 
an ordered basis for V such that every operator in EF is represented by a triangu- 
lar matrix in that basis. 

Proof. Given the lemma which we just proved, this theorem has 
the same proof as does Theorem 5, if one replaces T by 5. m 

Corollary. Let 5 be a commuting family of n X n matrices over an 
algebraically closed field I?. There exists a non-singular II X 11 matrix P with 
entries in F such that P-lA1’ is upper-triangular, for every matrix A in 5. 

Theorem 8. Let 5 be a commuting family of diagonalixable linear 
operators on the finite-dimensional vector space V. There exists an ordered basis 
for V such that every operator in 5 is represented in that basis by a diagonal 
matrix. 

Proof. We could prove this theorem by adapting the lemma 
before Theorem 7 to the diagonalizable case, just as we adapted the lemma 
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before Theorem 5 to the diagonalizable case in order to prove Theorem 6. 
However, at this point it is easier to proceed by induction on the dimension 
of v. 

If dim 6’ = 1, there is nothing to prove. Assume the theorem for 
vector spaces of dimension less than n, and let V be an n-dimensional space. 
Choose any T in 5 which is not a scalar multiple of the identity. Let 
Cl, . . . , ck be the distinct characteristic values of T, and (for each i) let Wi 
be the null space of T - ccl. Fix an index i. Then Wi is invariant under 
every operator which commutes with T. Let pi be the family of linear 
operators on Wi obtained by restricting the operators in 3 to the (invariant) 
subspace Wi. Each operator in F< is diagonalizable, because its minimal 
polynomial divides the minimal polynomial for the corresponding operator 
in 5. Since dim Wi < dim V, the operators in 5; can be simultaneously 
diagonalized. In other words, Wi has a basis a; which consists of vectors 
which are simultaneously characteristic vectors for every operator in 3;. 

Since T is diagonalizable, the lemma before Theorem 2 tells us that 
63 = (031, . . . ) (Rk) is a basis for V. That is the basis we seek. [ 

Exercises 

1. Bind an invertible real matrix P such that P-IAP and P-‘BP are both diago- 
nal, where A and B are the real matrices 

(4 

(b) 

A = [; ;I> B = [; I;] 

A = [; ;I, B = [a ;I. 

2. Let 5 be a commuting family of 3 X 3 complex matrices. How many linearly 
independent matrices can 5 contain? What about the n X n case? 

3. Let T be a linear operator on an n-dimensional space, and suppose that T 
has n distinct characteristic values. Prove that any linear operator which commutes 
with T is a polynomial in T. 

/E. Let 11, B, C, and D be n X n complex matrices which commute. Let E be the 
2% X 2n matrix 

Prove that, det E = tlet (AD - BC). 

5. Let F be a field, n a positive integer, and let V be the space of n X 72 matrices 
over F. If A is a fixed n X n matrix over P, let TA be the linear operator on V 
defined by TA(B) = A B - BA. Consider the family of linear operators TA ob- 
tained by letting A vary over all diagonal matrices. Prove that the operators in 
that family are simultaneously diagont iizable. 
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6.6. Direct-Sum Decompositions 

As we continue with our analysis of a single linear operator, we shall 
formulate our ideas in a slightly more sophisticated way-less in terms of 
matrices and more in terms of subspaces. When we began this chapter, we 
described our goal this way: To find an ordered basis in which the matrix 
of T assumes an especially simple form. Now, we shall describe our goal 
as follows: To decompose the underlying space V into a sum of invariant 
subspaces for T such that the restriction operators on those subspaces are 
simple. 

DeJinition. Let WI, . . . , Wk be subspaces of the vector space V. We 
sag that WI, . . . , Wk are independent if 

a1 + ‘0. + Cyk = 0, ffyi in Wi 

implies that each ai is 0. 

For Ic = 2, the meaning of independence is (0) intersection, i.e., WI 

and Wz are independent if and only if WI n Wz = {O}. If k > 2, the 
independence of WI, . . . , Wk says much more than WI n . . . fI Wk = 

(0). It says that each Wj intersects the sum of the other subspaces Wi 
only in the zero vector. 

The significance of independence is this. Let W = WI + . . + Wk 

be the subspace spanned by WI, . . . , Wk. Each vector o( in W can be 
expressed as a sum 

a = a!1 + . . . + cyk, ffi in Wi. 

If Wl, . . . , W, are independent, then that expression for a! is unique; for if 

a = PI + . . . + Pk, pi in W; 

then 0 = (a1 - pl) + . . . + (ak - Pk), hence CQ - pi = 0, i = 1, . . . , k. 
Thus, when WI, . . . , Wk are independent, we can operate with the vectors 
in W as Ic-tuples (o(~, . . , CQ), LY; in Wi, in the same way as we operate with 
vectors in Rk as Ic-tuples of numbers. 

Lemma. Let v be a finite-dimensional vector space. Let WI, . . . , Wk 

be subspaces of V and let W = WI + . . . + Wk. The following are equivalent. 

(a) WI, . . . , Wk are independent. 

(b) For each j, 2 5 j 5 k, we have 

Wj n (WI + ... + Wj-I) = (0). 

(c) If @i is an ordered basis for Wi, 1 5 i 5 k, then the sequence Ei = 

(6, . . . , CB~) is an ordered basis for W. 
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Proof. Assume (a). Let (Y be a vector in the intersection Wi n 
cw1+ *.* + Wj-1). Then there are vectors (~1, . . . , “j-1 with ai in Wi 

such that a! = cy1 + * * * + “j-1. Since 

al+ ... + Q!j-1 + (-Cl!) + 0 + . . ’ + 0 = 0 

and since WI, . . . , Wk are independent, it must be that cul = (~2 = . . . = 
“j-1 = a! = 0. 

