Course Notes for;

Learn Visual Basic 6.0

MICIOSOTL

Visual

© Lou Tylee, 1998

KIDware
15600 NE 8™ Suite B1-314
Bellevue, WA 98008
(206) 721-2556
FAX (425) 746-4655

Learn Visual Basic 6.0

Notice

These notes were developed for the course, “Learn
Visual Basic 6.0 They are not intended to be a
complete reference to Visual Basic. Consult the
Microsoft Visual Basic Programmer’s Guide and
Microsoft Visual Basic Language Reference Manual
for detailed reference information.

The notes refer to several software and hardware
products by their trade names. These references are for
informational purposes only and all trademarks are the
property of their respective companies.

Lou Tylee
Course Instructor

Contents i

Learn Visual Basic 6.0

Contents

Introduction to the Visual Basic Language and
Environment

PIEVIBW. ...ttt ettt 11
COUISE ODJECHIVESccveeeeceecie ettt sttt re e e s reeeneas 1-1
What iS VISUAl BASIC?......ceeieerieeeeeerese et 1-2
Visual Basic 6.0 versus Other Versions of Visual BasicCc.ccccovvvrrenenenne. 1-3
16 BitS VEISUS 32 BiLS......ccueuiiriierieisie sttt 1-3
Structure of a Visual Basic AppliCation............cccceevevevivieeieeie e 14
Steps in Developing APPIICALIONccviireirieireereeeeees e 14
Drawing the User Interface and Setting Properties...........ccocevevrieierereeceeeenns 15
Example 1-1: Stopwatch Application - Drawing Controls..........cccccceveveevvennenee. 19
Setting Properties of Objects at Design TIMeccoeerrernenneieneereeene 1-10
Setting Properties at RUN TIME.........ccooviieiereieee e aeennens 1-11
How Names Are Used in Object EVENLS.........cccccoveveeereveccseeeeeee e 1-11
Example 1-2: Stopwatch Application - Setting Propertiesc.cccceovveenee. 1-12
[V = L= o[RS 1-14
Visual BasiC Data TYPEScvcerereeeriresiesieesiestesaesee s e st saee e ste e saesesnesnens 1-14
Variable DeCIaration...........ccoiiiireirierinerese e 1-14
Example 1-3: Stopwatch Application - Attaching Code.........cccoceveevrvrenneee. 1-18
Quick Primer on Saving Visual Basic Applications...........ccccoecevevvrivneseneenns 1-20

Exercise 1: Calendar/Time DiSplay........cccccviiiiirieeiene s 1-21

v

Learn Visual Basic 6.0

The Visual Basic Language

REVIEW QNG PrEVIEW........cueiieiiiciiieiesis et 2-1
A Brief HIiStOry Of BASIC.......cccooeiririrese s 2-1
Visual Basic Statements and EXPreSSIioNScoccveereerneneseneseseseenesienees 2-2
Visual BasiC OPEIatOrS........cccouceeereiiereeieeeseste e te e e see e se e sresreneens 2-3
Visual BaSIC FUNCHONScoouiiriieiie e 24
A Closer Look at the RNd FUNCLION........c.ccoeirinireeeesesesie e seenenas 25
Example 2-1: SAVINGS ACCOUNL.........ccciieriereeeresesieeeesestesaesessesse e seeeeessesseenens 26
Visual Basic Symbolic CONStaNtS.........ccccceveieierieieseseceeeese e 2-10
Defining Your OWN CONSEANTScccoeirieirieirieeseeeses e 2-10
Visual Basic Branching - If Statements...........ccoccoeoevierereiesiese e 2-11
(YA I = o] o o S 2-12
Example 2-2: Savings Account- Key Trappingcccoeoererereeereereseenenenenes 2-14
Select Case - Another Way t0 Branch..........cccoeeveinnineienecseseeeseee 2-16
The GOTO SAEMENL......ccccierieirieiriee s 2-17
A/ U= U == TS (ol o To] o] [T SO 2-17
Visual BasiC COUNTING......cccuriirieirieerieese s 2-19
Example 2-3: Savings Account - DECISIONSccccvveriereeesiesiesieseeseeseeeeennes 2-20
Exercise 2-1: Computing a Mean and Standard Deviation...............c..ccc...... 2-23
Exercise 2-2: Flash Card Addition Problemscccocoovivieneinienennneneenenn 2-28

Exploring the Visual Basic Toolbox

REVIEW N PreVIEW........coeieeeeeeiesie ettt 3-1
I (SR (S TSIST= To T = T) SRS 3-1
(@] o] 1= Tod 01 =1 1 0o 0 KRS 3-3
The FOrmM ODJECL.........oieeee e e 34
ComMMEAN BUIIONS........ccueieeeeiesierieieeeseseeseeesseseeseesesessessessesessessesseseessesessessnnennens 3-5
LADEI BOXES....oouiieiieeie ettt 35
TEXEBOXES..... ettt ettt a e bt e e b e e ae e e e e e neene s 3-6
Example 3-1: Password Validation.............cccorreneineeneseseseseseese s 3-8
CRECK BOXES.....ciiiiicieisieesiees ettt 3-11
(@010l =T 1110 o 1SR 3-11
ATTAYS ...t r e 3-12
(O0] 11 (0] AN 1 = | 3-13
FRAMES ... e e e ne 3-14
Example 3-2: PiZZa OFAENccoiiiececee ettt 3-15
IS 2 T)= S 3-20
COMDO BOXES......cuiieiiiiiiiriesiriees ettt ettt 3-21
Example 3-3: Flight Planner ... 3-23

Exercise 3: Customer Database INput SCreen...........ccoeereeererereenieiesenennns 3-27

Contents Vv

More Exploration of the Visual Basic Toolbox

REVIEW AN PTEVIEW.........cuiiiriiieiiieieis et 4-1
DISPIAY LAYEIS ..ottt 4-1
T 10T SRRSO 4-2
I 1= o =N 1o To | SRS 4-3
Horizontal and Vertical SCroll Bars.........ococoivieinenereesesese e 4-4
Example 4-1: Temperature CONVEISION..........cocerrermrerereeereseeseseesesseeseseeeas 4-7
PICIUIE BOXES.....viiieiieirie sttt 4-12
IMAJE BOXES ...ttt b e ne e 4-14
Quick Example: Picture and Image BOXESccoverrerereenerieenesieeeseseeees 4-14
DIIVE LISEBOX...ctiueiieirieisieisiee sttt s 4-15
DIreCtory LISt BOXccoiuiiicicisesesieeee sttt st 4-15
1 Lo] =T) SR 4-16
Synchronizing the Drive, Directory, and File List BOXES.........ccccccvvvrivrerienene 4-17
Example 4-2: IMage VIEWELc.couceeeeereieeeee e ste e e e sennes 4-18
CommON DIalog BOXEScceeieiiiiecieceeiesie et 4-23
Open CommOoN Dialog BOXccveirieiriririnineseesieeseee s 4-24
Quick Example: The Open Dialog BOXccccceeveeienerieeeese e 4-25
Save As Common Dialog BOX.......cccviirieiiiiiiiicsiesie e 4-27
Quick Example: The Save As Dialog BOX........ccccoreireiirieiineienseneseesieeens 4-28
Exercise 4. Student Database INput SCreenccccceveveveeceeeseseseseeseeeenns 4-29

Creating a Stand-Alone Visual Basic Application

REVIEW QNG PrEVIEW........cuiiriirertisieis ettt 5-1
Designing an ApPPlICALiONcc.ccveiieieieeee e 5-1
Using General Sub Procedures in Applicationscccoovveeveienececceesiesnene 5-2
Creating a Code MOUUIE ... s 55
Using General Function Procedures in Applications............ccoceveveeenieseseeseenns 55
Quick Example: Temperature CONVEISION..........ccovieeeeieerieseseeeesie e eeesee e enes 5-7
Quick Example: Image Viewer (Optional).........cocccreerrireinnereeneeseeseeeeas 58
Adding Menus to an ApPPLICALION..........cccovrerereereeerereeeee e 58
Example 5-1: NOte EItOrccceiiiiceeee e 5-12
USING POP-UP MENUS.......ceeiiiiiiiitieieestees et 5-16
ASSIgNING ICONS t0 FOMMScoueiieiieeee st ene s 5-17
Designing Your Own Icon with ICONEdIt.............ccccceeivrevevcieciecece e, 5-17
Creating Visual Basic Executable Filescccooeviiiiiiiciecececcese e 5-19
Example 5-2: Note Editor - Building an Executable

and Attaching an ICON.........cccvveveceeere e 5-21
Using the Visual Basic Package & Deployment Wizardcccccevecveiienene 5-22
Example 5-3: Note Editor - Creating a Distribution Disk...........c.ccccooeereenne 5-25

Exercise 5: US CapitalS QUIZ........ccoveererereresiereeeesesieseees e sesee e 5-27

Vi

Learn Visual Basic 6.0

Error-Handling, Debugging and File Input/Output

REVIEW QNG PrEVIEW........cueiieiiiciiieiesis et 6-1
ETTON TYPES. ..o e 6-1
Run-Time Error Trapping and Handlingccccvrirninneinseeneeeeseeseniens 6-2
General Error Handling ProCedure...........cccvevveveieeeeeseseeee e 6-4
Example 6-1: Simple Error Trappingcccceeeeeeieeneseseeieese e seesis e seeeenes 6-7
Debugging Visual BasiC Programs..........ccccorereineeneenseseseseseseseesesseeenes 6-9
Example 6-2: Debugging EXampleccocvvveieeninereecese e 6-10
Using the Debugging TOOIS ... 6-11
Debugging SIrategIES.......ccovruiirieirieeree e 6-16
Y=o (81T 1 F= U 1= 6-17
Sequential File Output (Variables)cccovveieveeieeieceece e 6-17
Quick Example: Writing Variables to Sequential Filescocoovovineene. 6-19
Sequential File Input (Variables)..........ccoviirirrreese e 6-20
Quick Example: Reading Variables from Sequential Filescc.cc.......... 6-21
Writing and Reading Text Using Sequential Files...........ccoeviineinicnennne 6-22
RaANAOM ACCESS FlES.......coieieeeeeeceee e e 6-24
User-Defined VariabIES ..o 6-25
Writing and Reading Random AcCeSS FileScoovvvvececceece e 6-26
Using the Open and Save Common Dialog BOXES........ccccocvveverervenerinnennenn 6-29
Example 6-3: Note Editor - Reading and Saving Text Files..........c.cccevueue... 6-31
Exercise 6-1: Information TraCkingccccceverevesesieeiese e 6-35
Exercise 6-2: ‘Recent FileS’ Menu OpPtioN...........ccveerieererienenenesienesieeseeeens 6-41

Graphics Techniques with Visual Basic

REVIEW aNd PreVIBW........coiiieeirisie e 7-1
GraphiCS METhOASc.coueirieiririririere e 7-1
USING COIOIS ...ttt sttt e et e s ae e e e nestenne e ennennas 7-8
MOUSE EVENLS ...t 7-10
Example 7-1: BIaCKDOAI...........coiveriirirerieesieesie e 7-13
Drag and Drop EVENLSc.ccovieieeecesesieeeese et 7-18
Example 7-2: Letter DISPOSaAlcccovviiirieieie e 7-20
Timer TOOl aNd DEIAYScccvirereeireresiere e 7-23
ANIMAtioN TECANIQUESc.covrierieececeee et e e 7-24
Quick Example: Simple ANIMation..........cccoveevereeenesereeece e 7-25
Quick Example: Animation with the Timer Tool..........cccccvveveieiececcecceee, 7-26
Random Numbers (Revisited) and Gamesc.cccveerrenrenneneeseese e 7-28
Randomly Sorting N INTEJEIS........ccveeeeriereserceee e 7-29
Example 7-3: One-Buttoned Bandit..............ccccooeeeeieieiinicie e 7-30
User-Defined COOrdiNAtes..........coevveriereeereneseeeese e 7-35
Simple Function Plotting (Line Charts)ccccceeeevievenecese e 7-36

SIMPIE Bar ChartS........cccciecececce e 7-38

Contents vii

Graphics Techniques with Visual Basic (continued)

Example 7-4: Line Chart and Bar Chart Application............ccccccevvvveveeerrenne. 7-40
Exercise 7-1: BlaCKjacCK.........ccooiriiieinesesee s 7-43
Exercise 7-2: Information Tracking PIOttiNg...........cccvverrinnicnninecreeeee 7-54

Database Access and Management

REVIEW N PreVIEW........ccueieeeeiei et ssenen 8-1
Database Structure and Terminologycccceveeeererereciese e 8-1
ADO Data CONLIOL.......cciiriiriiieerieriese e e 8-6
D= U= B IS 8-8
ASSIgNING TADIES........oceeeeeee e 89
BOUNd DAta TOOIS........coieeireriesiee e 8-10
Example 8-1: Accessing the Books Database.............cccoevenrinicnnciencennns 8-12
Creating a Virtual TabIe ..o 8-14
Quick Example: Forming a Virtual Table...........cccooveieiiiecesesceeeces e 8-14
FINding SPecific RECOIIS ..o s 8-16
Example 8-2: ‘Rolodex’ Searching of the Books Database...............cccc...... 8-18
Data MANAGETeiiieieriieie ettt st b e b e e e e e nne e 8-21
Example 8-3: Phone Directory - Creating the Database............ccccccceeevevienene 8-22
Database Management..........coerriirieirieiereeree s 8-24
Example 8-4: Phone Directory - Managing the Database............cc.ccccceune... 8-26
Custom Data AWare CONMIOISccccuvirerirerereneeeese e 8-31
Creating a Data REPOItccoeireireereeee e 8-33
Example 8-5: Phone Directory - Building a Data Report..........ccccceevvivrennene 8-34
Exercise 8: Home Inventory Database............cccccvvevevecieresesese e 8-39

Dynamic Link Libraries and the Windows API

REVIEW QNG PrEVIEW........cuiiriiiriiisieise et 9-1
Dynamic Link Libraries (DLL)cccccviieiiierececeeie e 9-1
Accessing the WIndows AP WIth DLL........ccoociiiinnenneeeseeeseeeseseeeseees 9-2
TiMING With DLL CallS ..o 94
Quick Example 1: Using GetTickCount to Build a Stopwatch......................... 95
Quick Example 2: Using GetTickCount to Implement a Delay 9-6
Drawing EllIPSES........cooiirieeriee et 9-7
Quick Example 3: Drawing EIlPSES.......cccoveieereneieiecece e 9-7
Drawing LINES......cuooieieie ettt a e n e e naenreens 9-8
Quick Example 4: Drawing LINESccccieirieireineeenesiesesienesie e 99
Drawing POIYGONSccoviiiieeeieesiesieeees e e e se e ssesessenens 9-10
Quick Example 5: Drawing Polygonsccccoeieeiine e 9-11
Sounds with DLL Calls - Other BEEPSccoverireeierieirieereesieeseesesesee e 9-14

Quick Example 6: Adding Beeps to Message Box Displaysc.cccceeueee 9-15

viii

Learn Visual Basic 6.0

9. Dynamic Link Libraries and the Windows API (continued)
More Elaborate SOUNGS.........ccoeriireireiriees e 9-16
Quick Example 7: Playing WAV Fles........ccocorirenennenenesese e 9-16
Playing Sounds QUICKIYccoeriirice e 9-17
Quick Example 8: Playing Sounds QUICKIYcccceeverereneieeieeeeeeeceen 9-18
FUN With GraphiCS........ccoiiiicecece e 9-19
Quick Example 9: Bouncing Ball With Sound!ccooeiniinninniineene 9-20
Flicker Free ANIMALIONccvireinrinresese e 9-22
Quick Example 10: Flicker Free Animation............ccccecevviesieeiesesieeseseeinens 9-23
Quick Example 11: Horizontally Scrolling Backgroundcccceovvreenee 9-24
A Bit Of MURIMEIAL......c.coiiiiirieisiesee e 9-26
Quick Example 12: Multimedia Sound and Video............cccceeevveivvvieseciennene 9-26
Exercise 9: The Original Video Game - PONg!ccoeviinniennenncieseene 9-27

10. Other Visual Basic Topics
REVIEW N PrEVIEW........ceeiriiiiesiee st 10-1
(@115 0] 1 0] 101 10-1
Masked Edit CONLIOL ... 10-3
Chart CONMIOL........coeieeeeeer et 104
MUIIMEIA CONMIOL ...t 106
RICh TEXtDOX CONMIOL.......ccoiiieiiieiiese e 10-8
SHAEE CONLIOL ... e 109
Tabbed Dialog CONMIOL ..o 10-12
UPDOWN CONEIOL......eiieeceececieeeee et 10-13
QI To =T @o o1 1] F SR 10-14
Using the WIndows ClIphoardccccoeveiiiicicieciese e 10-17
Printing With ViSU@l BaSICcccoeiririririrrese s 10-18
Multiple Form Visual Basic AppliCatioNS............ccceveereveereeeseseeeeseseeeenes 10-21
Visual Basic Multiple Document Interface (MDI)cccccvevevevieciecciesiecene, 10-25
Creating @ Help Fle ..o 10-29
Class SUMIMANYccceiiierceeee et a e s saeneens 10-36
Exercise 10: The Ultimate Application............cccceveviiinerieiesecieese e 10-37

Appendix I: Visual Basic Symbolic Constantsccoevivernenne -1

Appendix Il: Common Dialog Box Constants...........ccccooceeveeeene.. II-1

1-1

Learn Visual Basic 6.0

1. Introduction to the Visual Basic Language and Environment

Preview

In this first class, we will do a quick overview of how to build an application in
Visual Basic. You'll learn a new vocabulary, a new approach to programming,
and ways to move around in the Visual Basic environment. You will leave having
written your first Visual Basic program.

