

SHRIMATI INDIRA GANDHI COLLEGE (Nationally Accredited at 'A' Grade(3rd cycle) by NAAC) TIRUCHIRAPPALLI-02

DEPARTMENT OF MICROBIOLOGY

Course : M.Sc., Microbiology

Subject : Microbial Physiology

Topic : Fermentation

Prepared by: Dr. A. Winny Fred Crossia

Dept. of Microbiology

Shrimati Indira Gandhi College

Tiruchirappalli – 620 002.

SYNOPSIS

- INTRODUCTION
- TYPES OF FERMENTATION
 - Carbohydrate fermentation
- Alcohol or ethanol fermentation
- Lactic acid fermentation
- Mixed acid fermentation
- Propionic acid fermentation
- Butane-diol fermentation
- 6. Butyric acid fermentation
 - Aminoacid fermentation / Stickland reaction
- CONCLUSION

INTRODUCTION

Fermentation is an anaerobic energy yielding process that involves a sequence of oxidationreduction reaction

Fermentation is an anaerobic process that allows glycolysis to continue.

with cellular respiration glycolysis without O2 fermentation

- ATP generation in fermentation is lower than oxidation
- Louis Pasteur stated that "Fermentation is life without air"
- More substrates are utilized than in respiration
- Based on the substrates and product yielded, fermentation are classified as ethanol, lactic acid, propionic acid, mixed acid, butyric acid and butanediol fermentation

1. Alcohol Fermentation

 Fermentation that results in alcohol production is called ethanol or alcohol fermentation

Glucose + 2ADP + Pi
$$\longrightarrow$$
 2 ethanol + 2CO₂ + 2 ATP

- Industrial production of alcoholic beverages like beer, wine etc., are based on alcoholic fermentation
- Eg: Saccharomyces cereviseae (commonly known as yeast) and Zymomonas mobilis are actively involved in alcohol fermentation

Industrial applications of alcohol fermentation

Industrial production of Beer using *Brewers yeast*

Leavening of bread dough using *Bakers yeast*

2. Lactic acid Fermentation

- Reduction of pyruvate to lactic acid is called lactic acid fermentation
- Two types of lactic acid fermentation are, Homolactic and heterolactic acid fermentation
- Homolactic acid fermentation End product is only lactate

Eg: Streptococcus, Lactococcus, Lactobacillus, Enterococcus, Pediococcus

Homolactic acid fermentation

Glucose

Industrial applications of Lactic acid fermentation

- Homolactic acid fermentation is necessary for industrial purposes
- Food and Dairy industry preparation of sour milk, production of cheese, yoghurt, paneer, etc.,

- Heterolactic acid fermentation End product is lactate along with substatial amount of other acid end products
- Produce ethanol and CO₂
- Enterobacteriaceae members are example for heterolactic fermenters

Glucose + ADP + Pi Lactic acid + ethanol + CO₂ + ATP

3. Propionic acid Fermentation

- Carried out by Propionibacterium
- Uses carbohydrates and lactate to produce Propinic acid
- Industrial Importance manufacture of perfumes, herbicides, fruit flavors, food and feed preservatives
- Eg: Propionibacterium freudenreichii, Veilonella sp.

Reactions of Propionic acid Fermentation

4. Mixed acid Fermentation

- Mixed acid fermentation is the biological process by which a six-carbon sugar e.g. glucose is converted into a complex and variable mixture of acids.
- It is characteristic for members of the Enterobacteriaceae, a large family of Gramnegative bacteria that includes <u>E. coli</u>.
- ★ The mixture of end products produced by mixed acid fermentation are lactate, acetate, succinate, formate, ethanol and the gases H₂ and CO₂.

Reactions of Mixed acid Fermentation

The end products of mixed acid fermentation can have many useful applications in <u>biotechnology</u>and <u>industry</u>. For instance, ethanol is widely used as a <u>biofuel</u>

It is detected in laboratory by MR test or Methyl Red test

* Eg: *E.coli, Proteus, Salmonella* and other gas-producing bacterial species.

5. Butyric acid Fermentation

Also known as Butanol fermentation.

- Butyrate is the final end product
- Carried out by obligate anaerobic bacteria
- Eg: Clostridium butyricum, Clostridium pasteurianum,

Fusobacterium nucleatum

Butyric acid Fermentation

6. Butane diol Fermentation

Butanediol is a natural end product of cabohydrate fermentation

Acetoin / Acetyl methyl carbinol is an intermediate product which is detected by Voges-Proskauer (VP) test

Characteristic feature of Enterobacter, Serratia, Erwinia and Klebsiella sp.

Butane diol Fermentation

Aminoacid Fermentation / Stickland Reaction

Most of the organisms carryout carbohydrate fermentation

Some members of the genus Clostridium carryout aminoacid fermentation

Eg: Clostridium sporogenes & Clostridium botulinum

Stickland Reaction Cont...

In this reaction one aminoacid is oxidized and the second aminoacid acts as electron acceptor

* It is utilized to oxidize aminoacids such as alanine, leucine, isoleucine, valine, phenylalanine, tryptophan and histidine

Stickland Reaction Cont...

Probable Questions

2 Marks

- 1. Fermentation
- 2. Yeast
- 3. Stickland reaction

5 Marks

- 1. Alcohol fermentation
- 2. Butyric acid fermentation
- 3. Butanediol fermantation

10 Marks

1. Lactic acid fermentation

Thank You