Now, let’ us observe that (b) implies (a). Suppose 

0 = CX1 + ’ ’ . + Clk, (Yi in Wi. 

Let j be the largest integer i such that (pi # 0. Then 

0 = 011 + ‘. . + "j, CYj # 0. 

Thusaj = -aI - ‘.. - CYj-1 is a non-zero vector in Wj n (WI + . . . + 
Wj-1). 

Now that we know (a) and (b) are the same, let us see why (a) is 
equivalent to (c). Assume (a). Let 03i be a basis for Wi, 1 5 i 5 Ic, and let 
03 = (as,, . . . ) 6%). Any linear relation between the vectors in 63 will have 
the form 

Pl+ **- +bs=o 

where pi is some linear combination of the vectors in B<. Since WI, . . . , Wk 
are independent, each pi is 0. Since each Bi is independent, the relation we 
have between the vectors in & is the trivial relation. 

We relegate the proof that (c) implies (a) to the exercises (Exercise 
2). I 

If any (and hence all) of the conditions of the last lemma hold, we 
say that the sum W = WI + . . . + WI, is direct or that W is the direct 

sum of WI, . . , Wk and we write 

w = Wl @ . * . @ Wk. 

In the literature, the reader may find this direct sum referred to as an 
independent sum or the interior direct sum of WI, . . . , Wk. 

EXAMPLE 11. Let V be a finite-dimensional vector space over the field 
F and let {al, . . . , a,} be any basis for V. If Wi is the one-dimensional 
subspace spanned by ai, then V = WI @ - * * @ W,. 

EXAMPLE 12. Let n be a positive integer and F a subfield of the com- 
plex numbers, and let V be the space of all n X n matrices over F. Let 
WI be the subspace of all symmetric matrices, i.e., matrices A such that 
At = A. Let Wz be the subspace of all skew-symmetric matrices, i.e., 
matrices A such that At = -A. Then V = Wl @ Wz. If A is any matrix 
in V, the unique expression for A as a sum of matrices, one in WI and the 
other in Wz, is 
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A = A, + A2 
A1 = $(A + A’) 
A, = +(A - At). 

Direct-Sum Decompositions 

EXAMPLE 13. Let T be any linear operator on a finite-dimensional 
space V. Let cl, . . . , cl~ be the distinct characteristic values of T, and let 
Wi be the space of characteristic vectors associated with the characteristic 
value ci. Then W1, . . . , Wk are independent. See the lemma before Theo- 
rem 2. In particular, if T is diagonalizable, then V = W1 @ . . . @ Wk. 

DeJinition. If V is a vector space, a projection of V is a linear 
operator E on V such that E2 = E. 

Suppose that E is a projection. Let R be the range of E and let N be 
the null space of E. 

1. The vector fl is in the range R if and only if Efl = /3. If p = Eq 
then E@ = E2a! = Ea = /3. Conversely, if p = E/3, then (of course) /3 is in 
the range of E. 

2. V=R@N. 
3. The unique expression for ac as a sum of vectors in R and N is 

a = Ea: + (a! - Eel). 

From (l), (a), (3) it is easy to see the following. If R and N are sub- 
spaces of V such that V = R ON, there is one and only one projection 
operator E which has range R and null space N. That operator is called the 
projection on R along N. 

Any projection E is (trivially) diagonalizable. If {CQ, . . . , a,.} is a 
basis for R and {(~,+l, . . . , a,} a basis for N, then the basis a3 = ((~1, . . . , 
CY,) diagonalizes E: 

where I is the r X r identity matrix. That should help explain some of the 
terminology connected with projections. The reader should look at various 
cases in the plane R2 (or 3-space, R3), to convince himself that the projec- 
tion on R along N sends each vector into R by projecting it parallel to N. 

Projections can be used to describe direct-sum decompositions of the 
space V. For, suppose V = W1 @ . . @ Wk. For each j we shall define 
an operator Ej on 8. Let a be in V, say O( = crl + + . . + (ok with (Y; in W;. 
Define Eja = aj. Then Ej is a well-defined rule. It is easy to see that Ej is 
linear, that the range of Ej is WY, and that Ef = Ej. The null space of Ej 
is the subspace 

(wl+ a** + Wj-1 + Wj+l + * ’ ’ + Wk) 

for, the statement that E~(Y = 0 simply means aj = 0, i.e., that c11 is actually 
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a sum of vectors from the spaces WC with i # j. In terms of the projections 
Ei we have 

(6-13) a = ESY + . . . + Eka! 

for each a! in V. What (6-13) says is that 

I = El + . . . + Ek. 

Note also that if i # j, then EiEj = 0, because the range of Ej is the 
subspace Wj which is contained in the null space of Ei. We shall now 
summarize our findings and state and prove a converse. 

Theorem 9. If V = W1 @ . . . @ Wk, then there exist k linear opera- 
tors E1, . . . , Ek on V such that 

(i) each Ei is a projection (EB = Ei); 
(ii) EiEj = 0, if i # j ; 

(iii) I = E, + .+. + Ek; 
(iv) the range of Ei is Wi. 

Conversely, if El, . . . , Ek are k linear operators on V which satisfy conditions 
$, (ii), and (iii), and if we let Wi be the range of Ei, then V = Wi 0 . . . @ 

k. 