Course Objectives

b

b

TUUTUUUTUUTU U

i)

Understand the benefits of using Microsoft Visual Basic 6.0 for Windows
as an application tool

Understand the Visual Basic event-driven programming concepts,
terminology, and available tools

Learn the fundamentals of designing, implementing, and distributing a
Visual Basic application

Learn to use the Visual Basic toolbox

Learn to modify object properties

Learn object methods

Use the menu design window

Understand proper debugging and error-handling procedures

Gain a basic understanding of database access and management using
databound controls

Obtain an introduction to ActiveX controls and the Windows Application
Programming Interface (API)

1-2

Learn Visual Basic 6.0

What is Visual Basic?

Visual Basic is a tool that allows you to develop Windows (Graphic User
Interface - GUI) applications. The applications have a familiar appearance to the
user.

Visual Basic is event-driven, meaning code remains idle until called upon to
respond to some event (button pressing, menu selection, ...). Visual Basic is
governed by an event processor. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event
procedure) is executed. Program control is then returned to the event processor.

?
/,E@ Event processor
.

Basic Basic Basic Event
Code Code Code Procedures

Some Features of Visual Basic

UUTUUUUUUTUUUTU

Full set of objects - you 'draw' the application

Lots of icons and pictures for your use

Response to mouse and keyboard actions

Clipboard and printer access

Full array of mathematical, string handling, and graphics functions
Can handle fixed and dynamic variable and control arrays
Sequential and random access file support

Useful debugger and error-handling facilities

Powerful database access tools

ActiveX support

Package & Deployment Wizard makes distributing your applications simple

Introduction to the Visual Basic L anguage and Environment 1-3

Visual Basic 6.0 versus Other Versions of Visual Basic

The original Visual Basic for DOS and Visual Basic For Windows were
introduced in 1991.

Visual Basic 3.0 (a vast improvement over previous versions) was released in
1993.

Visual Basic 4.0 released in late 1995 (added 32 bit application support).

Visual Basic 5.0 released in late 1996. New environment, supported creation of
ActiveX controls, deleted 16 bit application support.

And, now Visual Basic 6.0 - some identified new features of Visual Basic 6.0:

Faster compiler

New ActiveX data control object

Allows database integration with wide variety of applications
New data report designer

New Package & Deployment Wizard

Additional internet capabilites

TUTUTUUTUUTU

16 Bits versus 32 Bits

Applications built using the Visual Basic 3.0 and the 16 bit version of
Visual Basic 4.0 will run under Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95

Applications built using the 32 bit version of Visual Basic 4.0, Visual Basic
5.0 and Visual Basic 6.0 will only run with Windows 95 or Windows NT
(Version 3.5.1 or higher).

In this class, we will use Visual Basic 6.0 under Windows 95, recognizing
such applications will not operate in 16 bit environments.

1-4 Learn Visual Basic 6.0

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Form 1 (.FRM) Form 2 (.FRM) Form 3 (.FRM) Module 1 (.BAS)

Control 1 Control 1 Control 1

Control 2 Control 2 Control 2

Control 3 Control 3 Control 3

Application (Project) is made up of:

P Forms - Windows that you create for user interface

P Controls - Graphical features drawn on forms to allow user interaction
(text boxes, labels, scroll bars, command buttons, etc.) (Forms and
Controls are objects.)

P Properties - Every characteristic of a form or control is specified by a
property. Example properties include names, captions, size, color,
position, and contents. Visual Basic applies default properties. You can
change properties at design time or run time.

P Methods - Built-in procedure that can be invoked to impart some action to
a particular object.

P Event Procedures - Code related to some object. This is the code that is
executed when a certain event occurs.

P General Procedures - Code not related to objects. This code must be
invoked by the application.

P Modules - Collection of general procedures, variable declarations, and
constant definitions used by application.

Steps in Developing Application
There are three primary steps involved in building a Visual Basic application:
1. Draw the user interface
2. Assign properties to controls

3. Attach code to controls

We'll look at each step.

Introduction to the Visual Basic L anguage and Environment 1-5

Drawing the User Interface and Setting Properties

Visual Basic operates in three modes.

P Design mode - used to build application
P Run mode - used to run the application
P Break mode - application halted and debugger is available

We focus here on the design mode.

Six windows appear when you start Visual Basic.

P The Main Window consists of the title bar, menu bar, and toolbar. The
title bar indicates the project name, the current Visual Basic operating
mode, and the current form. The menu bar has drop-down menus from
which you control the operation of the Visual Basic environment. The
toolbar has buttons that provide shortcuts to some of the menu options.
The main window also shows the location of the current form relative to
the upper left corner of the screen (measured in twips) and the width
and length of the current form.

‘#,. Project] - Microsoft Visual Basic [design]

File Edit Wiew Project Format Debug Bun Query Disgram Tools AddIns Window Help ||

|#-q-8lem » =@n-o

|

\[Code Editor Tasks ,{

Menu
editor

New
form

Save
project

Add
project

Open
project

Run Stop

Pause

\
Form position '\

1N

Object
Browser | Form dimensions |
\
Project Form
Explorer Layout
Properties
window

1-6 Learn Visual Basic 6.0

P The Form Window is central to developing Visual Basic applications.
It is where you draw your application.

& Forml

P The Toolbox is the selection menu for controls used in your
application.

General

Pointer | Picture Box

Label A [abl [Text Box
Frame | | 1 |Command Button

Check Box ¥ & |Option Button

Combo Box EH EBH |List Box

Horizontal Scroll Bar | 41 & = Vertical Scroll Bar

Timer Drive List Box
Directory List Box File List Box
Shapes Lines
Image Box Data Tool

Object Linking Embedding

Introduction to the Visual Basic L anguage and Environment 1-7

P The Properties Window is used to establish initial property values for
objects. The drop-down box at the top of the window lists all objects in
the current form. Two views are available: Alphabetic and
Categorized. Under this box are the available properties for the
currently selected object.

FPropetties - Forml

|Fnrml Form ;l
flphabetic |Categu:urizeu:|
(Mame) Formi =
Appearance 1-3D
AutoRedraw False
EackColor [] aHs000000Fs:
Borderstyle Z - Sizable
Caption Farmi
ZlipContraols True
ZontrolBo:x True
DiraviMode 13 - Copy Pen
Dirawstyle 0 - Solid i
Dirawiifidth 1
Enabled True
FillZalar . 2HOO0000002:
FillSkyle 1 - Transparent
Fonk M5 Sans Serif
FontTransparent True
ForeColar B =Hzo00001 28
Height 6255
HelpContextID |0
Tcon (Tcon)
K eyPreview False
I n::- n j

P The Form Layout Window shows where (upon program execution)
your form will be displayed relative to your monitor’s screen:

i "= Form Layout =1 E3

1-8 Learn Visual Basic 6.0

P The Project Window displays a list of all forms and modules making up
your application. You can also obtain a view of the Form or Code
windows (window containing the actual Basic coding) from the Project
window.

Froject - Projectl

B |

=538 Project1 (Project1)

=5 Forms

As mentioned, the user interface is ‘drawn’ in the form window. There are two
ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size on
the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the form
window. The cursor changes to a crosshair. Place the crosshair at the
upper left corner of where you want the control to be, press the left mouse
button and hold it down while dragging the cursor toward the lower right
corner. When you release the mouse button, the control is drawn.

To move a control you have drawn, click the object in the form window and drag it
to the new location. Release the mouse button.

To resizea control, click the object so that it is select and sizing handles appear.
Use these handles to resize the object.

w Forml M=] 3

Click here to
move object

= Use sizing
handles to
resize object

Introduction to the Visual Basic L anguage and Environment 1-9

Example 1-1

Stopwatch Application - Drawing Controls

. Start a new project. The idea of this project is to start a timer, then stop the timer
and compute the elapsed time (in seconds).

. Place three command buttons and six labels on the form. Move and size the

controls and form so it looks something like this:

. Forml =1 E3
Label Labeld
L Label2 Label5
e Label3 Labels

1-10 Learn Visual Basic 6.0

Setting Properties of Objects at Design Time

Each form and control has properties assigned to it by default when you start up
a new project. There are two ways to display the properties of an object. The first

way is to click on the object (form or control) in the form window. Then, click on
the Properties Window or the Properties Window button in the tool bar. The
second way is to first click on the Properties Window. Then, select the object
from the Object box in the Properties Window. Shown is the Properties Window
for the stopwatch application:

Properties - Forml

IForml Farm

Alphabetic ICategDrized l

(Mame) Formi

1-3D

False

[aHs000000FE:
2 - Sizable

Forml

True

True

13 - Copy Pen

0 - Solid

1

True

W =H000000002:
1 - Transparent
M3 Sans Serif
True

W =Hz00000122
G285

u]

(Icon)

False
n

=

The drop-down box at the top of the Properties
Window is the Object box. It displays the name
of each object in the application as well as its
type. This display shows the Form object. The
Properties list is directly below this box. In this
list, you can scroll through the list of properties
for the selected object. You may select a
property by clicking on it. Properties can be
changed by typing a new value or choosing from
a list of predefined settings (available as a drop
down list). Properties can be viewed in two
ways: Alphabetic and Categorized.

A very important property for each object is its
name. The name is used by Visual Basic to
refer to a particular object in code.

A convention has been established for naming Visual Basic objects. This
convention is to use a three letter prefix (depending on the object) followed by a
name you assign. A few of the prefixes are (we’ll see more as we progress in the

class):
Object Prefix Example
Form frm frmWatch
Command Button cmd, btn cmdExit, btnStart
Label Ibl IbIStart, IblIEnd
Text Box txt txXtTime, txtName
Menu mnu mnuExit, mnuSave
Check box chk chkChoice

Introduction to the Visual Basic L anguage and Environment 1-11

Object names can be up to 40 characters long, must start with a letter, must
contain only letters, numbers, and the underscore (_) character. Names are used
in setting properties at run time and also in establishing procedure names for
object events.

Setting Properties at Run Time

You can also set or modify properties while your application is running. To do this,
you must write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For example, to change the
BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = BLUE

How Names are Used in Object Events
The names you assign to objects are used by Visual Basic to set up a framework
of event-driven procedures for you to add code to. The format for each of these
subroutines (all object procedures in Visual Basic are subroutines) is:

Sub ObjectName_Event (Optional Arguments)

End Sub

Visual Basic provides the Sub line with its arguments (if any) and the End Sub
statement. You provide any needed code.

1-12 Learn Visual Basic 6.0

Example 1-2

Stopwatch Application - Setting Properties

1. Set properties of the form, three buttons, and six labels:

Forml.
BorderStyle
Caption
Name

Commandl1;
Caption
Name

Command2;
Caption
Name

Command3:
Caption
Name

Labell:
Caption

Label2:
Caption

Label3:
Caption

Label4:
BorderStyle
Caption
Name

Label5:
BorderStyle
Caption
Name

1-Fixed Single
Stopwatch Application
frmStopWatch

&Start Timing
cmdStart

&End Timing
cmdEnd

E&xit
cmdExit

Start Time

End Time

Elapsed Time

1-Fixed Single
[Blank]
IblStart

1-Fixed Single
[Blank]
IbIEnd

Introduction to the Visual Basic L anguage and Environment 1-13

Label6:
BorderStyle 1-Fixed Single
Caption [Blank]
Name IblIElapsed

In the Caption properties of the three command buttons, notice the
ampersand (&). The ampersand precedes a button's access key. Thatis, in
addition to clicking on a button to invoke its event, you can also press its
access key (no need for a mouse). The access key is pressed in conjunction
with the Alt key. Hence, to invoke 'Begin Timing', you can either click the
button or press Alt+B. Note in the button captions on the form, the access
keys appear with an underscore ().

2. Your form should now look something like this:

. Stopwatch Application

- Start Ti
StartTiming | - A
: P BRI
EndTiming |-
s Elapzed Time

1-14 Learn Visual Basic 6.0

Variables

We’'re now ready to attach code to our application. As objects are added to the
form, Visual Basic automatically builds a framework of all event procedures. We
simply add code to the event procedures we want our application to respond to.
But before we do this, we need to discuss variables.

Variables are used by Visual Basic to hold information needed by your
application. Rules used in naming variables:

No more than 40 characters

They may include letters, numbers, and underscore ()

The first character must be a letter

You cannot use a reserved word (word needed by Visual Basic)

TUUTUTUTTU

Visual Basic Data Types

Data Type Suffix
Boolean None
Integer %
Long (Integer) &
Single (Floating) !
Double (Floating) #
Currency @
Date None
Object None
String $
Variant None

Variable Declaration
There are three ways for a variable to be typed (declared):

1. Default
2. Implicit
3. Explicit

If variables are not implicitly or explicitly typed, they are assigned the variant type
by default. The variant data type is a special type used by Visual Basic that can
contain numeric, string, or date data.

Introduction to the Visual Basic L anguage and Environment 1-15

To implicitly type a variable, use the corresponding suffix shown above in the
data type table. For example,

TextValue$ = "This is a string"
creates a string variable, while
Amount% = 300
creates an integer variable.

There are many advantages to explicitly typing variables. Primarily, we insure all
computations are properly done, mistyped variable names are easily spotted, and
Visual Basic will take care of insuring consistency in upper and lower case letters
used in variable names. Because of these advantages, and because it is good
programming practice, we will explicitly type all variables.

To explicitly type a variable, you must first determine its scope. There are four
levels of scope:

Procedure level
Procedure level, static
Form and module level
Global level

TUUTUTUTTUT

Within a procedure, variables are declared using the Dim statement:

Dim Myint as Integer
Dim MyDouble as Double
Dim MyString, YourString as String

Procedure level variables declared in this manner do not retain their value once a
procedure terminates.

To make a procedure level variable retain its value upon exiting the procedure,
replace the Dim keyword with Static:

Static MyInt as Integer
Static MyDouble as Double

1-16 Learn Visual Basic 6.0

Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables are declared
in the declarations part of the general object in the form's (module's) code
window. The Dim keyword is used:

Dim Mylnt as Integer
Dim MyDate as Date

Global level variables retain their value and are available to all procedures within
an application. Module level variables are declared in the declarations part of
the general object of a module's code window. (It is advisable to keep all global
variables in one module.) Use the Global keyword:

Global Mylint as Integer
Global MyDate as Date

What happens if you declare a variable with the same name in two or more
places? More local variables shadow (are accessed in preference to) less local
variables. For example, if a variable MyInt is defined as Global in a module and
declared local in a routine MyRoutine, while in MyRoutine, the local value of Myint
is accessed. Outside MyRoutine, the global value of MyInt is accessed.

Introduction to the Visual Basic L anguage and Environment

1-17

Example of Variable Scope:

Modulel

Global X as Integer

Forml

orm2

Dim Y as Integer

Sub Routinel()
Dim A as Double

E.nd Sub

Sub Routine2()
Static B as Double

End Sub

Dim Z as Single

Sub Routine3()
Dim C as String

E.nd Sub

Procedure Routinel has access to X, Y, and A (loses value upon

termination)

Procedure Routine2 has access to X, Y, and B (retains value)
Procedure Routine3 has access to X, Z, and C (loses value)

1-18 Learn Visual Basic 6.0

Example 1-3

Stopwatch Application - Attaching Code

All that's left to do is attach code to the application. We write code for every event a
response is needed for. In this application, there are three such events: clicking on
each of the command buttons.

1. Double-click anywhere on the form to open the code window. Or, select View
Code’ from the project window.

2. Click the down arrow in the Object box and select the object named (general).
The Procedure box will show (declarations). Here, you declare three form level
variables:

Option Explicit

Dm StartTinme As Vari ant
Di m EndTi ne As Vari ant

Di m El apsedTi ne As Vari ant

The Option Explicit statement forces us to declare all variables. The other lines
establish StartTime, EndTime, and ElapsedTime as variables global within the
form.

3. Select the cmdStart object in the Object box. If the procedure that appears is not
the Click procedure, choose Click from the procedure box. Type the following
code which begins the timing procedure. Note the Sub andEnd Sub statements
are provided for you:

Sub cmdStart _Click ()

‘Establish and print starting tine

Start Ti me = Now

| bl Start. Caption = Format(StartTi me, "hh: mmss")
| bl End. Caption = ""

| bl El apsed. Caption = ""

End Sub

In this procedure, once the Start Timing button is clicked, we read the current
time and print it in a label box. We also blank out the other label boxes. In the
code above (and in all code in these notes), any line beginning with a single quote
() isacomment. You decide whether you want to type these lines or not. They
are not needed for proper application operation.

Introduction to the Visual Basic L anguage and Environment 1-19

4. Now, code the cmdEnd button.

Sub cndEnd_Cick ()

‘Find the ending tine, conpute the el apsed tine

“Put both values in | abel boxes

EndTi mre = Now

El apsedTinme = EndTine - StartTinme

| bl End. Capti on = Format (EndTi ne, "hh: mm ss")

| bl El apsed. Capti on = Format (El apsedTi ne, "hh: mm ss")
End Sub

Here, when the End Timing button is clicked, we read the current time (End
Time), compute the elapsed time, and put both values in their corresponding label
boxes.

5. And, finally the cmdEXxit button.

Sub cnmdExit _Cdick ()
End
End Sub

This routine simply ends the application once the Exit button is clicked.

6. Did you notice that as you typed in the code, Visual Basic does automatic syntax
checking on what you type (if you made any mistakes, that is)?

7. Run your application by clicking the Run button on the toolbar, or by pressing
<f5>. Pretty easy, wasn't it?

8. Save your application - see the Primer on the next page. Use the Save Project
As option under the File menu. Make sure you save both the form and the project
files.

1-20 Learn Visual Basic 6.0

9. If you have the time, some other things you may try with the Stopwatch Application:

A. Try changing the form color and the fonts used in the label boxes and

command buttons.

B. Notice you can press the ‘End Timing’ button before the ‘Start Timing’
button. This shouldn’'t be so. Change the application so you can't do
this. And make it such that you can't press the ‘Start Timing’ until ‘End
Timing’ has been pressed. Hint: Look at the command button

Enabled property.

C. Can you think ofhow you can continuously display the ‘End Time’ and
‘Elapsed Time’'? This is a little tricky because of the event-driven
nature of Visual Basic. Look at the Timer tool. Ask me for help on this

one.

Quick Primer on Saving Visual Basic Applications:

When saving Visual Basic applications, you need to be concerned with saving both
the forms (.(FRM) and modules (.BAS) and the project file (.VBP). In either case,
make sure you are saving in the desired directory. The current directory is always
displayed in the Save window. Use standard Windows techniques to change the

current directory.

There are four Save commands available under the File menu in Visual Basic:

Save [Form Name]

Save [Form Name] As
Save Project

Save Project As

Save the currently selected form or module with the current
name. The selected file is identified in the Project
window.

Like Save File, however you have the option to change the
file name

Saves all forms and modules in the current project using
their current names and also saves the project file.

Like Save Project, however you have the option to change
file names. When you choose this option, if you have not
saved your forms or modules, you will also be prompted to
save those files. | always use this for new projects.

Introduction to the Visual Basic L anguage and Environment 1-21

Exercise 1

Calendar/Time Display
Design a window that displays the current month, day, and year. Also, display the
current time, updating it every second (look into the Timer control). Make the window
look something like a calendar page. Play with object properties to make it pretty.

My Solution:

Form:

| &. My Calendar |

toy— Sunday March

|bmme—’; 00:00:00 PM 3 1 «— |bINumber

1998 1 IblYear

~ IbIMonth

timDispIay—:'.

Properties:

Form frmCalendar:

Caption = My Calendar
BorderStyle = 1- Fixed Single

Timer timDisplay:
Interval = 1000

Label IbIDay:
Caption = Sunday
FontName = Times New Roman
FontBold = True
FontSize = 24

1-22 Learn Visual Basic 6.0

Label IbITime:
Caption = 00:00:00 PM
FontName = Times New Roman
FontBold = True
FontSize = 24

Label IblYear:
Alignment = 2 - Center
Caption = 1998
FontName = Times New Roman
FontBold = True
FontSize = 24

Label IbINumber:
Alignment = 2 - Center
Caption =31
FontName = Arial
FontBold = True
FontSize =72

Label IbIMonth:
Alignment = 2 - Center
Caption = March
FontName = Times New Roman
FontBold = True
FontSize = 24

Code:
General Declarations:

Option Explicit

timDisplay Timer Event:

Private Sub tinDisplay Tiner()

Dim Today As Vari ant

Today = Now

| bl Day. Capti on = Format (Today, "dddd")

| bl Mont h. Capti on = Format (Today, "nmmi')

| bl Year. Capti on = Format (Today, "yyyy")

| bl nunber. Capti on = Format (Today, "d")

| bl Ti me. Caption = Fornmat (Today, "h:mmss anpni)

Introduction to the Visual Basic L anguage and Environment 1-23

End Sub

Learn Visual Basic 6.0

2. The Visual Basic Language

Review and Preview

Last week, we found there were three primary steps involved in developing an
application using Visual Basic:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to events

This week, we are primarily concerned with Step 3, attaching code. We will
become more familiar with moving around in the Code window and learn some of
the elements of the Basic language.

A Brief History of Basic

Language developed in early 1960's at Dartmouth College:

B (eginner's)
A (All-Purpose)
S (Symbolic)

I (Instruction)

C (Code)

Answer to complicated programming languages (FORTRAN, Algol, Cobol ...).
First timeshare language.

In the mid-1970's, two college students write first Basic for a microcomputer
(Altair) - cost $350 on cassette tape. You may have heard of them: Bill Gates
and Paul Allen!

Every Basic since then essentially based on that early version. Examples include:
GW-Basic, QBasic, QuickBasic.

Visual Basic was introduced in 1991.

2-2 Learn Visual Basic 6.0

Visual Basic Statements and Expressions

The simplest statement is the assignment statement. It consists of a variable
name, followed by the assignment operator (=), followed by some sort of
expression.

Examples:

StartTime = Now

Explorer.Caption = "Captain Spaulding"
BitCount = ByteCount * 8

Energy = Mass * LIGHTSPEED * 2
NetWorth = Assets - Liabilities

The assignment statement stores information.

Statements normally take up a single line with no terminator. Statements can be
stacked by using a colon () to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

(Be careful stacking statements, especially with If/End If structures. You may not
get the response you desire.)

If a statement is very long, it may be continued to the next line using the
continuation character, an underscore (_). Example:

Months = Log(Final * IntRate / Deposit + 1) _
/ Log(1 + IntRate)

Comment statements begin with the keyword Rem or a single quote (). For
example:

Rem This is a remark
' This is also a remark
X = 2 *y "another way to write a remark or comment

You, as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your code.

The Visual Basic Language 2-3

Visual Basic Operators

The simplest operators carry out arithmetic operations. These operators in their
order of precedence are:

Operator Operation

A Exponentiation
*/ Multiplication and division
\ Integer division (truncates)
Mod Modulus
+- Addition and subutraction

Parentheses around expressions can change precedence.
To concatentate two strings, use the & symbol or the + symbol:

IbITime.Caption = "The current time is" & Format(Now, “hh:mm”)
txtSample.Text = "Hook this * + “to this”

There are six comparison operators in Visual Basic:

Operator Comparison

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

= Equal to
<> Not equal to

The result of a comparison operation is a Boolean value (True or False).

2-4 Learn Visual Basic 6.0

We will use three logical operators

Operator
Not
And
Or

Operation
Logical not
Logical and
Logical or

The Not operator simply negates an operand.

The And operator returns a True if both operands are True. Else, it returns a

False.

The Or operator returns a True if either of its operands is True, else it returns a

False.

Logical operators follow arithmetic operators in precedence.

Visual Basic Functions

Visual Basic offers a rich assortment of built-in functions. The on-line help utility
will give you information on any or all of these functions and their use. Some
examples are:

Function
Abs
AscC
Chr
Cos
Date
Format
Left
Len
Mid
Now
Right
Rnd
Sin
Sar

Str

Value Returned

Absolute value of a number
ASCII or ANSI code of a character

Character corresponding to a given ASCII or ANSI code

Cosine of an angle

Current date as a text string

Date or number converted to a text string
Selected left side of a text string
Number of characters in a text string
Selected portion of a text string
Current time and date

Selected right end of a text string
Random number

Sine of an angle

Square root of a number

Number converted to a text string

Time Current time as a text string

Timer
Val

Number of seconds elapsed since midnight
Numeric value of a given text string

The Visual Basic Language 25

A Closer Look at the Rnd Function

In writing games and learning software, we use the Rnd function to introduce
randomness. This insures different results each time you try a program. The

Visual Basic function Rnd returns a single precision, random number between 0
and 1 (actually greater than or equal to 0 and less than 1). To produce random
integers (I) between Imin and Imax, use the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

The random number generator in Visual Basic must be seeded. A Seed value
initializes the generator. The Randomize statement is used to do this:

Randomize Seed
If you use the same Seed each time you run your application, the same sequence
of random numbers will be generated. To insure you get different numbers every
time you use your application (preferred for games), use the Timer function to
seed the generator:

Randomize Timer
Place this statement in the Form_Load event procedure.
Examples:
To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

2-6 Learn Visual Basic 6.0

Example 2-1

Savings Account

1. Start a new project. The idea of this project is to determine how much you save
by making monthly deposits into a savings account. For those interested, the
mathematical formula used is:

F=D[@+N)M-1]/1
where
F - Final amount
D - Monthly deposit amount
| - Monthly interest rate

M - Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It should
look something like this:

e —]
: Labell Textl
Label2 Text?
Label3 Text3
Label4 Textd
U commanan [
O commanaz [

The Visual Basic Language

2-7

3. Set the properties of the form and each object.

Form1.:
BorderStyle
Caption
Name

Labell:
Caption

Label2:
Caption

Label3:
Caption

Label4:
Caption

Textl:

Text
Name

Text2:
Text
Name

Text3:
Text
Name

Text4:
Text
Name

Command1;
Caption
Name

Command2;
Caption
Name

1-Fixed Single
Savings Account
frmSavings

Monthly Deposit

Yearly Interest

Number of Months

Final Balance

[Blank]
txtDeposit

[Blank]
txtinterest

[Blank]
txtMonths

[Blank]
txtFinal

&Calculate
cmdCalculate

E&xit
cmdExit

2-8 Learn Visual Basic 6.0

Now, your form should look like this:

w. Savingsz Account M=] B3

- . Monthly
" Deposzit

- Yearly
. Interest

- . Mumber of
. . Months

- . Final Balance

4. Declare four variables in the general declarations area of your form. This
makes them available to all the form procedures:

Option Explicit

Di m Deposit As Single
DmiInterest As Single
Dim Months As Single
Dim Final As Single

The Option Explicit statement forces us to declare all variables.

5. Attach code to the cmdCalculate command button Click event.

Private Sub cndCal culate Cick ()
DmliIntRate As Single

‘Read val ues fromtext boxes

Deposit = Val (txtDeposit. Text)

Interest = Val (txtlnterest. Text)

IntRate = Interest / 1200

Mont hs = Val (t xt Mont hs. Text)

‘Conmpute final value and put in text box
Final = Deposit * ((1 + IntRate) ~ Months - 1) / IntRate
t xt Fi nal . Text = Format (Fi nal, "#####0.00")
End Sub

The Visual Basic Language 29

This code reads the three input values (monthly deposit, interest rate, number of
months) from the text boxes, computes the final balance using the provided
formula, and puts that result in a text box.

6. Attach code to the cmdExit command button Click event.

Private Sub cnmdExit_Click ()
End
End Sub

7. Play with the program. Make sure it works properly. Save the project.

2-10 Learn Visual Basic 6.0

Visual Basic Symbolic Constants

Many times in Visual Basic, functions and objects require data arguments that
affect their operation and return values you want to read and interpret. These
arguments and values are constant numerical data and difficult to interpret based
on just the numerical value. To make these constants more understandable,
Visual Basic assigns names to the most widely used values - these are called
symbolic constants. Appendix | lists many of these constants.

As an example, to set the background color of a form named frmExample to
blue, we could type:

frmExample.BackColor = OxFF0000

or, we could use the symbolic constant for the blue color (vbBlue):
frmExample.BackColor = vbBlue

It is strongly suggested that the symbolic constants be used instead of the numeric
values, when possible. You should agree that vbBlue means more than the value
OxFFO000 when selecting the background color in the above example. You do
not need to do anything to define the symbolic constants - they are built into Visual
Basic.

Defining Your Own Constants

You can also define your own constants for use in Visual Basic. The format for
defining a constant named Pl with a value 3.14159 is:

Const PI =3.14159

User-defined constants should be written in all upper case letters to distinguish

them from variables. The scope of constants is established the same way a
variables’ scope is. That is, if defined within a procedure, they are local to the
procedure. If defined in the general declarations of a form, they are global to the
form. To make constants global to an application, use the format:

Global Const Pl =3.14159

within the general declarations area of a module.

The Visual Basic Language 2-11

Visual Basic Branching - If Statements

Branching statements are used to cause certain actions within a program if a
certain condition is met.

The simplest is the If/Then statement:
If Balance - Check < 0 Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement “You are
overdrawn” is printed.

You can also have If/Then/End If blocks to allow multiple statements:

If Balance - Check < 0 Then

Print "You are overdrawn"

Print "Authorities have been notified"
End If

In this case, if Balance - Check is less than zero, two lines of information are
printed.

Or, If/Then/Else/End If blocks:

If Balance - Check < 0 Then

Print "You are overdrawn"

Print "Authorities have been notified"
Else

Balance = Balance - Check
End If

Here, the same two lines are printed if you are overdrawn (Balance - Check < 0),
but, if you are not overdrawn (Else), your new Balance is computed.

2-12 Learn Visual Basic 6.0

Or, we can add the Elself statement:

If Balance - Check <0 Then

Print "You are overdrawn"

Print "Authorities have been notified"
Elself Balance - Check = 0 Then

Print "Whew! You barely made it"

Balance =0
Else

Balance = Balance - Check
End If

Now, one more condition is added. If your Balance equals the Check amount
(Elself Balance - Check = 0), a different message appears.

In using branching statements, make sure you consider all viable possibilities in
the If/Else/End If structure. Also, be aware that each If and Elself in a block is
tested sequentially. The first time an If test is met, the code associated with that
condition is executed and the If block is exited. If a later condition is also True, it
will never be considered.

Key Trapping

Note in the previous example, there is nothing to prevent the user from typing in
meaningless characters (for example, letters) into the text boxes expecting
numerical data. Whenever getting input from a user, we want to limit the available
keys they can press. The process of interecepting unacceptable keystrokes is
key trapping.