Proof. We have only to prove the converse statement. Suppose 
El, . . . , Ek are linear operators on V which satisfy the first three condi- 
tions, and let Wi be the range of Ei. Then certainly 

v= w1+ ... + wk; 

for, by condition (iii) we have 

Q = Ela! + . . . + E~DL 

for each cx in V, and Eicr is in Wi. This expression for (Y is unique, because if 

a = a!1 + .** + CYk 

with Qi in Wi, say cy( = Eifli, then using (i) and (ii) we have 

Eja = ;: Eicui 
i=l 

= ; E,E& 
i=l 

= Ej2pj 

= Ejflj 

= CYj. 

This shows that V is the direct sum of the Wi. i 
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Exercises 

I. Let V be a finite-dimensional vector space and let W1 be any subspace of V. 
Prove that there is a subspace Wz of V such that V = WI @ Wt. 

2. Let V be a finite-dimensional vector space and let Wi, . , . , We be subspaces 
of V such that 

v= Wlf -.. + ?Vk and dim V = dim IV1 + . . . + dim Wk. 

Prove that V = WI @ . . . @ Wk. 

3. Find a projection E which projects R2 onto the subspace spanned by (1, - 1) 
along the subspace spanned by (1,2). 

4. If El and Ez are projections onto independent subspaces, then El + Ez is a 
projection. True or false? 

5. If E is a projection and S is a polynomial, then f(E) = aZ + bE. What are 
a and 6 in terms of the coefficients off? 

6. True or false? If a diagonalizable operator has only the characteristic values 
0 and 1, it is a projection. 

7. Prove that if E is the projection on R along N, then (Z - E) is the projection 
on N along R. 

8. LetEl,..., El, be linear operators on the space V such that El + . . . + Ek = I. 
(a) Prove that if EiEj = 0 for i # j, then Ef = Ei for each i. 
(b) In the case k = 2, prove the converse of (a). That is, if EI + Ez = Z and 

Ef = El, Ez = Ez, then EIEz = 0. 

9. Let V be a real vector space and E an idempotent linear operator on V, i.e., 
a projection. Prove that (I + E) is invertible. Find (I + E)-1. 

10. Let F be a subfield of the complex numbers (or, a field of characteristic zero). 
Let V be a finite-dimensional vector space over F. Suppose that El, . . . , Ek 
are projections of V and that El + . . . + Ek = Z. Prove that EiEi = 0 for i # j 
(N&t: Use the trace function and ask yourself what the trace of a projection is.) 

11. Let V be a vector space, let WI, . . . , Wk be subspaces of V, and let 

vj = WI+ . ’ . + wj-1 + Wit1 + . * . + Wk. 

Suppose that V = WI @ . . . @ Wk. Prove that the dual space V* has the direct- 
sum decomposition V* = Vy @ . . . @ V”,. 

6.7. Invariant Direct Sums 

We are primarily interested in direct-sum decompositions V = 
Wl@ ... @ Wk, where each of the subspaces Wi is invariant under some 
given linear operator T. Given such a decomposition of V, T induces a 
linear operator Ti on each Wi by restriction. The action of T is then this. 
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If Q is a vector in V, we have unique vectors q . . . , ak with ai in Wi such 
that 

and then 
a = a1 + . . . + CQ 

Tcu = Tlcrl + . . . + Tkac,. 

We shall describe this situation by saying that T is the direct sum of the 
operators T1, . . . , Tk. It must be remembered in using this terminology 
that the Ti are not linear operators on the space V but on the various 
subspaces Wi. The fact that V = WI @ . . . @ Wk enables us to associate 
with each Q: in V a unique k-tuple (q . . . , CYQ) of vectors LYE in Wi (by a: = 
a1 + ... + ak) in such a way that we can carry out the linear operations 
in V by working in the individual subspaces Wi. The fact, that each Wi is 
invariant under 7’ enables us to view the action of T as the independent 
action of the operators Ti on the subspaces Wi. Our purpose is to study T 
by finding invariant direct-sum decompositions in which the Ti are opera- 
tors of an elementary nature. 

Before looking at an example, let us note the matrix analogue of this 
situation. Suppose we select an ordered basis @i for each Wi, and let 03 
be the ordered basis for V consisting of the union of the 8Ji arranged in 
the order &, . . . , 03k, so that & is a basis for V. From our discussion 
CcJnCernirlg the matrix analogue for a single invariant subspace, it is easy 
to see that if A = [T]a and Ai = [Ti]a;, then A has the block form 

(6-14) 

In (6-14), Ai is a di X & matrix (di = dim W,), and the O’s are symbols 
for rectangular blocks of scalar O’s of various sizes. It also seems appro- 
priate to describe (6-14) by saying that A is the direct sum of the matrices 
Al, . . . , Ak. 

Most often, we shall describe the subspace Wi by means of the associ- 
ated projections Ei (Theorem 9). Therefore, we need to be able to phrase 
the invariance of the subspaces Wi in terms of the Ei. 

Theorem 10. Let T be a linear operator on the space V, and let 
WI, . . . ) Wk and El, . . . , Ek be as in Theorem 9. Then a necessary and 
suficient condition that each subspace Wi be invariant under T is that T 
commute with each of the projections Ei, i.e., 

TEi = EiT, i=l ,‘**I k. 