Key trapping is done in the KeyPress procedure of an object. Such a procedure
has the form (for a text box named txtText):

Sub txtText_KeyPress (KeyAscii as Integer)

End Su.b

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to this
procedure in the argument list (i.e. KeyAscii). If KeyAscii is an acceptable value,
we would do nothing. However, if KeyAscii is not acceptable, we would set
KeyAscii equal to zero and exit the procedure. Doing this has the same result of
not pressing a key at all. ASCII values for all keys are available via the on-line

The Visual Basic Language 2-13

help in Visual Basic. And some keys are also defined by symbolic constants.
Where possible, we will use symbolic constants; else, we will use the ASCII
values.

As an example, say we have a text box (named txtExample) and we only want to
be able to enter upper case letters (ASCII codes 65 through 90, or,
correspondingly, symbolic constants vbKeyA through vbKeyZ). The key press
procedure would look like (the Beep causes an audible tone if an incorrect key is
pressed):

Sub txtExample KeyPress(KeyAscii as Integer)
If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then
Exit Sub
Else
KeyAscii=0
Beep
End If
End Sub

In key trapping, it's advisable to always allow the backspace key (ASCII code 8;
symbolic constant vbKeyBack) to pass through the key press event. Else, you
will not be able to edit the text box properly.

2-14 Learn Visual Basic 6.0

1.

2.

Example 2-2

Savings Account - Key Trapping

Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the decimal
point), and 8 (the backspace key). In the code, we use symbolic constants for the
numbers and backspace key. Such a constant does not exist for the decimal
point, so we will define one with the following line in the general declarations
area:

Const vbKeyDecPt = 46

Add the following code to the three procedures: txtDeposit_KeyPress,
txtinterest_KeyPress, and txtMonths_KeyPress.

Private Sub t xtDeposit_KeyPress (KeyAscii As |nteger)
‘“Only allow nunber keys, decinmal point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii = 0
Beep
End If
End Sub

Private Sub txtlInterest KeyPress (KeyAscii As Integer)
‘“Only all ow nunmber keys, deciml point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt O KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii = 0
Beep
End If
End Sub

The Visual Basic Language 2-15

Private Sub txtMnths_ KeyPress (KeyAscii As |nteger)
‘“Only all ow nunber keys, deciml point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt O KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii = 0
Beep
End |f
End Sub

(In the If statements above, note the word processor causes a line break
where there really shouldn’'t be one. That is, there is no line break between the
words Or KeyAscii and = vbKeyDecPt. One appears due to page margins.
In all code in these notes, always look for such things.)

3. Rerun the application and test the key trapping performance.

2-16 Learn Visual Basic 6.0

Select Case - Another Way to Branch

In addition to If/Then/Else type statements, the Select Case format can be used
when there are multiple selection possibilities.

Say we've written this code using the If statement:

If Age =5 Then
Category = "Five Year Old"
Elself Age >= 13 and Age <= 19 Then
Category = "Teenager"
Elself (Age >= 20 and Age <= 35) Or Age =50 Or (Age >= 60 and Age <= 65)

Then

Category = "Special Adult"
Elself Age > 65 Then

Category = "Senior Citizen"
Else

Category = "Everyone Else"
End If

The corresponding code with Select Case would be:

Select Case Age
Case 5
Category = "Five Year Old"
Case 13 To 19
Category = "Teenager"
Case 20 To 35, 50, 60 To 65
Category = "Special Adult"

Case Is>65
Category = "Senior Citizen"
Case Else
Category = "Everyone Else"
End Select

Notice there are several formats for the Case statement. Consult on-line help for
discussions of these formats.

The Visual Basic Language 2-17

The GoTo Statement

Another branching statement, and perhaps the most hated statement in
programming, is the GoTo statement. However, we will need this to do Run-Time
error trapping. The format is GoTo Label, where Labelis a labeled line.

Labeled lines are formed by typing the Label followed by a colon.
GoTo Example:

> Linel0:

(

S~ Go‘i’o Linel0

When the code reaches the GoTo statement, program control transfers to the line
labeled Linel0.

Visual Basic Looping

Looping is done with the Do/Loop format. Loops are used for operations are to
be repeated some number of times. The loop repeats until some specified
condition at the beginning or end of the loop is met.

Do While/Loop Example:

Counter=1

Do While Counter <= 1000
Debug.Print Counter
Counter = Counter + 1

Loop

This loop repeats as long as (While) the variable Counter is less than or equal to
1000. Note a Do While/Loop structure will not execute even once if the While
condition is violated (False) the first time through. Also note the Debug.Print
statement. What this does is print the value Counter in the Visual Basic Debug
window. We'll learn more about this window later in the course.

2-18 Learn Visual Basic 6.0

Do Until/Loop Example:

Counter=1

Do Until Counter > 1000
Debug.Print Counter
Counter = Counter + 1

Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do Until/Loop
structure will not be entered if the Until condition is already True on the first
encounter.

Do/Loop While Example:

Sum=1

Do
Debug.Print Sum
Sum = Sum + 3

Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50. Note, since
the While check is at the end of the loop, a Do/Loop While structure is always
executed at least once.

Do/Loop Until Example:

Sum=1
Do
Debug.Print Sum
Sum =Sum + 3
Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the previous example , a
Do/Loop Until structure always executes at least once.

Make sure you can always get out of a loop! Infinite loops are never nice. If you
getinto one, try Ctrl+Break. That sometimes works - other times the only way out
is rebooting your machine!

The statement Exit Do will get you out of a loop and transfer program control to
the statement following the Loop statement.

The Visual Basic Language 2-19

Visual Basic Counting
Counting is accomplished using the For/Next loop.
Example

For =1 to 50 Step 2
A=1*2
Debug.Print A

Next |

In this example, the variable I initializes at 1 and, with each iteration of the
For/Next loop, is incremented by 2 (Step). This looping continues until | becomes
greater than or equal to its final value (50). If Step is not included, the default value
is 1. Negative values of Step are allowed.

You may exit a For/Next loop using an Exit For statement. This will transfer
program control to the statement following the Next statement.

2-20 Learn Visual Basic 6.0

Example 2-3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three values
and computing the fourth. First, add a third command button that will clear all of
the text boxes. Assign the following properties:

Command3;:
Caption Clear &Boxes
Name cmdClear

The form should look something like this when you're done:

- - Monthly
. . Deposit

- Yearly
. Interest

- . Humber of
. . Months

- - Final Balance

- Clear Boxes

LCalculate

2. Code the cmmdClear button Click event:

Private Sub cndC ear _Cick ()
‘Bl ank out the text boxes

t xt Deposit. Text = ""
txtInterest. Text = ""

t xt Mont hs. Text = ""
txtFinal.Text = ""

End Sub

This code simply blanks out the four text boxes when the Clear button is clicked.

The Visual Basic Language 2-21

3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal KeyPress (KeyAscii As |nteger)
“Only allow nunber keys, decimal point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii =0
Beep
End If
End Sub

We need this code because we can now enter information into the Final Value
text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cndCal cul ate_Click()
DmliIntRate As Single
Dim I ntNew As Single
Dim Fcn As Single, FcnD As Single
‘Read the four text boxes
Deposit = Val (txtDeposit. Text)
Interest = Val (txtlnterest. Text)
IntRate = Interest / 1200
Mont hs = Val (t xt Mont hs. Text)
Final = Val (txtFinal.Text)
‘Determ ne which box is blank
‘Conpute that m ssing value and put in text box
If txtDeposit.Text = "" Then
‘Deposit m ssing
Deposit = Final / (((1 + IntRate) » Months - 1) /

I nt Rat e)
t xt Deposit. Text = Format (Deposit, "#####0.00")
El self txtInterest.Text = "" Then

‘“Interest mssing - requires iterative solution
Int New = (Final / (0.5* Months * Deposit) - 1) /
Mont hs
Do
IntRate = | nt New
Fcn = (1 + IntRate) ~ Months - Final * IntRate /
Deposit - 1

2-22 Learn Visual Basic 6.0

FcnD = Months * (1 + IntRate) » (Months - 1) - Final

| Deposit
IntNew = IntRate - Fcn / FcnD
Loop Until Abs(IntNew - IntRate) < 0.00001 / 12
Interest = IntNew * 1200

txtlnterest. Text = Format (I nterest, "##0.00")
El sel f txtMnths. Text = "" Then
‘Mont hs m ssi ng
Mont hs = Log(Final * IntRate / Deposit + 1) / Log(1l +

| nt Rat e)
t xt Mont hs. Text = Format (Mont hs, "###.0")
El self txtFinal.Text = "" Then

‘Final value m ssing
Final = Deposit * ((1 + IntRate) ~ Months - 1) /
I nt Rat e
t xt Fi nal . Text = Format (Fi nal, "#####0.00")
End If
End Sub

In this code. we first read the text information from all four text boxes and
based on which one is blank, compute the missing information and display it in
the corresponding text box. Solving for missing Deposit, Months, or Final
information is a straightforward manipulation of the equation given in Example
2-2.

If the Interest value is missing, we have to solve an Mth-order polynomial using
something called Newton-Raphson iteration - a good example of using a Do loop.
Finding the Interest value is straightforward. What we do is guess at what the
interest is, compute a better guess (using Newton-Raphson iteration), and repeat
the process (loop) until the old guess and the new guess are close to each other.
You can see each step in the code.

5. Test and save your application. Go home and relax.

The Visual Basic Language 2-23

Exercise 2-1

Computing a Mean and Standard Deviation
Develop an application that allows the user to input a sequence of numbers. When
done inputting the numbers, the program should compute the mean of that sequence

and the standard deviation. If N numbers are input, with the ith number represented
by xi, the formula for the mean (X) is:

N
X=(& %)/N

i=1

and to compute the standard deviation (s), take the square root of this equation:
2 é\l 2 é\l 2
s"=[Na x" -(a x) VIN(N- 1)]
i=1 i=1

The Greek sigmas in the above equations simply indicate that you add up all the
corresponding elements next to the sigma.

My Solution:

Form:

W Mean and Standard Deviation [j[=] E3

Labell ———1—1bINumber

- - - Murmber of ZZZZZZIT..Z
Label2 :::Ualues

cmdAccept —————» R

<«———cmdCompute

— txtinput

C Accept Mumber LCompute C
cmdNew — s = cmdExit

Mew Sequence E xit

Label L S
abe6—:::’ — .. <+—1—IblMean

- Mean ::::::I S
Label4 R <——— 71— |bIStdDev

. .. Standard Zﬁﬁﬁﬁﬁliﬁﬁ.
oo Deviation L

2-24 Learn Visual Basic 6.0

Properties:

Form frmStats:
Caption = Mean and Standard Deviation

CommandButton cmdEXxit:
Caption = E&xit

CommandButtoncmdAccept:
Caption = &Accept Number

CommandButton cmdCompute:
Caption = &Compute

CommandButton cmdNew:
Caption = &New Sequence

TextBox txtInput:

FontName = MS Sans Serif
FontSize = 12

Label IbIStdDev:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize =12

Label Label6:
Caption = Standard Deviation

Label IbIMean:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 12

Label Label4:
Caption = Mean

The Visual Basic Language 2-25

Label IbINumber:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize =12

Label Label2:
Caption = Enter Number

Label Labell:
Caption = Number of Values

Code:
General Declarations:

Option Explicit

Di m Nunval ues As | nt eger
Dim SumX As Single

Dm SumX2 As Single
Const vbKeyM nus = 45
Const vbKeyDecPt = 46

cmdAccept Click Event:

Private Sub cndAccept di ck()

Dim Val ue As Single

t xt I nput . Set Focus

NunVal ues = NunVal ues + 1

| bl Nunmber . Capti on = Str(Nunval ues)
‘Get nunber and sum nunber and nunber-squared
Val ue = Val (txtlnput. Text)

SunX = SunX + Val ue

SumX2 = SunX2 + Value ™ 2
txtlnput. Text = ""

End Sub

2-26 Learn Visual Basic 6.0

cmdCompute Click Event:

Private Sub cndConpute Click()
Dim Mean As Single
Dim StdDev As Single
t xt | nput . Set Focus
‘Make sure there are at |east two val ues
I f Nunial ues < 2 Then
Beep
Exit Sub
End If
‘ Conput e nean
Mean = SumX / Numval ues
| bl Mean. Caption = Str(Mean)
‘Conmput e standard devi ation
StdDev = Sgr ((Nunval ues * SumX2 - SunmX ~ 2) / (NunVal ues *
(Numval ues - 1)))
| bl St dDev. Caption = Str(StdDev)
End Sub

cmdExit Click Event:

Private Sub cnmdExit_dick()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew C i ck()
"Initialize all variables
t xt I nput. Set Focus

NunvVal ues = 0

| bl Nunmber . Caption = "0"
txtlnput. Text = ""

| bl Mean. Caption = ""

| bl St dDev. Caption = ""
SumX = 0

SumX2 = 0

End Sub

The Visual Basic Language 2-27

txtinput KeyPress Event:

Private Sub txtlnput_ KeyPress(KeyAscii As Integer)
"Only all ow nunbers, m nus sign, decinmal point, backspace,
return keys
| f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAscii
= vbKeyM nus Or KeyAscii = vbKeyDecPt O KeyAscii =
vbKeyBack Then
Exit Sub
El self KeyAscii = vbKeyReturn Then
Call cndAccept _dick
El se
KeyAscii =0
End |f
End Sub

2-28 Learn Visual Basic 6.0

Exercise 2-2

Flash Card Addition Problems

Write an application that generates random addition problems. Provide some kind of
feedback and scoring system as the problems are answered.

My Solution:

Form:
IbINum2 Label4

— txtAnswer

IbIMessage

I T
cmdNext cmdExit

Properties:

Form frmAdd:
BorderStyle = 1 - Fixed Single
Caption = Flash Card Addition

CommandButton cmdNext:
Caption = &Next Problem
Enabled = False

CommandButton cmdEXxit:
Caption = E&xit

TextBox txtAnswer:
FontName = Arial
FontSize = 48
MaxLength = 2

The Visual Basic Language

2-29

Label IbIMessage:

Alignment = 2 - Center

BackColor = &HOOFFFF00& (Cyan)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontBold = True

FontSize =24

Fontltalic = True

Label IblScore:

Alignment = 2 - Center

BackColor = &HOO00FFFF& (Yellow)
BorderStyle = 1 - Fixed Single
Caption=0

FontName = Times New Roman
FontBold = True

FontSize = 36

Label Labell:

Alignment = 2 - Center
Caption = Score:
FontName = MS Sans Serif
FontSize = 18

Label Label4:

Alignment = 2 - Center
Caption ==
FontName = Arial
FontSize = 48

Label IbINum2:

Alignment = 2 - Center
FontName = Arial
FontSize = 48

Label Label2:

Alignment = 2 - Center
Caption =+
FontName = Arial
FontSize = 48

Label IbINum1:

Alignment = 2 - Center
FontName = Arial
FontSize = 48

2-30 Learn Visual Basic 6.0

Code:

General Declarations:

Option Explicit
Dim Sum As | nt eger
Dim NunmProb As Integer, NunRi ght As Integer

cmdExit Click Event:

Private Sub cndExit_dick()
End
End Sub

cmdNext Click Event:

Private Sub cnmdNext O ick()
"Generate next addition problem
Di m Nunmber 1 As | nteger

Di m Nunmber 2 As | nt eger

t xt Answer . Text = ""

| bl Message. Caption =
NunmProb = NunProb + 1
' Gener ate random nunbers for addends
Nunber 1 Int(Rnd * 21)

Nunber 2 Int(Rnd * 21)

| bl Nunmi. Capti on For mat (Nunber 1, "#0")
[bl Nun2. Caption For mat (Nunmber 2, "#0")
"Find sum

Sum = Number1l + Nunber2

cndNext . Enabl ed = Fal se

t xt Answer . Set Focus

End Sub

Form Activate Event:

Private Sub Form Activate()
Call cnmdNext _Click
End Sub

The Visual Basic Language 2-31

Form Load Event:

Private Sub Form Load()
Random ze Ti ner

NunProb = 0

NunRi ght = 0

End Sub

txtAnswer KeyPress Event:

Private Sub txt Answer _KeyPress(KeyAscii As |nteger)
Dim Ans As | nteger
' Check for nunber only input and for return key
| f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAscii
= vbKeyBack Then
Exit Sub
El self KeyAscii = vbKeyReturn Then
' Check answer
Ans = Val (txt Answer. Text)
If Ans = Sum Then
NunRi ght = NunRight + 1
| bl Message. Caption = "That's correct!”
El se
| bl Message. Caption = "Answer is " + Format(Sum "#0")
End If
| bl Score. Caption = Format (100 * NunmRi ght / NunProb,
"H#H#0")
cndNext . Enabl ed = True
cmdNext . Set Focus
El se
KeyAscii = 0
End If
End Sub

2-32 Learn Visual Basic 6.0

This page intentionally not left blank. ||

Learn Visual Basic 6.0

3. Exploring the Visual Basic Toolbox

Review and Preview
In this class, we begin a journey where we look at each tool in the Visual Basic

toolbox. We will revisit some tools we already know and learn a lot of new tools.
First, though, we look at an important Visual Basic functions.