Proof. Suppose T commutes with each Ei. Let a! be in Wj. Then 
Ejcr = (Y, and 

Ta! = T(E+) 
= Ej(Ta) 
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which shows that TCX is in the range of Ej, i.e., that Wj is invariant under T. 
Assume now that each Fl’i is invariant under T. We shall show that 

TEj = EjT. Let (Y be any vector in V. Then 

CY = Ela + . . . + Ekol 
TCY = Z’E,cu + . . . + TEkcr. 

Since E,a is in W;, which is :mvariant under T, we must have T(Eia) = 
E$; for some vector pi. Then 

Thus 
= f 

0, if i # j 
Eiflj, if i = j. 

EjT~ = EjTEla + ’ . . + EjT&(r 
= Lsjpj 
= TEja. 

This holds for each a: in V, so EjT = Th’i. 1 

We shall now describe a diagonalizable operator T in the language of 
invariant direct sum decompositions (projections which commute with T). 
This will be a great help to us in understanding some deeper decomposition 
theorems later. The reader may feel that the description which we are 
about to give is rather complicated, in comparison to the matrix formula- 
tion or to the simple statement that the characteristic vectors of T span the 
underlying space. But, he should bear in mind that this is our first glimpse 
at a very effective method, by means of which various problems concerned 
with subspaces, bases, matrices, and the like can be reduced to algebraic 
calculations with linear operators. With a little experience, the efficiency 
and elegance of this method of reasoning should become apparent. 

Theorem 11. Let T be a linear operator on a finite-dimensional space v. 
If T is diagonakable and if cl, . . . , ck are the distinct characteristic 

values of T, then there exist lir;,ear operators El, . . . , Ek on V such that 

(i) T = clEl + . .. + I:~E~; 
(ii) I = E1+ ... +Ek; 

(iii) EiEj = 0, i # j; 
(iv) EP = Ei (Ei is a projection); 
(v) the range of Ei is the characteristic space for T associated with Ci. 

Conversely, if there exist k distinct scalars cl, . . . , ck and k non-zero 
linear operators E1, . . . , Ek which satisfy conditions (i), (ii), and (iii), then 
T is diagonalizable, cl, . . . , cl< are the distinct characteristic values of T, and 
conditions (iv) and (v) are satisfied also. 

Proof. Suppose that T is diagonalizable, with distinct charac- 
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teristic values cl, . . . , ck. Let Wi be the space of characteristic VeCtOrS 

associated with the characteristic value c;. As we have seen, 

v = WI@ * * * @ Wk. 

Let E1, . . . , Ek be the projections associated with this decomposition, as 
in Theorem 9. Then (ii), (iii), (iv) and (v) are satisfied. To verify (i), 
proceed as follows. For each (Y in V, 

a = Ela! + 1. . + Eka! 
and so 

Ta = TEw + ’ . . -+ TEN 
= C~EKX + . . . + c~Ra. 

In other words, T = clEl + 1. ’ t ckER. 
Now suppose that we are given a linear operator T along with distinct 

scalars ci and non-zero operators Ei which satisfy (i), (ii) and (iii). Since 
E’;Ei = 0 when i # j, we multiply both sides of I = El -i- . . . -l- Ek by 
E; and obtain immediately Ef = Ei. Multiplying T = clEl $ . . . 7L ckEk 
by Ei, we then have TEi = c<E<, which shows that any vector in the range 
of Ei is in the null space of (T - cJ). Since we have assumed that Ei # 0, 
this proves that there is a non-zero vector in the null space of (T - cd), 
i.e., that ci is a characteristic value of T. Furthermore, the ci are all of the 
characteristic values of T; for, if c is any scalar, then 

T - d = (~1 - c)El + . . + + (a - c)Ek 

SO if (T - cl)cr = 0, we must have (ci - c)Eia = 0. If a! is not the zero 
vector, then Eia # 0 for some i, SO that for this i we have ci - c = 0. 

Certainly T is diagonalizable, since we have shown that every non- 
zero vector in the range of Ei is a characteristic vector of T, and the fact 
that I = E1 f . . . + Ek shows that these characteristic vectors span V. 
All that remains to be demonstrated is that the null space of (T - cJ) is 
exactly the range of EC. But this is clear, because if Ta = cia, then 

k 
2 (cj - ci)Eja = 0 

j=l 

hence 

(Ci - ci)Eict = 0 for each j 
and then 

Ep = 0, j # i. 

Since Q( = Ela + . . . + Eka, and Eja = 0 for j # i, we have (Y = Eia, 
which proves that (Y is in the range of Ei. 1 

One part of Theorem 9 says that for a diagonal&able operator T, 
the scalars cl, . . . , ck and the operators El, . . . , EI, are uniquely deter- 
mined by conditions (i), (ii), (iii), the fact that the ci are distinct, and 
the fact that the Ei are non-zero. One of the pleasant features of the 
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decomposition T = clEl + . . . + CEE~ is that if g is any polynomial over 
the field F, then 

g(T) = ~dn)E, + . . . + gW&. 

We leave the details of the proof to the reader. To see how it is proved one 
need only compute Tr for each positive integer r. For example, 

T2 = ;: c;Ei ; cjEj 
i=l j=l 

= i tl j il CicjEiEj 

= ; cfEi. 
i=l 

The reader should compare this with g(A) where A is a diagonal matrix; 
for then g(A) is simply the (diagonal matrix with diagonal entries g(An), 
. . . ) dAm). 

We should like in particular to note what happens when one applies 
the Lagrange polynomials corresponding to the scalars cl, . . . , ck: 

We have pi(~) = &, which :means that 

pj(T) = i sijEi 
i=l 

= Ej. 

Thus the projections Ej not only commute with T but are polynomials in 
T. 

Such calculations with polynomials in T can be used to give an 
alternative proof of Theorem 6, which characterized diagonalizable opera- 
tors in terms of their minimal polynomials. The proof is entirely inde- 
pendent of our earlier proof. 

If T is diagonalizable, 1’ = clEl + . . . + ckEk, then 

g(T) = g(c1)I-h + 1. . + gW% 

for every polynomial g. Thu,s g(T) = 0 if and only if g(ci) = 0 for each i. 
In particular, the minimal p’alynomial for T is 

p= (5-Q) ... (II:-&). 

Now suppose T is a linear operator with minimal polynomial p = 
(x - Cl) . . . (x - ck), where cl, . . . , ck are distinct elements of the scalar 
field. We form the Lagrange polynomials 
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We recall from Chapter 4 that pi(~) = &j and for any polynomial g of 
degree less than or equal to (k - 1) we have 

g = g(c1)p1 + * . . + g(clc)p?c. 

Taking g to be the scalar polynomial 1 and then the polynomial 2, we have 

(6-15) 
1 = PI + ’ ’ ’ + pk 

x = clpl + ” ’ + Ckpk. 

(The astute reader will note that the application to x may not be valid 
because k may be 1. But if k = 1, T is a scalar multiple of the identity a,nd 
hence diagonalizable.) Now let Ej = pj(T). From (6-15) we have 

(6-16) 
I = El + . * * + Ek 
T = clEl + . . . + CkEk. 

Observe that if i # j, then pipj is divisible by the minimal polynomial p, 
because pipj contains every (ZE - c,) as a factor. Thus 

(6-17) EiEj = 0, i #j. 

We must note one further thing, namely, that Ei # 0 for each i. This 
is because p is the minimal polynomial for T and so we cannot have 
pi(T) = 0 since pi has degree less than the degree of p. This last comment, 
together with (6-16), (6-17), and the fact that the ci are distinct enables us 
to apply Theorem 11 to conclude that T is diagonalizable. fl 

Exercises 

1. Let E be a projection of V and let T be a linear operator on V. Prove that the 
range of E is invariant under T if and only if ETE = TE. Prove that both the 
range and null space of E are invariant under T if and only if ET = TE. 

2. Let T be the linear operator on R2, the matrix of which in the standard ordered 
basis is 

2 1 II 1 0 2’ 

Let WI be the subspace of R2 spanned by the vector e1 = (1,O). 
(a) Prove that WI is invariant under T. 
(b) Prove that there is no subspace W2 which is invariant under T and which 

is complementary to WI: 

R2 = WI @ Wz. 

(Compare with Exercise 1 of Section 6.5.) 

3. Let T be a linear operator on a finite-dimensional vector space V. Let R be 
the range of T and let N be the null space of T. Prove that R and N are inde- 
pendent if and only if V = R @ N. 
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4. Let T be a linear operator on V. Suppose V = WI @ . . . @ WA, where each 
Wi is invariant under T. Let Ti be the induced (restriction) operator on Wi. 

(a) Prove that det (T) = clet (T,) . . . det (Tk). 
(b) Prove that the characteristic polynomial for f is the product of the charae- 

teristic polynomials for fi, . . . , f,. 

619 

(c) Prove that the minimal polynomial for T is the least common multiple 
of the minimal polynomials for T, . . . , Tk. (Hint: Prove and then use the cor- 
responding facts about direct sums of matrices.) 

5. Let T be the diagonalizable linear operator on R3 which we discussed in 
Example 3 of Section 6.2. Use l;he Lagrange polynomials to write the representing 
matrix A in the form A = EI -I- 2Ez, E1 + Ez = I, EIEP = 0. 

6. Let A be the 4 X 4 matrix in Example 6 of Section 6.3. Find matrices El, Es, Es 
such that A = clEl + CUTQ + c~EZ, El + Et + Es = I, and EiEj = 0, i # j. 

7. In Exercises 5 and 6, notice that (for each i) the space of characteristic vectors 
associated with the characteristic value ci is spanned by the column vectors of the 
various matrices Ef with j # i. Is that a coincidence? 

8. Let T be a linear operator on V which commutes with every projection operator 
on V. What can you say about T? 

9. Let V be the vector space of continuous real-valued functions on the interval 
[--I, I] of the real line. Let lV, be the subspace of even functions, f(-X) = f(z), 
and let W, be the subspace of ‘odd functions, f( -x) = -f(x). 

(a) Show that V = W, @ W,. 
(b) If T is the indefinite integral operator 

(W(z) = I;: f(t) dt 

are W, and W, invariant unde.r T? 

6.8. The Primary Decomposition Theorem 

We are trying to study a linear operator T on the finite-dimensional 
space V, by decomposing Y’ into a direct sum of operators which are in 

some sense elementary. We can do this through the characteristic values 
and vectors of T in certain special cases, i.e., when the minimal polynomial 

for T factors over the scalar field F into a product of distinct manic poly- 
nomials of degree 1. What can we do with the general T? If we try to study 
T using characteristic values, we are confronted with two problems. First, 
T may not have a single ch.aracteristic value; this is really a deficiency in 

the scalar field, namely, that it is not algebraically closed. Second, even if 
the characteristic polynomial factors completely over F into a product of 
polynomials of degree 1, there may not be enough characteristic vectors for 

T to span the space V; this is clearly a deficiency in T. The second situation 
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is illustrated by the operator T on F3 (F any field) represented in the 
standard basis by 

20 0 
A=12 0. 