The Message Box
One of the best functions in Visual Basic is the message box. The message box
displays a message, optional icon, and selected set of command buttons. The

user responds by clicking a button.

The statement form of the message box returns no value (it simply displays the
box):

MsgBox Message, Type, Title
where

Message Text message to be displayed
Type Type of message box (discussed in a bit)
Title Text in title bar of message box

You have no control over where the message box appears on the screen.

The function form of the message box returns an integer value (corresponding to
the button clicked by the user). Example of use (Response is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

The Type argument is formed by summing four values corresponding to the
buttons to display, any icon to show, which button is the default response, and the
modality of the message box.

3-2

Learn Visual Basic 6.0

The first component of the Type value specifies the buttons to display:

Value Meaning

OK button only
OK/Cancel buttons
Abort/Retry/Ignore buttons
Yes/No/Cancel buttons
Yes/No buttons
Retry/Cancel buttons

abh wNEFLO

Symbolic Constant
vbOKOnly
vbOKCancel
vbAbortRetrylgnore
vbYesNoCancel
vbYesNo
vbRetryCancel

The second component of Type specifies the icon to display in the message

box:

Value Meaning

0 No icon

16 Critical icon

32 Question mark
48 Exclamation point
64 Information icon

Symbolic Constant
(None)

vbCritical
vbQuestion
vbEXxclamation
vbinformation

The third component of Type specifies which button is default (i.e. pressing
Enter is the same as clicking the default button):

Value Meaning

0 First button default
256 Second button default
512 Third button default

Symbolic Constant
vbDefaultButton1
vbDefaultButton2
vbDefaultButton3

The fourth and final component of Type specifies the modality:

Value Meaning
0 Application modal
4096 System modal

Symbolic Constant
vbApplicationModal
vbSystemModal

If the box is Application Modal, the user must respond to the box before
continuing work in the current application. If the box is System Modal, all
applications are suspended until the user responds to the message box.

Note for each option in Type, there are numeric values listed and symbolic

constants. Recall, it is strongly suggested that the symbolic constants be used
instead of the numeric values. You should agree that vbOKOnly means more
than the number O when selecting the button type.

Exploring the Visual Basic Toolbox 3-3

The value returned by the function form of the message box is related to the button
clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK

2 Cancel button selected vbCancel

3 Abort button selected vbAbort

4 Retry button selected vbRetry

5 Ignore button selected vbignore

6 Yes button selected vbYes

7 No button selected vbNo

Message Box Example:

MsgBox “This is an example of a message box”, voOKCancel + vbinformation,
“Message Box Example”

Meszzage Box Example E3

@ Thiz iz an example of a meszage box
Cancel |

You've seen message boxes if you've ever used a Windows application. Think of

all the examples you've seen. For example, message boxes are used to ask you
if you wish to save a file before exiting and to warn you if a disk drive is not ready.

Object Methods
In previous work, we have seen that each object has properties and events
associated with it. A third concept associated with objects is the method. A
method is a procedure or function that imparts some action to an object.

As we move through the toolbox, when appropriate, we'll discuss object methods.
Methods are always enacted at run-time in code. The format for invoking a
method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

3-4

Learn Visual Basic 6.0

The Form Object

The Form is where the user interface is drawn. It is central to the development of

Visual Basic applications.

Form Properties:

Appearance
BackColor
BorderStyle
Caption
Enabled

Font
ForeColor
Picture
Visible

Form Events:

Activate

Click

DblClick

Load

Form Methods:

Cls

Print

Examples

Selects 3-D or flat appearance.

Sets the form background color.

Sets the form border to be fixed or sizeable.
Sets the form window title.

If True, allows the form to respond to mouse and
keyboard events; if False, disables form.

Sets font type, style, size.

Sets color of text or graphics.

Places a bitmap picture in the form.

If False, hides the form.

Form_Activate event is triggered when form becomes
the active window.

Form_Click event is triggered when user clicks on
form.

Form_DbIClick event is triggered when user double-
clicks on form.

Form_Load event occurs when form is loaded. This
is a good place to initialize variables and set any run-
time properties.

Clears all graphics and text from form. Does not clear

any objects.
Prints text string on the form.

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form™

Exploring the Visual Basic Toolbox 3-5

Command Buttons

—

We've seen the command button before. Itis probably the most widely used
control. Itis used to begin, interrupt, or end a particular process.

Command Button Properti es:

Appearance
Cancel

Caption
Default

Font

Selects 3-D or flat appearance.

Allows selection of button with Esc key (only one
button on a form can have this property True).
String to be displayed on button.

Allows selection of button with Enter key (only one
button on a form can have this property True).

Sets font type, style, size.

Command Button Events:

Click

Label Boxes

Event triggered when button is selected either by
clicking on it or by pressing the access key.

A

A label box is a control you use to display text that a user can't edit directly.

We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

Label Properties:

Alignment
Appearance
AutoSize

BorderStyle
Caption
Font

Aligns caption within border.

Selects 3-D or flat appearance.

If True, the label is resized to fit the text specifed by
the caption property. If False, the label will remain the
size defined at design time and the text may be
clipped.

Determines type of border.

String to be displayed in box.

Sets font type, style, size.

3-6 Learn Visual Basic 6.0

WordWrap

Label Events:

Click
DblIClick

Text Boxes

Works in conjunction with AutoSize property. If
AutoSize = True, WordWrap = True, then the text will
wrap and label will expand vertically to fit the Caption.
If AutoSize = True, WordWrap = False, then the text
will not wrap and the label expands horizontally to fit
the Caption. If AutoSize = False, the text will not wrap
regardless of WordWrap value.

Event triggered when user clicks on a label.
Event triggered when user double-clicks on a label.

[abl

A text box is used to display information entered at design time, by a user at run-
time, or assigned within code. The displayed text may be edited.

Text Box Properties:

Appearance
BorderStyle
Font
MaxLength

MultiLine

PasswordChar
ScrollBars
SelLength
SelStart
SelText

Tag

Text

Selects 3-D or flat appearance.

Determines type of border.

Sets font type, style, size.

Limits the length of displayed text (0 value indicates
unlimited length).

Specifies whether text box displays single line or
multiple lines.

Hides text with a single character.

Specifies type of displayed scroll bar(s).

Length of selected text (run-time only).

Starting position of selected text (run-time only).
Selected text (run-time only).

Stores a string expression.

Displayed text.

Exploring the Visual Basic Toolbox 3-7

Text Box Events:
Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. Thisis a
good place to examine the contents of a text box after
editing.
KeyPress Triggered whenever a key is pressed. Used for key
trapping, as seen in last class.
Text Box Methods:
SetFocus Places the cursor in a specified text box.
Example

txtExample.SetFocus ' moves cursor to box named txtExample

3-8 Learn Visual Basic 6.0

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password.
If correct, a message box appears to validate the user. If incorrect, other options

are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks

something like this:

w. Forml

3. Set the properties of the form and each object.

Form1:
BorderStyle
Caption
Name

Labell:
Alignment
BorderStyle
Caption
FontSize
FontStyle

Textl:
FontSize
FontStyle
Name
PasswordChar
Tag
Text

1-Fixed Single
Password Validation
frmPassword

2-Center

1-Fixed Single

Please Enter Your Password:
10

Bold

14

Regular

txtPassword

*

[Whatever you choose as a password]
[Blank]

Exploring the Visual Basic Toolbox

Commandl:
Caption &Validate
Default True
Name cmdValid
Command2:
Cancel True
Caption E&xit
Name cmdExit

Your form should now look like this:

w. Pazzword Yahdation =] E3

4. Attach the following code to the cmdValid_Click event.

Private Sub cndVvalid dick()
"This procedure checks the input password
Di m Response As | nteger
I f txtPassword. Text = txtPassword. Tag Then
"If correct, display nessage box
MsgBox "You've passed security!”, vbOKOnly +
vbExcl amati on, "Access G anted"
El se

"If incorrect, give option to try again

Response = MsgBox("Ilncorrect password", vbRetryCancel

+ vbCritical, "Access Denied")
| f Response = vbRetry Then
t xt Password. Sel Start = 0
t xt Passwor d. Sel Lengt h = Len(txt Password. Text)
El se
End
End |f
End If
t xt Passwor d. Set Focus

3-10 Learn Visual Basic 6.0

End Sub

Exploring the Visual Basic Toolbox 3-11

This code checks the input password to see if it matches the stored value. If so, it
prints an acceptance message. If incorrect, it displays a message box to that
effect and asks the user if they want to try again. If Yes (Retry), another try is
granted. If No (Cancel), the program is ended. Notice the use of SelLength and
SelStart to highlight an incorrect entry. This allows the user to type right over the
incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form Activate()
t xt Passwor d. Set Focus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cndExit_dick()
End
End Sub

7. Try running the program. Try both options: input correct password (note it is case
sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to allow
the user to have just TRYMAX attempts to get the correct password. After the
final try, inform the user you are logging him/her off. You'll also need a variable
that counts the number of tries (make it a Static variable).

3-12 Learn Visual Basic 6.0

Check Boxes

v

Check boxes provide a way to make choices from a list of potential candidates.
Some, all, or none of the choices in a group may be selected.

Check Box Properties:
Caption Identifying text next to box.
Font Sets font type, style, size.
Value Indicates if unchecked (0, vbUnchecked), checked (1,
vbChecked), or grayed out (2, vbGrayed).
Check Box Events:
Click Triggered when a box is clicked. Value property is

Option Buttons

automatically changed by Visual Basic.

i*

Option buttons provide the capability to make a mutually exclusive choice
among a group of potential candidate choices. Hence, option buttons work as a
group, only one of which can have a True (or selected) value.

Option Button Properties:

Caption
Font
Value

Identifying text next to button.

Sets font type, style, size.

Indicates if selected (True) or not (False). Only one
option button in a group can be True. One button in
each group of option buttons should always be
initialized to True at design time.

Option Button Events:

Click

Triggered when a button is clicked. Value property
is automatically changed by Visual Basic.

Exploring the Visual Basic Toolbox 3-13

Arrays
Up to now, we've only worked with regular variables, each having its own unique
name. Visual Basic has powerful facilities for handling multi-dimensional
variables, or arrays. For now, we'll only use single, fixed-dimension arrays.
Arrays are declared in a manner identical to that used for regular variables. For
example, to declare an integer array named 'ltems’, with dimension 9, at the
procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a procedure, we
use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declarations area of the Code
window, use:

Dim Items(9) as Integer
And, at the module level, for a global declaration, use:

Global Items(9) as Integer
The index on an array variable begins at 0 and ends at the dimensioned value.
For example, the Items array in the above examples has ten elements, ranging
from Items(0) to Items(9). You use array variables just like any other variable - just
remember to include its name and its index. For example, to set Item(5) equal to

7, you simply write:

ltem(5)=7

3-14 Learn Visual Basic 6.0

Control Arrays

With some controls, it is very useful to define control arrays - it depends on the
application. For example, option buttons are almost always grouped in control
arrays.

Control arrays are a convenient way to handle groups of controls that perform a
similar function. All of the events available to the single control are still available to
the array of controls, the only difference being an argument indicating the index of
the selected array element is passed to the event. Hence, instead of writing
individual procedures for each control (i.e. not using control arrays), you only have
to write one procedure for each array.

Another advantage to control arrays is that you can add or delete array elements
atrun-time. You cannot do that with controls (objects) not in arrays. Refer to the
Load and Unload statements in on-line help for the proper way to add and delete
control array elements at run-time.

Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control
using the editor, then paste it on the form. Visual Basic will pop-up a dialog
box that will ask you if you wish to create a control array. Respond yes and the
array is created.

2. Create all the controls you wish to have in the array. Assign the desired control
array name to the first control. Then, try to name the second control with the
same name. Visual Basic will prompt you, asking if you want to create a
control array. Answer yes. Once the array is created, rename all remaining
controls with that name.

Once a control array has been created and named, elements of the array are
referred to by their name and index. For example, to set the Caption property of
element 6 of a label box array named IblIExample, we would use:

IbIExample(6).Caption = “This is an example”

We'll use control arrays in the next example.

Exploring the Visual Basic Toolbox 3-15

Frames

&

We've seen that both option buttons and check boxes work as a group. Frames

provide a way of grouping related controls on a form. And, in the case of option
buttons, frames affect how such buttons operate.

To group controls in a frame, you first draw the frame. Then, the associated
controls must be drawn in the frame. This allows you to move the frame and
controls together. And, once a control is drawn within a frame, it can be copied
and pasted to create a control array within that frame. To do this, first click on the
object you want to copy. Copy the object. Then, click on the frame. Paste the
object. You will be asked if you want to create a control array. Answer Yes.

Drawing the controls outside the frame and dragging them in, copying them into a
frame, or drawing the frame around existing controls will not result in a proper
grouping. Itis perfectly acceptable to draw frames within other frames.

As mentioned, frames affect how option buttons work. Option buttons within a
frame work as a group, independently of option buttons in other frames. Option
buttons on the form, and not in frames, work as another independent group. That
is, the form is itself a frame by default. We'll see this in the next example.

It is important to note that an independent group of option buttons is defined by
physical location within frames, not according to naming convention. Thatis, a
control array of option buttons does not work as an independent group just
because it is a control array. It would only work as a group if it were the only group
of option buttons within a frame or on the form. So, remember physical location,
and physical location only, dictates independent operation of option button
groups.

Frame Properties:

Caption Title information at top of frame.
Font Sets font type, style, size.

3-16 Learn Visual Basic 6.0

Example 3-2

Pizza Order

1. Startanew project. We'll build a form where a pizza order can be entered by

simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second, draw two
option buttons, and in the third, draw six check boxes. Draw two option buttons on
the form. Add two command buttons. Make things look something like this.

W Forml M=l E3
. - Framel ———————— ~Frame3
£ Option
[Checkl [Checkd
= Option2
 Option3 [Check2 [Checks
[Check3 [CheckB
-~ Framez
" Optiond : : SRS
r DptinnE [DDtIDﬂE - I:Iptu:un?

3. Set the properties of the form and each control.

Form1.:
BorderStyle 1-Fixed Single
Caption Pizza Order
Name frmPizza
Framel:
Caption Size
Frame2:
Caption Crust Type
Frame3

Caption Toppings

Exploring the Visual Basic Toolbox

3-17

Option1:
Caption
Name
Value

Option2:
Caption
Name

Option3:
Caption
Name

Option4:
Caption
Name
Value

Option5:
Caption
Name

Option6:
Caption
Name
Value

Option7:
Caption
Name

Check1:
Caption
Name

Check2:
Caption
Name

Check3:
Caption
Name

Small
optSize
True

Medium
optSize (yes, create a control array)

Large
optSize

Thin Crust
optCrust
True

Thick Crust
optCrust (yes, create a control array)

Eat In
optWhere
True

Take Out
optWhere (yes, create a control array)

Extra Cheese
chkTop

Mushrooms
chkTop (yes, create a control array)

Black Olives
chkTop

3-18 Learn Visual Basic 6.0

Check4:

Caption Onions

Name chkTop
Check5:

Caption Green Peppers

Name chkTop
Check6:

Caption Tomatoes

Name chkTop
Commandl:

Caption &Build Pizza

Name cmdBuild
Command2:

Caption E&xit

Name cmdExit

The form should look like this now:

w. Pizza Order =] E3
. Size————————— ~Toppings

£+ Small

[EztraCheese [Onions

£~ Medium

 Large [~ Mushrooms [Green Peppers
: [Black Olives [Tomatoes
-~ Crust Type
e i st

r‘- Thick Crust F Eatln r Take Out
DIUUUIUUT Build Pizea Esit SEREEENS

4. Declare the following variables in the general declarations area:

Option Explicit

Dim Pi zzaSi ze As String
Dim Pi zzaCrust As String
Dim Pi zzaWhere As String

This makes the size, crust, and location variables global to the form.

Exploring the Visual Basic Toolbox 3-19

5. Attach this code to the Form_Load procedure. This initializes the pizza size,
crust, and eating location.

Private Sub Form Load()
"Initialize pizza paraneters

PizzaSi ze = "Smal | "

Pi zzaCrust = "Thin Crust"
Pi zzaWhere = "Eat In"

End Sub

Here, the global variables are initialized to their default values, corresponding to
the default option buttons.

6. Attach this code to the three option button array Click events. Note the use of the
Index variable:

Private Sub optSize Cick(lndex As Integer)
‘Read pizza size

Pi zzaSi ze = opt Si ze(|l ndex). Caption

End Sub

Private Sub optCrust_Cick(lndex As Integer)
‘Read crust type

Pi zzaCrust = opt Crust (Il ndex). Caption

End Sub

Private Sub optWere Cick(lndex As Integer)
‘Read pizza eating |ocation

Pi zzaWhere = opt Where(l ndex) . Capti on

End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button’s caption is loaded into the respective variable.

3-20 Learn Visual Basic 6.0

7. Attach this code to the cmdBuild_Click event.

Private Sub cndBuild _dick()
"This procedure builds a nessage box that displays your
pizza type
Di m Message As String
Dm1 As Integer
Message Pi zzaWhere + vbCr
Message = Message + Pi zzaSize + " Pizza" + vbCr
Message = Message + PizzaCrust + vbCr
For I =0 To 5
I f chkTop(l).Value = vbChecked Then Message = Message
+ chkTop(l). Caption + vbCr
Next |
MsgBox Message, vbOKOnly, "Your Pizza"
End Sub

This code forms the first part of a message for a message box by concatenating
the pizza size, crust type, and eating location (vbCr is a symbolic constant
representing a ‘carriage return’ that puts each piece of ordering information on a
separate line). Next, the code cycles through the six topping check boxes and
adds any checked information to the message. The code then displays the pizza
order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cnmdExit _dick()
End
End Sub

9. Get the application working. Notice how the different selection buttons work in
their individual groups. Save your project.

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial default
values. You'll have to reinitialize the three global variables, reset all check
boxes to unchecked, and reset all three option button groups to their
default values.

B. Modify the code so that if no toppings are selected, the message “Cheese
Only” appears on the order form. You'll need to figure out a way to see if
no check boxes were checked.

Exploring the Visual Basic Toolbox 3-21

List Boxes

EH

A list box displays a list of items from which the user can select one or more
items. If the number of items exceeds the number that can be displayed, a scroll
bar is automatically added.

List Box Properties:

Appearance Selects 3-D or flat appearance.

List Array of items in list box.

ListCount Number of items in list.

Listindex The number of the most recently selected item in list.
If no item is selected, Listindex = -1.

MultiSelect Controls how items may be selected (0-no multiple

selection allowed, 1-multiple selection allowed, 2-
group selection allowed).

Selected Array with elements set equal to True or False,
depending on whether corresponding list item is
selected.

Sorted True means items are sorted in 'Ascii’ order, else
items appear in order added.

Text Text of most recently selected item.

List Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.
Primary way used to process selection.

List Box Methods:
Addltem Allows you to insert item in list.
Clear Removes all items from list box.

Removeltem Removes item from list box, as identified by index of
item to remove.

Examples
IstExample.AddItem "This is an added item" ' adds text string to list

IstExample.Clear ' clears the list box
IstExample.Removeltem 4 ' removes IstExample.List(4) from list box

3-22 Learn Visual Basic 6.0

Items in a list box are usually initialized in a Form_Load procedure. It's always a
good idea to Clear a list box before initializing it.

You've seen list boxes before. In the standard 'Open File' window, the Directory
box is a list box with MultiSelect equal to zero.

Combo Boxes

=E

The combo box is similar to the list box. The differences are a combo box

includes a text box on top of a list box and only allows selection of one item. In
some cases, the user can type in an alternate response.

Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the deletion
of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.

List Array of items in list box portion.

ListCount Number of items in list.

Listindex The number of the most recently selected item in list.
If no item is selected, Listindex = -1.

Sorted True means items are sorted in 'Ascii’ order, else
items appear in order added.

Style Selects the combo box form.
Style = 0, Dropdown combo; user can change
selection.

Style = 1, Simple combo; user can change selection.
Style = 2, Dropdown combo; user cannot change

selection.
Text Text of most recently selected item.
Combo Box Events:
Click Event triggered when item in list is clicked.
DbIClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

Exploring the Visual Basic Toolbox 3-23

Combo Box Methods:

AddItem Allows you to insert item in list.

Clear Removes all items from list box.

Removeltem Removes item from list box, as identified by index of
item to remove.

Examples

cboExample.Addltem "This is an added item" ' adds text string to list
cboExample.Clear ' clears the combo box
cboExample.Removeltem 4 ' removes cboExample.List(4) from list box

You've seen combo boxes before. In the standard 'Open File' window, the File
Name box is a combo box of Style 2, while the Drive box is a combo box of Style
3.

3-24 Learn Visual Basic 6.0

Example 3-3

Flight Planner

1. Startanew project. In this example, you select a destination city, a seat location,
and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command buttons
on the form. The form should appear similar to this:

wm. Forml EE
Labell Sl Label? S Label3 L
Lizt1 iEu:umI:u:u'I :_j ;E:::ml:u:-E :_j
oo Command Command2 |- - oo

3. Set the form and object properties:

Form1:
BorderStyle 1-Fixed Single
Caption Flight Planner
Name frmFlight
List1:
Name IstCities
Sorted True
Combo1l:
Name choSeat

Style 2-Dropdown List

Exploring the Visual Basic Toolbox 3-25

Combo2:
Name cboMeal
Style 1-Simple
Text [Blank]

(After setting properties for this combo box, resize it until it is large enough to
hold 4 to 5 entries.)

Labell:

Caption Destination City
Label2:

Caption Seat Location
Label3:

Caption Meal Preference
Command1:

Caption &Assign

Name cmdAssign
Command2:

Caption E&xit

Name cmdExit

Now, the form should look like this:

w. Flight Planner M=l E3
- Destination City © © - - - © . Seatlocaion - - - - - Meal Preference - - - - o
IstCities Iu:l:u:uSeat j

3-26 Learn Visual Basic 6.0

4. Attach this code to the Form_Load procedure:

Private Sub Form Load()

“Add city nanes to |ist box
IstCities.C ear

IstCities. Addltem "San Di ego”
IstCities. Addltem "Los Angel es”
IstCities. Addltem "Orange County"
|stCities. Addltem"Ontario”
|stCities. Addltem "Bakersfiel d”

| stCities. Addltem " Gakl and”

| stCities. Addltem " Sacr anent 0"
IstCities. Addltem "San Jose"
|stCities. Addltem "San Franci sco
| stCities. Addltem " Eur eka"
IstCities. Addltem "Eugene”
IstCities. Addltem "Portl and"
IstCities. Addltem " Spokane"
|stCities. Addltem " Seattl e"
IstCities.Listlndex = 0

‘Add seat types to first conbo box
cboSeat . Addl tem "Ai sl e"

cboSeat . Addltem "M ddl e"

cboSeat . Addl tem "W ndow"

cboSeat. Listlndex = 0

“Add neal types to second conbo box
cboMeal . Addl tem " Chi cken"

cboMeal . Addltem "Mystery Meat™
cboMeal . Addl t em " Kosher "

cboMeal . Addl t em " Veget ari an”

cboMeal . Addltem "Fruit Pl ate"
cboMeal . Text = "No Preference"

End Sub

This code simply initializes the list box and the list box portions of the two combo
boxes.

Exploring the Visual Basic Toolbox 3-27

5. Attach this code to the cmdAssign_Click event:

Private Sub cndAssign i ck()
“Buil d nessage box that gives your assignnent
Di m Message As String

Message = "Destination: " + IstCities. Text + vbCr
Message = Message + "Seat Location: " + cboSeat. Text +
vbCr

Message = Message + "Meal: " + cboMeal . Text + vbCr
MsgBox Message, vbOKOnly + vblnformation, "Your

Assi gnnent "

End Sub

When the Assign button is clicked, this code forms a message box message by
concatenating the selected city (from the list box IstCities), seat choice (from
cboSeat), and the meal preference (from choMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cnmdExit_dick()
End
End Sub

7. Run the application. Save the project.

3-28 Learn Visual Basic 6.0

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer database.
The required input information is:

Name

Age

City of Residence

Sex (Male or Female)

Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line
Skating)

6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

GhobRE

Set up the screen so that only the Name and Age (use text boxes) and, perhaps, City
(use a combo box) need to be typed; all other inputs should be set with check boxes
and option buttons. When a screen of information is complete, display the
summarized profile in a message box. This profile message box should resemble
this:

Customer Profile E |

kary Doe iz 28 vearz old.
She lives in Mercer lzland.
She iz an extreme level athlete,
Activities include;
W alking
Biking
Ir-Line Skating

Exploring the Visual Basic Toolbox 3-29

My Solution:
Form:

Frame3
txtName Label2 txtAge

w. Customer Profile

Labell \ N&m&l) VR W 2

Framel\
:-5"EJF [G ol Aesidence |
| = Kale S T
optSex [. i
| Fermale : — |
[Activies SEREEREREEEEEI CPoCty
FRuming | SEEEEERRRERE R
I~ walking - AthleticLevef —— L
I Biking Extreme Show Profilet— cmdShow
[Swimming " Advanced 0 ¢ New Profile- cmdNew
[Skiing - | ¥ Intermediate s e
[In-Line Skating - | £~ Beginner 2o Ezit .
i N . L 4 L
A o N N\ T f—
T) \ I
Frame2 chkAct Frame4 optLevel cmdExit

Properties:

Form frmCustomer:
BorderStyle = 1 - Fixed Single
Caption = Customer Profile

CommandButton cmdExit:
Caption = E&xit

Frame Frame3:
Caption = City of Residence
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

ComboBox cboCity:
Sorted = True
Style = 1 - Simple Combo

3-30 Learn Visual Basic 6.0

CommandButton cmdNew:
Caption = &New Profile

CommandButton cmdShow:
Caption = &Show Profile

Frame Frame4:
Caption = Athletic Level
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

OptionButton optLevel:
Caption = Beginner
Index =3

OptionButton optLevel:
Caption = Intermediate
Index =2
Value = True

OptionButton optLevel:
Caption = Advanced
Index =1

OptionButton optLevel:
Caption = Extreme
Index=0

Frame Framel.:
Caption = Sex
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

OptionButton optSex:
Caption = Female
Index=1

OptionButton optSex:
Caption = Male
Index=0
Value = True

Exploring the Visual Basic Toolbox

3-31

Frame Frame2:
Caption = Activities
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

CheckBox chkAct:
Caption = In-Line Skating
Index=5

CheckBox chkAct:
Caption = Skiing
Index =4

CheckBox chkAct:
Caption = Swimming
Index =3

CheckBox chkAct:
Caption = Biking
Index =2

CheckBox chkAct:
Caption = Walking
Index =1

CheckBox chkAct:
Caption = Running
Index=0

TextBox txtName:
FontName = MS Sans Serif
FontSize = 12

Label Labell:
Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

TextBox txtAge:
FontName = MS Sans Serif
FontSize = 12

3-32 Learn Visual Basic 6.0

Label Label2:
Caption = Age
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

Code:
General Declarations:

Option Explicit
Dm Activity As String

cmdExit Click Event:

Private Sub cndExit_dick()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew C i ck()
"Bl ank out nanme and reset check boxes
Dm1 As Integer
t xt Nane. Text = ""
t xt Age. Text = ""
For I =0 To 5
chkAct (1) . Val ue = vbUnchecked
Next |
End Sub

cmdShow Click Event:

Private Sub cndShow C i ck()
Dim NoAct As Integer, | As Integer
Dm Msg As String, Pronoun As String

'Check to make sure nane entered
| f txtNanme. Text = "" Then

Exploring the Visual Basic Toolbox 3-33

MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Nanme Entered"

Exit Sub
End If

' Check to make sure age entered
| f txtAge. Text = "" Then
MsgBox "The profile requires an age.", vbOKOnly +
vbCritical, "No Age Entered"
Exit Sub
End |f

"Put together customer profile nmessage
Msg = txtNanme. Text + " is" + Str$(txtAge.Text) + " years
old." + vbCr

| f opt Sex(0).Value = True Then Pronoun = "He " El se
Pronoun = "She "
Msg = Msg + Pronoun + "lives in " + cboCity. Text + "." +

vbCr

Msg = Msg + Pronoun + "is a"

| f optLevel (3).Value = False Then Msg = Msg + "n " El se
Msg = Msg + " "

Msg = Msg + Activity + " level athlete.” + vbCr

NoAct = O

For I =0 To 5
I f chkAct(1).Value = vbChecked Then NoAct = NoAct + 1
Next
| f NoAct > O Then
Msg = Msg + "Activities include:" + vbCr
For | = 0 To 5
I f chkAct(1).Value = vbChecked Then Msg = Msg +

String$(10, 32) + chkAct(l).Caption + vbCr
Next |
El se
Msg = Msg + vbCr
End If
MsgBox Msg, vbOKOnly, "Custonmer Profile”
End Sub

Form Load Event:;

Private Sub Form Load()

3-34 Learn Visual Basic 6.0

'Load conbo box with potential city nanes
cboCity. Addltem "Seattl e"
cboCity. Text = "Seattle"
cboCity. Addltem "Bel | evue”
cboCity. Addl tem "Ki r kl and"
cboCity. Addltem "Everett"”
cboCity. Addltem "Mercer |sland”
cboCity. Addl tem "Rent on"
cboCity. Addltem "I ssaquah”
cboCity. Addltem "Kent"

cboCity. Addltem "Bot hel | "
cboCity. Addltem " Tukwi | "
cboCity. Addltem "West Seattl e"
cboCity. Addl tem " Ednonds”
cboCity. Addltem "Tacoma"
cboCity. Addltem " Federal Way"
cboCity. Addltem "Buri en"
cboCity. Addltem " SeaTac"
cboCity. Addl tem "Wbodi nvi |l | e"
Activity = "intermedi ate”

End Sub

optLevel Click Event:

Private Sub optLevel Cick(lndex As I|Integer)
‘Determne activity |evel
Sel ect Case | ndex

Case O

Activity = "extrene"
Case 1

Activity = "advanced"
Case 2

Activity = "internedi ate"
Case 3

Activity = "begi nner”
End Sel ect
End Sub

txtAge KeyPress Event:

Private Sub txtAge_KeyPress(KeyAscii As |nteger)
"Only all ow nunbers for age

Exploring the Visual Basic Toolbox 3-35

| f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAsci.i
= vbKeyBack Then
Exit Sub
El se
KeyAscii =0
End |f
End Sub

3-36 Learn Visual Basic 6.0

This page intentionally not left blank. ||

Learn Visual Basic 6.0

4. More Exploration of the Visual Basic Toolbox

Review and Preview

In this class, we continue looking at tools in the Visual Basic toolbox. We will look
at some drawing tools, scroll bars, and tools that allow direct interacti on with
drives, directories, and files. In the examples, try to do as much of the building
and programming of the applications you can with minimal reference to the notes.
This will help you build your programming skills.

Display Layers

In this class, we will look at our first graphic type controls: line tools, shape tools,
picture boxes, and image boxes. And, with this introduction, we need to discuss
the idea of display layers.

Items shown on a form are not necessarily all on the same layer of display. A
form's display is actually made up of three layers as sketched below. All
information displayed directly on the form (by printing or drawing with graphics
methods) appears on the bottom-layer. Information from label boxes, image
boxes, line tools, and shape tools, appears on the middle-layer. And, all other
objects are displayed on the top-layer.