[ I 0 0 -1 

The characteristic polynomial for A is (Z - 2)2(~ + 1) and this is plainly 
also the minimal polynomial for A (or for T). Thus T is not diagonalizable. 
One sees that this happens because the null space of (T - 21) has dimen- 
sion 1 only. On the other hand, the null space of (T + I) and the null space 
of (T - 21)’ together span V, the former being the subspace spanned by 
~3 and the latter the subspace spanned by ~1 and ~2. 

This will be more or less our general method for the second problem. 
If (remember this is an assumption) the minimal polynomial for T de- 
composes 

p = (z - cp . * - (cc - c# 

where cl, . . . , ck are distinct elements of F, then we shall show that the 
space V is the direct sum of the null spaces of (T - eJ)T*, i = 1, . . . , Ic. 
The hypothesis about p is ecmivalent to the fact that T is triangulable 
(Theorem 5) ; however, that knowledge will not help us. 

The theorem which we prove is more general than what we have 
described, since it works with the primary decomposition of the minimal 
polynomial, whether or not the primes which enter are all of first degree. 
The reader will find it helpful to think of the special case when the primes 
are of degree 1, and even more particularly, to think of the projection-type 
proof of Theorem 6, a special case of this theorem. 

Theorem 12 (Primary Decomposition Theorem). Let T be a linear 
operator on the Jinite-dimensional vector space V over the field F. Let p be the 
minimal polynomial for T, 

p = p;’ . . . pB 

where the pi are distinct irreducible monk polynomials over F and the ri are 
positive integers. Let Wi be the null space of pi(T)“, i = 1, . . . , k. Then 

(i) V = W1 @ . . . @ Wk; 
(ii) each Wi is invariant under T; 

(iii) if Ti is the operator induced on Wi by T, then the minimal poly- 

nomial for Ti is pf’. 

Proof. The idea of the proof is this. If the direct-sum decomposi- 
tion (i) is valid, how can we get hold of the projections El, . . . , El, associ- 
ated with the decomposition? The projection Ei will be the identity on Wi 
and zero on the other Wi. We shall find a polynomial hi such that hi(T) is 
the identity on Wi and is zero on the other Wi, and so that hi(T) + . . . -I- 
hk(T) = I, etc. 
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For each i, let 

.fi = $, = jJIi p;‘. 

Since pl, . . . , pk are distinct prime polynomials, the polynomialsfi, . . . , fk 
are relatively prime (Theorem 10, Chapter 4). Thus there are polynomials 

g1, * * * 7 gk such that 

5 figi = 1. 
i=l 

Note also that if i # j, then f$f is divisible by the polynomial p, because 
f$j contains each p’; as a factor. We shall show that the polynomials 
hi = figi behave in the manner described in the first paragraph of the proof. 

Let E’, = hi(T) = fi(T)qi(T). Since h1 + . . . + hk = 1 and p divides 
fifj for i # j, we have 

El + . . . +Ek=I 
EiEj =: 0, if i # j. 

Thus the Ei are projections which correspond to some direct-sum de- 
composition of the space V. We wish to show that the range of Ei is exactly 
the subspace Wi. It is clear tQat each vector in the range of Ei is in Wi, for 
if CY is in the range of Ei, then LY = E~CY and so 

pi(T)“ta = pi(T)7iEia 
= Ei(T)‘fi,(T)gi(T)a 

= 

because prfigi is divisible by the minimal polynomial p. Conversely, 
suppose that a is in the null space of pi( !Z’)‘t. If j # i, then fjgj is divisible 
by p; and so fi(5”)gj(Z’)a = 0, i.e., Eia = 0 for j # i. But then it is im- 
mediate that E;CY = CY, i.e., that a is in the range of Ei. This completes the 
proof of statement (i). 

It is certainly clear that the subspaces Wi are invariant under T. 
If Ti is the operator induced on Wi by T, then evidently pi(Ti)‘i = 0, 
because by definition pi(T)‘& is 0 on the subspace Wi. This shows that the 
minimal polynomial for T; divides pp. Conversely, let g be any polynomial 
such that g(Ti) = 0. Then g(T)fi(T) = 0. Thus gfi is divisible by the 
minimal polynomial p of T:, i.e., p;“fi divides gfi. It is easily seen that p;i 
divides g. Hence the minimal polynomial for Ti is p:‘. 1 

Corollary. If El, . . . , Ek are the projections associated with the primary 
decomposition of T, then each Ei is a polynomial in T, and accordingly if a 
linear operator U commutes with T then U commutes with each of the Ei, i.e., 
each subspace Wi is invariant under U. 

In the notation of the proof of Theorem 12, let us take a look at the 
special case in which the minimal polynomial for T is a product of first- 
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degree polynomials, i.e., the case in which each pi is of the form 
pi = x - ci. NOW the range of Ei is the null space Wi of (7’ - cJ)7i. 
Let us put II = clEl + . . . + c&k. By Theorem 11, D is a diagonal- 
izable operator which we shall call the diagonalizable part of T. Let us 
look at the operator N = T - D. Now 

T = TE, + . . . + TE, 
D = clEl + . . . + QEE 

so 
N = (T - cJ)El + . . . + (T - crI)Ek. 

The reader should be familiar enough with projections by now so that he 
sees that 

N2 = (T - cJ)~E~ + . . . + (T - c,J)?E,, 

and in general that 

W = (T - cJ)~E~ + . . . + (T - cJ)~E~. 

When r 2 ri for each i, we shall have Nr = 0, because the operator 
(T - cJ)’ will then be 0 011 the range of EC. 

DeJinition. Let N be a linear operator on the vector space V. We say 
that N is nilpotent if there is some positive integer r such that Nr = 0. 

Theorem 13. Let T be a linear operator on the finite-dimensional vector 
space V over the field F. Suppose that the minimal polynomial for T de- 
composes over F into a product of linear polynomials. Then there is a diago- 
nalizable operator D on V and a nilpotent operator N on V such that 

(i) T = D + N, 
(ii) DN = ND. 

The diagonalixable operator D and the nilpotent operator N are uniquely 
determined by (i) and (ii) and each of them is a polynomial in T. 

Proof. We have just observed that we can write T = D + N 
where D is diagonalizable and N is nilpotent, and where D and N not only 
commute but are polynomials in T. Now suppose that we also have T = 
D’ + N’ where D’ is diagonalizable, N’ is nilpotent, and D’N’ = N’D’. 
We shall prove that D = D’ and N = N’. 

Since D’ and N’ commute with one another and T = D’ + N’, we 
see that D’ and N’ commute with T. Thus D’ and N’ commute with any 
polynomial in T; hence they commute with D and with N. Now we have 

D+N=D’+N’ 
or 

D-D’=N’-N 

and all four of these operators commute with one another. Since D and D’ 
are both diagonalizable and they commute, they are simultaneously 
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diagonalizable, and D - D” is diagonalizable. Since N and N’ are both 
nilpotent and they commute, the operator (N’ - N) is nilpotent; for, 
using the fact that N and 2L” commute 

(N’ - N)? = j. (5) (N’)+(-N)j 

and so when r is sufficiently large every term in this expression for 
(N’ - N)? will be 0. (Actually, a nilpotent operator on an n-dimensional 
space must have its nth power 0; if we take r = 2n above, that will be 
large enough. It then follows that r = n is large enough, but this is not 
obvious from the above expression.) Now D - D’ is a diagonalizable 
operator which is also nilpotent. Such an operator is obviously the zero 
operator; for since it is nilpa’tent, the minimal polynomial for this operator 
is of the form xr for some r 2: m; but then since the operator is diagonaliza- 
ble, the minimal polynomial cannot have a repeated root; hence r = 1 and 
the minimal polynomial is si.mply x, which says the operator is 0. Thus we 
see that D = D’ and N = N’. 1 

Corollary. Let V be a jinite-dimensional vector space over an algebra- 
ically closed field F, e.g., the jield of complex numbers. Then every linear 
operator T on V can be written as the sum of a diagonalizable operator D 
and a nilpotent operator N which commute. These operators D and N are 
unique and each is a polynomial in T. 

From these results, one sees that the study of linear operators on 
vector spaces over an algebraically closed field is essentially reduced to 
the study of nilpotent operators. For vector spaces over non-algebraically 
closed fields, we still need to find some substitute for characteristic values 
and vectors. It is a very interesting fact that these two problems can be 
handled simultaneously and this is what we shall do in the next chapter. 

In concluding this section, we should like to give an example which 
illustrates some of the idea,s of the primary decomposition theorem. We 
have chosen to give it at the end of the section since it deals with differential 
equations and thus is not purely linear algebra. 

EXAMPLE 14. In the primary decomposition theorem, it is not neces- 
sary that the vector space V be finite dimensional, nor is it necessary for 
parts (i) and (ii) that p be the minimal polynomial for T. If T is a linear 
operator on an arbitrary vector space and if there is a manic polynomial 
p such that p(T) = 0, then parts (i) and (ii) of Theorem 12 are valid for T 
with the proof which we gave. 

Let n be a positive integer and let V be the space of all n times con- 
tinuously differentiable functions j on the real line which satisfy the 
differential equation 



224 Elementary Canonical Forms Chap. 6 

where ao, . . . , a,-1 are some fixed constants. If C, denotes the space of 
n times continuously differentiable functions, then the space V of solutions 
of this differential equation is a subspace of C,. If D denotes the diff erentia- 
tion operator and p is the polynomial 

p = Zn + u,&P-l + * * * + u1z + &l 

then V is the null space of the operator p(D), because (6-18) simply says 
p(D)f = 0. Therefore, V is invariant under D. Let us now regard D as a 
linear operator on the subspace V. Then p(D) = 0. 

If we are discussing differentiable complex-valued functions, then C, 
and V are complex vector spaces, and uo, . . . , u,-~ may be any complex 
numbers. We now write 

p = (z - c1y * * . (z - cp 

where cl, . . . , ck are distinct complex numbers. If wj is the null space of 
(D - cJ)‘f, then Theorem 12 says that 

v = Wl@ . . * @Wk. 

In other words, if f satisfies the differential equation (6-B), then f is 
uniquely expressible in the form 

where fj satisfies the differential equation (D - ~J)~jfj = 0. Thus, the 
study of the solutions to the equation (6-18) is reduced to the study of 
the space of solutions of a differential equation of the form 

(6-19) (D - cl)7 = 0. 

This reduction has been accomplished by the general methods of linear 
algebra, i.e., by the primary decomposition theorem. 

To describe the space of solutions to (B-19), one must know something 
about differential equations, that is, one must know something about D 
other than the fact that it is a linear operator. However, one does not need 
to know very much. It is very easy to establish by induction on r that if f 
is in C, then 

(D - cI)y = ectDr(e-+tf) 
that is, 

df d -- 
& 

cf(t) = ect ;Ei (e-Ctf), etc. 