I/Bottom-layer: form

_— Middle-layer: label,
image, shape, line

L~ Top-layer: other
controls and objects

4-2 Learn Visual Basic 6.0

What this means is you have to be careful where you put things on a form or
something could be covered up. For example, text printed on the form would be
hidden by a command button placed on top of it. Things drawn with the shape tool
are covered by all controls except the image box.

The next question then is what establishes the relative location of objects in the
same layer. That is, say two command buttons are in the same area of a form -
which one lies on top of which one? The order in which objects in the same layer
overlay each other is called the Z-order. This order is first established when you
draw the form. Items d rawn last lie over items drawn earlier. Once drawn,
however, the Z-order can be modified by clicking on the desired object and
choosing Bring to Front from Visual Basic's Edit menu. The Send to Back
command has the opposite effect. Note these two commands only work within a
layer; middle-layer objects will always appear behind top-layer objects and lower
layer objects will always appear behind middle-layer objects.

Line Tool

e

The line tool creates simple straight line segments of various width and color.

Together with the shape tool discussed next, you can use this tool to ‘'dress up'
your application.

Line Tool Properties:

BorderColor Determines the line color.

BorderStyle Determines the line 'shape’. Lines can be
transparent, solid, dashed, dotted, and
combinations.

BorderWidth Determines line width.

There are no events or methods associated with the line tool.

Since the line tool lies in the middle-layer of the form display, any lines drawn will
be obscured by all controls except the shape tool or image box.

More Exploration of the Visual Basic Toolbox 4-3

Shape Tool

&)

The shape tool can create circles, ovals, squares, rectangles, and rounded
squares and rectangles. Colors can be used and various fill patterns are

available.

Shape Tool Properties:

BackColor
BackStyle
BorderColor

BorderStyle

BorderWidth
FillColor
FillStyle

Shape

Determines the background color of the shape (only
used when FillStyle not Solid.

Determines whether the background is transparent
or opague.

Determines the color of the shape's outline.
Determines the style of the shape's outline. The
border can be transparent, solid, dashed, dotted,
and combinations.

Determines the width of the shape border line.
Defines the interior color of the shape.

Determines the interior pattern of a shape. Some
choices are: solid, transparent, cross, etc.
Determines whether the shape is a square,
rectangle, circle, or some other choice.

Like the line tool, events and methods are not used with the shape tool.

Shapes are covered by all objects except perhaps line tools and image boxes
(depends on their Z-order) and printed or drawn information. This is a good
feature in that you usually use shapes to contain a group of control objects and
you'd want them to lie on top of the shape.

4-4 Learn Visual Basic 6.0

Horizontal and Vertical Scroll Bars

Horizontal and vertical scroll bars are widely used in Windows applications.
Scroll bars provide an intuitive way to move through a list of information and make
great input devices.

Both type of scroll bars are comprised of three areas that can be clicked, or
dragged, to change the scroll bar value. Those areas are:

End arrow ——4] /J = N

Scroll box (thumb) Bar area

Clicking an end arrow increments the scroll box a small amount, clicking the
bar area increments the scroll box a large amount, and dragging the scroll box
(thumb) provides continuous motion. Using the properties of scroll bars, we can
completely specify how one works. The scroll box position is the only output
information from a scroll bar.

Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar
Value property when the bar area is clicked.

Max The value of the horizontal scroll bar at the far right
and the value of the vertical scroll bar at the bottom.
Can range from-32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar at
the left and the vertical scroll bar at the top. Can
range from -32,768 to 32,767.

SmallChange The increment added to or subtracted from the scroll
bar Value property when either of the scroll arrows is
clicked.

Value The current position of the scroll box (thumb) within
the scroll bar. If you set this in code, Visual Basic
moves the scroll box to the proper position.

More Exploration of the Visual Basic Toolbox

45

Properties for horizontal scroll bar:

LargeChange \ /SmaIIChange
Min /ﬂ /d \ ﬂ Max
SmallChange Value LargeChange

Properties for vertical scroll bar:

Min
| =f—— SmallChange
LargeChange
—— value
— LargeChange
SmallChange =~ |
Max

A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do not
necessarily represent minimum and maximum values. There is nothing to
keep the Min value from being greater than the Max value. In fact, with vertical
scroll bars, this is the usual case. Visual Basic automatically adjusts the sign

on the SmallChange and LargeChange properties to insure proper

movement of the scroll box from one extreme to the other.

2. Ifyou ever change the Value, Min, or Max properties in code, make sure
Value is at all times between Min and Max or and the program will stop with an

error message.

4-6 Learn Visual Basic 6.0

Scroll Bar Events:

Change Event is triggered after the scroll box's position has
been modified. Use this event to retrieve the Value
property after any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll box
is being moved.

More Exploration of the Visual Basic Toolbox 4-7

Example 4-1

Temperature Conversion

Start a new project. In this project, we convert temperatures in degrees Fahrenheit
(set using a scroll bar) to degrees Celsius. As mentioned in the Review and
Preview section, you should try to build this application with minimal reference to the
notes. To that end, let's look at the project specifications.

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some
maximum. As the user changes the scroll bar value, both the
Fahrenheit temperature and Celsius temperature (you have to calculate
this) in integer format should be displayed. The formula for converting
Fahrenheit (F) to Celsius (C) is:

C = (F- 32)*5/9

To convert this number to a rounded integer, use the Visual Basic
CInt() function. To change numeric information to strings for display in
label or text boxes, use the Str() or Format() function. Try to build as
much of the application as possible before looking at my approach. Try
incorporating lines and shapes into your application if you can.

4-8 Learn Visual Basic 6.0

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command button on the
form. Put the scroll bar within the shape - since it is in the top-layer of the form, it
will lie in the shape. It should resembile this:

w Forml

.

2. Setthe properties of the form and each object:

Form1:
BorderStyle 1-Fixed Single
Caption Temperature Conversion
Name frmTemp
Shapel:
BackColor White
BackStyle 1-Opaque
FillColor Red
FillStyle 7-Diagonal Cross
Shape 4-Rounded Rectangle
VScrolll:
LargeChange 10
Max -60
Min 120
Name vsbTemp
SmallChange 1

Value 32

More Exploration of the Visual Basic Toolbox

Labell:
Alignment
Caption
FontSize
FontStyle

Label2:
Alignment
AutoSize
BackColor
BorderStyle
Caption
FontSize
FontStyle
Name

Label3:
Alignment
Caption
FontSize
FontStyle

Label4:
Alignment
AutoSize
BackColor
BorderStyle
Caption
FontSize
FontStyle
Name

Commandl:
Cancel
Caption
Name

Note the temperatures are initialized at 32F and 0C, known values.

2-Center
Fahrenheit
10

Bold

2-Center

True

White

1-Fixed Single
32

14

Bold

IbITempF

2-Center
Celsius
10

Bold

2-Center

True

White

1-Fixed Single
0

14

Bold

IbITempC

True
E&xit
cmdExit

4-10 Learn Visual Basic 6.0

When done, the form should look like this:

W Temperature Conversion Mi=] E3

Fe! I
—tr
L o

b

3. Put this code in the general declarations of your code window.

Option Explicit
Di m TenpF As | nteger
Dim TenpC As | nt eger

This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTenp_Scroll ()

"Read F and convert to C

TenpF = vsbTenp. Val ue

| bl TenpF. Caption = Str(TenpF)
TempC = CIint((TenmpF - 32) * 5/ 9)
| bl TempC. Caption = Str(TenpC)

End Sub

This code determines the scroll bar Value as it scrolls, takes that value as
Fahrenheit temperature, computes Celsius temperature, and displays both

values.

More Exploration of the Visual Basic Toolbox 4-11

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTenp_ Change()
"Read F and convert to C

TenpF = vsbTenp. Val ue

| bl TenpF. Caption = Str(TenpF)
TempC = Clint((TenmpF - 32) * 5/ 9)
| bl TenpC. Caption = Str(TenmpQC)

End Sub

Note this code is identical to that used in the Scroll event. This is almost always
the case when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cnmdExit_d i ck()
End
End Sub

7. Give the program a try. Make sure it provides correct information at obvious
points. For example, 32 F better always be the same as 0 C! Save the project -
we'll return to it briefly in Class 5.

Other things to try:

A. Can you find a point where Fahrenheit temperature equals Celsius
temperature? If you don't know this off the top of your head, it's obvious you've
never lived in extremely cold climates. I've actually withessed one of those
bank temperature signs flashing degrees F and degrees C and seeing the
same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F? Can
your new application give you some insight to an answer to this question?

C. It might be interesting to determine how wind affects perceived temperature -
the wind chill. Add a second scroll bar to input wind speed and display both
the actual and wind adjusted temperatures. You would have to do some
research to find the mathematics behind wind chill computations. This is not a
trivial extension of the application.

4-12 Learn Visual Basic 6.0

Picture Boxes

The picture box allows you to place graphics information on a form. It is best
suited for dynamic environments - for example, when doing animation.

Picture boxes lie in the top layer of the form display. They behave very much like
small forms within a form, possessing most of the same properties as a form.

Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed
graphic.

Font Sets the font size, style, and size of any printing done
in the picture box.

Picture Establishes the graphics file to display in the picture
box.

Picture Box Events:

Click Triggered when a picture box is clicked.
DblClick Triggered when a picture box is double-clicked.
Picture Box Methods:
Cls Clears the picture box.
Print Prints information to the picture box.
Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box

More Exploration of the Visual Basic Toolbox 4-13

Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure. It
is used to set the Picture property of a picture box at run-time.

Example
picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\piX\sample.bmp into the Picture property
of the picExample picture box. The argument in the LoadPicture function must be
a legal, complete path and file name, else your program will stop with an error
message.

Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a
collection of bits in which each bit corresponds to one
pixel. Usually has a.bmp extension. Appearsin
original size.

Icon A special type of bitmap file of maximum 32 x 32 size.
Has a .ico extension. We'll create icon files in Class
5. Appears in original size.

Metafile A file that stores an image as a collection of graphical
objects (lines, circles, polygons) rather than pixels.
Metafiles preserve an image more accurately than
bitmaps when resized. Has a.wmf extension.
Resizes itself to fit the picture box area.

JPEG JPEG (Joint Photographic Experts Group) is a
compressed bitmap format which supports 8 and 24
bit color. Itis popular on the Internet. Has a jpg
extension and scales nicely.

GIF GIF (Graphic Interchange Format) is a compressed
bitmap format originally developed by CompuServe.
It supports up to 256 colors and is popular on the
Internet. Has a .gif extension and scales nicely.

4-14 Learn Visual Basic 6.0

Image Boxes

An image boxis very similar to a picture box in that it allows you to place

graphics information on a form. Image boxes are more suited for static situations
- that is, cases where no modifications will be done to the displayed graphics.

Image boxes appear in the middle-layer of form display, hence they could be
obscured by picture boxes and other objects. Image box graphics can be resized
by using the Stretch property.

Image Box Properties:

Picture Establishes the graphics file to display in the image
box.
Stretch If False, the image box resizes itself to fit the graphic.

If True, the graphic resizes to fit the control area.

Image Box Events:

Click Triggered when a image box is clicked.
DblClick Triggered when a image box is double-clicked.

The image box does not support any methods, however it does use the
LoadPicture function. Itis used in exactly the same manner as the picture box
uses it. And image boxes can load the same file types: bitmap (.bmp), icon
(.ico), metafiles (.wmf), GIF files (.gif), and JPEG files (.jpg). With Stretch = True,
all three graphic types will expand to fit the image box area.

Quick Example: Picture and Image Boxes

1.

2.

Start a new project. Draw one picture box and one image box.

Set the Picture property of the picture and image box to the same file. If you have
graphics files installed with Visual Basic, bitmap files can be found in the bitmaps
folder, icon files in the icons folder, and metafiles are in the metafile folder.

Notice what happens as you resize the two boxes. Notice the layer effect when
you move one box on top of the other. Notice the effect of the image box Stretch
property. Play around with different file types - what differences do you see?

More Exploration of the Visual Basic Toolbox 4-15

Drive List Box

=

The drive list box control allows a user to select a valid disk drive at run-time. It
displays the available drives in a drop-down combo box. No code is needed to

load a drive list box; Visual Basic does this for us. We use the box to get the
current drive identification.
Drive List Box Properties:

Drive Contains the name of the currently selected drive.

Drive List Box Events:

Change Triggered whenever the user or program changes the
drive selection.

Directory List Box

]

The directory list box displays an ordered, hierarchical list of the user's disk
directories and subdirectories. The directory structure is displayed in a list box.
Like, the drive list box, little coding is needed to use the directory list box - Visual
Basic does most of the work for us.
Directory List Box Properties:

Path Contains the current directory path.

Directory List Box Events:

Change Triggered when the directory selection is changed.

4-16 Learn Visual Basic 6.0

File List Box

The file list box locates and lists files in the directory specified by its Path
property at run-time. You may select the types of files you want to display in the
file list box.

File List Box Properties:

FileName Contains the currently selected file name.
Path Contains the current path directory.
Pattern Contains a string that determines which files will be

displayed. It supports the use of * and ? wildcard
characters. For example, using *.dat only displays
files with the .dat extension.

File List Box Events:

DblClick Triggered whenever a file name is double-clicked.
PathChange Triggered whenever the path changes in a file list box.

You can also use the MultiSelect property of the file list box to allow multiple file
selection.

More Exploration of the Visual Basic Toolbox 4-17

Synchronizing the Drive, Directory, and File List Boxes

The drive, directory, and file list boxes are almost always used together to obtain
a file name. As such, it is important that their operation be synchronized to insure
the displayed information is always consistent.

When the drive selection is changed (drive box Change event), you should
update the directory path. For example, if the drive box is named drvExample and
the directory box is dirExample, use the code:

dirExample.Path = drvExample.Drive

When the directory selection is changed (directory box Change event), you
should update the displayed file names. With a file box named filExample, this
code is:

filExample.Path = dirExample.Path

Once all of the selections have been made and you want the file name, you need
to form a text string that correctly and completely specifies the file identifier. This
string concatenates the drive, directory, and file name information. This should be
an easy task, except for one problem. The problem involves the backslash (\)
character. If you are at the root directory of your drive, the path name ends with a
backslash. If you are not at the root directory, there is no backslash at the end of
the path name and you have to add one before tacking on the file name.

Example code for concatenating the available information into a proper file name
and then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then

YourFile = filExample.Path + filExample.FileName
Else

YourFile = filExample.Path + "\" + filExample.FileName
End If
imgExample.Picture = LoadPicture(YourFile)

Note we only use properties of the file list box. The drive and directory box
properties are only used to create changes in the file list box via code.

4-18 Learn Visual Basic 6.0

Example 4-2

Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics
files (*.ico, *.bmp, *.wmf) on his/her computer. Once a file is selected,
print the corresponding file name on the form and display the graphic
file in an image box using the LoadPicture() function.

More Exploration of the Visual Basic Toolbox 4-19

One possible solution to the Image Viewer Application:

1. Place adrive list box, directory list box, file list box, four label boxes, a line (use
the line tool) and a command button on the form. We also want to add an image
box, but make it look like it's in some kind of frame. Build this display area in
these steps: draw a 'large shape’, draw another shape within this first shape that
is the size of the image display area, and lastly, draw an image box right on top of
this last shape. Since the two shapes and image box are in the same display
layer, the image box is on top of the second shape which is on top of the first
shape, providing the desired effect of a kind of picture frame. The form should
look like this:

w Forml =] E3
Labell A .
: e —1 Linel
. . N :__
- | autalBlid.vbp «| |5 3 s : Shapel
- |biblic. Idb | - : :
" | biblio.mdb T b :
" | bright.dib] bitmaps 1 Shape2
. | ctriref.cnt “'"'3 _h': .
- | chriref.frg _,_j Icans | :
- | ctrlref f ___‘1 ifclude . : :
| ctrlref gid (1 metafile] \
- | ctriref. hip [odbe : : ™
- | datamar.crit [report = il Imagel
* | datamagr. exe L : .
- | datarngr. frg Labeld B [
. | datamar. ftz L .
. |datamgr. gid — : Commandl | | Command?
- | datamar hip LRI :

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single
Caption Image Viewer
Name frmimage
Drivel:
Name drvimage
Dirl:

Name dirlmage

4-20 Learn Visual Basic 6.0

Filel:
Name
Pattern

Labell:
Caption
BackColor
BorderStyle
Name

Label2:
Caption

Label3:
Caption

Label4:
Caption

Commandl:
Caption
Default
Name

Command2:
Cancel
Caption
Name

Linel:
BorderWidth

Shapel:
BackColor
BackStyle
FillColor
FillStyle
Shape

Shape2:
BackColor
BackStyle

fillmage
.bmp;.ico;*.wmf;*gif,*jpg
[type this line with no spaces]

[Blank]

Yellow
1-Fixed Single
Iblimage

Files:

Directories:

Drives:

&Show Image
True
cmdShow

True
E&xit
cmdExit

Cyan

1-Opaque

Blue

4-Upward Diagonal
4-Rounded Rectangle

White
1-Opaque

More Exploration of the Visual Basic Toolbox 4-21

Imagel:
BorderStyle 1-Fixed Single
Name imglmage
Stretch True

3. Attach the following code to the drvimage_Change procedure.

Private Sub drvl nmage_Change()

"If drive changes, update directory
dirl mage. Path = drvlnmage. Drive

End Sub

When a new drive is selected, this code forces the directory list box to display
directories on that drive.