Thus (D - c1)y = 0 if and only if Dr(e-ctf) = 0. A function g such that 
D’g = 0, i.e., d’g/& = 0, must be a polynomial function of degree (r - 1) 
or less: 

g(t) = blJ + bit + * . . + b,ltv-l. 
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Thus f satisfies (6-19) if and only if f has the form 

j(t) = eYbo + bit + . . . + b,4Y1). 

Accordingly, the ‘functions’ I& tect, . . . , tr--lect span the space of solutions 
of (6-19). Since 1, t, . . . , t’-” ire linearly independent functions and the. 
exponential function has no zeros, these r functions tiect, 0 5 j 5 r - 1, 
form a basis for the space of solutions. 

Returning to the differential equation (6-18), which is 

PW = 0 
p = (z - c1p * * * (Lx - &)“I 

we see that the n functions tm@it, 0 < m 5 rj - 1, 1 5 j _< k, form a 
basis for the space of solutions to (6-18). In particular, the space of solutions 
is finite-dimensional and has dimension equal to the degree of the poly- 
nomial p. 

Exercises 

1. Let T be a linear operator Ion R3 which is represented in the standard ordered 
basis by the matrix 

[,% ;J 21. 

Express the minimal polynomial p for T in the form p = plpz, where pl and p, 
are manic and irreducible over the field of real numbers. Let Wi be the null space 
of p&T). Find bases G& for the spaces Wi and Wz. If Ti is the operator induced on 
Wi by T, find the matrix of Ti in the basis 03i (above). 

2. Let T be the linear operator on R3 which is represented by the matrix 

3 1 -1 

[ 1 2 2 -1 
22 0 

in the standard ordered basis. Show that there is a diagonalizable operator D 
on R3 and a nilpotent operator N on R3 such that T = D + N and DN = ND. 
Find the matrices of D and N in the standard basis. (Just repeat the proof of 
Theorem 12 for this special case.) 

3. If V is the space of all polynomials of degree less than or equal to n over a 
field F, prove that the differentiation operator on V is nilpotent. 

4. Let T be a linear operator on the finite-dimensional space V with characteristic 
polynomial 

f = (z - Cl)dl *. . (cc - C/p 

and minimal polynomial 

p = (z - CJ” . . . (Lx - Ck)‘X. 

Let IV< be the null space of (T - cJ)“. 
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(a) Prove that Wi is the set of all vectors Q! in V such that (!!’ - cJ)% = 0 
for some positive integer m (which may depend upon a). 

(b) Prove that the dimension of Wi is die (Hint: If Ti is the operator induced 
on Wi by T, then Ti - CJ is nilpotent; thus the characteristic polynomial for 
Ti - CJ must be Z~C where ei is the dimension of Wi (proof?); thus the charac- 
teristic polynomial of Ti is (Z - Ci)ei; now use the fact that the characteristic 
polynomial for T is the product of the characteristic polynomials of the Ti to show 
that ei = di.) 

5. Let V be a finite-dimensional vector space over the field of complex numbers. 
Let T be a linear operator on V and let D be the diagonalizable part of T. Prove 
that if g is any polynomial with complex coefficients, then the diagonalizable part 
of g(T) is g(D). 

6. Let V be a finite-dimensional vector space over the field F, and let T be a 
linear operator on V such that rank (T) = 1. Prove that either T is diagonalizable 
or T is nilpotent, not both. 

7. Let V be a finite-dimensional vector space over F, and let T be a linear operator 
on V. Suppose that T commutes with every diagonalizable linear operator on 8. 
Prove that T is a scalar multiple of the identity operator. 

8. Let V be the space of n X n matrices over a field F, and let A be a fixed n X n 
matrix over F. Define a linear operator T on V by T(B) = AB - BA. Prove 
that if A is a nilpotent matrix, then T is a nilpotent operator. 

9. Give an example of two 4 X 4 nilpotent matrices which have the same minimal 
polynomial (they necessarily have the same characteristic polynomial) but which 
are not similar. 

10. Let T be a linear operator on the finite-dimensional space V, let p = pi . . . pS 
be the minimal polynomial for T, and let V = WI @ . . . @ Wk be the primary 
decomposition for T, i.e., Wi is the null space of pin. Let W be any subspace 
of V which is invariant under T. Prove that 

w = (w n w,) 0 (w n w,) 0 . . . 0 (w n w,). 
11. What’s wrong with the following proof of Theorem 13? Suppose that the 
minimal polynomial for T is a product of linear factors. Then, by Theorem 5, 
T is triangulable. Let a3 be an ordered basis such that A = [T]oj is upper-triangular. 
Let D be the diagonal matrix with diagonal entries all, . . . , arm. Then A = D + N, 
where N is strictly upper-triangular. Evidently N is nilpotent. 

12. If you thought about Exercise 11, think about it again, after you observe 
what Theorem 7 tells you about the diagonalizable and nilpotent parts of T. 

13. Let T be a linear operator on V with minimal polynomial of the form p”, 
where p is irreducible over the scalar field. Show that there is a vector (Y in V 
such that the T-annihilator of cy is pm. 

14. Use the primary decomposition theorem and the result of Exercise 13 to prove 
the following. If T is any linear operator on a finite-dimensional vector space V, 
t’hen there is a vector cy in V with T-annihilator equal to the minimal polynomial 
for T. 

15. If N is a nilpotent linear operator on an n-dimensional vector space V, then 
the characteristic polynomial for N is ZIF. 