4. Attach this code to the dirlmage_Change procedure.

Private Sub dirl mage_Change()

"If directory changes, update file path
fillmage. Path = dirl mage. Path

End Sub

Likewise, when a new directory is chosen, we want to see the files on that
directory.

5. Attach this code to the cmdShow_Click event.

Private Sub cnmdShow C i ck()
"Put image file name together and
"l oad image into i mage box
Dim I mageNane As String
"Check to see if at root directory
If Right(fillmage.Path, 1) = "\" Then
| mmgeName = fillmage.Path + fillmage.fil ename
El se
| mageName
End |f
| bl I mage. Caption = | mageNane
i gl mage. Pi cture = LoadPi cture(l nageNane)
End Sub

fillmage. Path + "\" + fillmage.fil enane

This code forms the file name (ImageName) by concatenating the directory path
with the file name. It then displays the complete name and loads the picture into
the image box.

4-22 Learn Visual Basic 6.0

More Exploration of the Visual Basic Toolbox 4-23

6. Copy the code from the cmdShow_Click procedure and paste it into the
fillmage_DbIClick procedure. The code is identical because we want to display
the image either by double-clicking on the filename or clicking the command
button once a file is selected. Those of you who know how to call routines in
Visual Basic should note that this duplication of code is unnecessary - we could
simply have the fillmage_DbIClick procedure call the cmdShow_Click
procedure. We'll learn more about this next class.

7. Attach this code to the cmdExit_Click procedure.

Private Sub cnmdExit _dick()
End
End Sub

8. Save your project. Run and try the application. Find bitmaps, icons, and
metafiles. Notice how the image box Stretch property affects the different
graphics file types. Here’s how the form should look when displaying one
example metafile:

w. Image Yiewer

Iu::'wl:u'xmetafile'xl:uusiness'xlaptu:up'l wnf

Files: Directaries:

disk 35 vmf B EED
digk 525, wrnf b

dollar. varmf]
dallars. wmf A mietafile
enviback. wnf

erelfrat wrmnf
filectsd. vmf
filzopen. wnf

guilder. wmnf
| harddisk. varnf

dlaptop] wmk
laptop2. wrnf
rricrehip. vk

raney. wmf - Show Image E uit
rmoneybiag, wink ;I Ig o [B4261..] j |

Dirives:

4-24 Learn Visual Basic 6.0

Common Dialog Boxes

The primary use for the drive, directory, and file name list boxes is to develop
custom file access routines. Two common file access routines in Windows -based
applications are the Open File and Save File operations. Fortunately, you don’t
have to build these routines.

To give the user a standard interface for common operations in Windows-based
applications, Visual Basic provides a set of common dialog boxes, two of
which are the Open and Save As dialog boxes. Such boxes are familiar to any
Windows user and give your application a professional look. And, with Windows
95, some context -sensitive help is available while the box is displayed. Appendix
Il lists many symbolic constants used with common dialog boxes.

The Common Dialog control is a ‘custom control’ which means we have to
make sure some other files are present to use it. In normal setup configurations,
Visual Basic does this automatically. If the common dialog box does not appear
in the Visual Basic toolbox, you need to add it. This is done by selecting
Components under the Project menu. When the selection box appears, click on
Microsoft Common Dialog Control, then click OK.

The common dialog tool, although it appears on your form, is invisible at run-time.
You cannot control where the common dialog box appears on your screen. The
tool is invoked at run-time using one of five ‘Show’ methods. These methods are:

Method Common Dialog Box
ShowOpen Open dialog box
ShowSave Save As dialog box
ShowColor Color dialog box
ShowFont Font dialog box
ShowPrinter Printer dialog box

The format for establishing a common dialog box named cdIExample so that an
Open box appears is:

cdIExample.ShowOpen

Control to the program returns to the line immediately following this line, once the
dialog box is closed in some manner. Common dialog boxes are system modal.

More Exploration of the Visual Basic Toolbox 4-25

Learning proper use of all the common dialog boxes would require an extensive
amount of time. In this class, we’'ll limit ourselves to learning the basics of getting
file names from the Open and Save As boxes in their default form.

Open Common Dialog Box

The Open common dialog box provides the user a mechanism for specifying the
name of a file to open. We'll worry about how to open a file in Class 6. The box is
displayed by using the ShowOpen method. Here’s an example of an Open
common dialog box:

Open Example HE
Laak jr: ’Eﬂﬁssnrted =] ﬁl et 2
‘Balloon: | Club # Hand |# Mate

Beany @Cup @Happy @Nutehml
Eell @Delete @Heaﬂ @Phune
Calendar [#% Diamaond [1ntl no #Fin

Cameord @‘&velupe @‘Key @‘Pl&n
Card [# Fish | Il al | Present

L4 | i

File name; I Open I
Files of twpe: IBitmaps [*.brmp] LI Cancel I

" Open as read-only

Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Open. In the example, the DialogTitle is
Open Example.

FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can
be read to determine the name of the selected file.

4-26 Learn Visual Basic 6.0

Filter Used to restrict the filenames that appear in the file
list box. Complete filter specifications for forming a
Filter can be found using on-line help. In the example,
the Filter was set to allow Bitmap (*.bmp), Icon (*.ico),
Metafile (*.wmf), GIF (*.gif), and JPEG (*.jpg) types
(only the Bitmap choice is seen).

Filterindex Indicates which filter component is default. The
example uses a 1 for the Filterindex (the default
value).

Flags Values that control special features of the Open
dialog box (see Appendix Il). The example uses no
Flags value.

When the user closes the Open File box, you should check the returned file name

to make sure it meets the specifications your application requires before you try to
open the file.

Quick Example: The Open Dialog Box

1. Start a new project. Place a common dialog control, a label box, and a command
button on the form. Set the following properties:

Form1.:
Caption Common Dialog Examples
Name frmCommon

CommonDialogl:
DialogTitle Open Example
Filter Bitmaps (*.bmp)[*.bmp|
Icons (*.ico)[*.ico|Metafiles (*.wmf)[*.wmf
GIF Files (*.gif)|*.gif|[JPEG Files (*,jpg)|*.jpg
(all on one line)

Name cdlExample
Labell:

BorderStyle 1-Fixed Single

Caption [Blank]

Name IblIExample
Commandl:

Caption &Display Box

Name cmdDisplay

More Exploration of the Visual Basic Toolbox 4-27

When done, the form should look like this (make sure your label box is very long):

w. Common Dialog Examples [_ [O]=]

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cmdDi splay Cick()

cdl Exanpl e. ShowOpen

| bl Exanpl e. Caption = cdl Exanpl e.fil enane
End Sub

This code brings up the Open dialog box when the button is clicked and shows the
file name selected by the user once it is closed.

3. Save the application. Run it and try selecting file names and typing file names.
Notice names can be selected by highlighting and clicking the OK button or just by

double-clicking the file name. In this example, clicking the Cancel button is not
trapped, so it has the same effect as clicking OK.

4. Notice once you select a file name, the next time you open the dialog box, that
selected name appears as default, since the FileName property is not affected in
code.

4-28 Learn Visual Basic 6.0

Save As Common Dialog Box

The Save As common dialog box provides the user a mechanism for specifying
the name of a file to save. We’'ll worry about how to save a file in Class 6. The box
is displayed by using the ShowSave method.. Here’s an example of a Save As

common dialog box:

Save As Example

Sawe in; ’ 3] Azzorted

2] %]
!j_ﬂ‘Hand !:_Q‘Nu:ute
A Happy [Natebool
@Heaﬂ @Phune
R 1ntl no [# Pin
HKey # Plan
@Mﬂﬂ @Present

i3

P Balloon !ﬁ Chat
Eeany @‘ Cup
Eell @ Delete
Calendar @Dimund
Cameord @‘&velupe
Card |# Fish

<]

File name; I

Save I

Save as lype: IBitmaps [*.brnp]

" Open as read-only

LI Cancel I

Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DefaultExt Sets the default extension of a file name if a file is
listed without an extension.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Save As. Inthe example, the DialogTitle is

Save As Example.

FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can
be read to determine the name of the selected file.

Filter Used to restrict the filenames that appear in the file
list box.

Filterindex Indicates which filter component is default.

Flags Values that control special features of the dialog box

(see Appendix I1).

More Exploration of the Visual Basic Toolbox 4-29

The Save File box is commonly configured in one of two ways. If a file is being
saved for the first time, the Save As configuration, with some default name in the
FileName property, is used. In the Save configuration, we assume a file has been
previously opened with some name. Hence, when saving the file again, that same
name should appear in the FileName property. You've seen both configuration
types before.

When the user closes the Save File box, you should check the returned file name
to make sure it meets the specifications your application requires before you try to
save the file. Be especially aware of whether the user changed the file extension
to something your application does not allow.

Quick Example: The Save As Dialog Box

1.

We'll just modify the Open example a bit. Change the DialogTitle property of the
common dialog control to “Save As Example” and set the DefaultExt property
equal to “omp”.

In the cmdDisplay_Click procedure, change the method to ShowSave (opens
Save As box).

Save the application and run it. Try typing names without extensions and note
how .bmp is added to them. Notice you can also select file names by double-
clicking them or using the OK button. Again, the Cancel button is not trapped, so
it has the same effect as clicking OK.

4-30 Learn Visual Basic 6.0

Exercise 4

Student Database Input Screen

You did so well with last week’s assignment that, now, a school wants you to develop
the beginning structure of an input screen for its students. The required input
information is:

Student Name

Student Grade (1 through 6)

Student Sex (Male or Female)

Student Date of Birth (Month, Day, Year)

Student Picture (Assume they can be loaded as bitmap files)

Gk whE

Set up the screen so that only the Name needs to be typed; all other inputs should be
set with option buttons, scroll bars, and common dialog boxes. When a screen of
information is complete, display the summarized profile in a message box. This
profile message box should resemble this:

Student Profile B

Bobby Jones ig a student in the third grade.
He iz 9 yearz old.

Note the student’'s age must be computed from the input birth date - watch out for
pitfalls in doing the computation. The student’s picture does not appear in the profile,
only on the input screen.

More Exploration of the Visual Basic Toolbox 4-31

My Solution:

Form:

Labell

Frame2 —

optSex —>

Frame4

Properties:

txtName

IbIMonth

W Student ldentificatio

IblDay

IblYear

Framel

" Female

— f7rade L evef —
& First |

—_—

" Second
" Third

E?DW Student Profile

£ Fourth

™ Fifth

/ﬂew Student Info

optLevel

Form frmStudent:
BorderStyle = 1- Fixed Single
Caption = Student Profile

CommandButton cmdLoad:
Caption = &Load Picture

Frame Frame3:
Caption = Picture
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

cmdShow

cmdNew

—— vsbMonth

vsbYear

Load Picture

cmdEXxit

|~

|~

Frame3

imgStudent

| —

— vsbDay ‘//_’

cmdLoad

S

cdIBox

4-32 Learn Visual Basic 6.0

Image imgStudent:
BorderStyle = 1 - Fixed Single
Stretch = True

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdNew:
Caption = &New Profile

CommandButton cmdShow:
Caption = &Show Profile

Frame Frame4:
Caption = Grade Level
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

OptionButton optLevel:
Caption = Grade 6
Index =5

OptionButton optLevel:

Caption = Grade 5
Index=4

OptionButton optLevel:
Caption = Grade 4
Index =3

OptionButton optLevel:
Caption = Grade 3
Index =2

OptionButton optLevel:
Caption = Grade 2
Index=1

OptionButton optLevel:
Caption = Grade 1
Index=0

More Exploration of the Visual Basic Toolbox 4-33

Frame Frame2:
Caption = Sex
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

OptionButton optSex:
Caption = Female
Index =1

OptionButton optSex:
Caption = Male
Index=0

Frame Framel.:
Caption = Date of Birth
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

VScrollBar vsbYear:
Max = 1800
Min = 2100
Value = 1960

VScrollBar vsbDay:
Max =1
Min =31
Value =1

VScrollBar vsbMonth:
Max=1
Min =12
Value =1

Label IblYear:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

4-34 Learn Visual Basic 6.0

Label IbIDay:
Alignment = 2 - Center

BackColor = &HOOFFFFFF& (White)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

Label IbIMonth:
Alignment = 2 - Center

BackColor = &HOOFFFFFF& (White)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

TextBox txtName:

FontName = MS Sans Serif
FontSize = 10.8

CommonDialog cdIBox:
Filter = Bitmaps (*.bmp)|*.omp

Label Labell:
Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

Code:

General Declarations:

Option Explicit

Di m Mont hs(12) As String
Di m Days(12) As | nteger
Dm Grade As String

cmdExit Click Event;

Private Sub cndExit_dick()
End
End Sub

More Exploration of the Visual Basic Toolbox 4-35

4-36 Learn Visual Basic 6.0

cmdLoad Click Event:

Private Sub cndLoad C i ck()

cdl box. ShowOpen

i ngSt udent . Pi cture = LoadPi cture(cdl box. fil enane)
End Sub

cmdNew Click Event:

Private Sub cndNew C i ck()

"Bl ank out name and picture

t xt Name. Text = ""

i ngSt udent . Pi cture = LoadPicture("")
End Sub

cmdShow Click Event:

Private Sub crmdShow i ck()

Dmls_Leap As |Integer

Dim Msg As String, Age As Integer, Pronoun As String
Dm M As Integer, D As Integer, Y As Integer

' Check for leap year and if February is current nonth

| f vsbMonth.Value = 2 And ((vsbYear.Value Mod 4 = 0 And
vsbYear. Val ue Mod 100 <> 0) O vsbYear. Val ue Mod 400 = 0)
Then

Is Leap = 1
El se

Is Leap = 0
End If

' Check to make sure current day doesn't exceed nunber of
days in nonth
| f vsbDay. Val ue > Days(vsbMonth. Value) + Is_Leap Then
MsgBox "Only" + Str(Days(vsbMonth.Value) + |Is _Leap) + "
days in " + Mnths(vsbMnth. Val ue), vbOKOnly + vbCritical,
“Invalid Birth Date"
Exit Sub
End |f
"Get current date to conpute age
M = Val (For mat (Now, "nmi'))
D = Vval (Format (Now, "dd"))
Y = Val (For mat (Now, "yyyy"))

More Exploration of the Visual Basic Toolbox 4-37

Age = Y - vsbYear
| f vsbMonth.Value > M O (vsbMont h. Value = M And vsbDay >
D) Then Age = Age - 1
" Check for valid age
| f Age < 0 Then
MsgBox "Birth date is before current date.”, vbOKOnly +
vbCritical, "Invalid Birth Date"
Exit Sub
End |f

"Check to make sure name entered
I f txtNane. Text = "" Then
MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Nane Entered"
Exit Sub
End If

"Put together student profile nessage

Msg = txtNane. Text + " is a student in the " + Gade + "
grade.” + vbCr

| f opt Sex(0).Value = True Then Pronoun = "He
Pronoun = "She "

Msg = Msg + Pronoun + " is" + Str(Age) + " years old." +
vbCr

MsgBox Msg, vbOKOnly, "Student Profile”

End Sub

El se

Form Load Event:

Private Sub Form Load()
"Set arrays for dates and initialize |abels

Mont hs(1) = "January": Days(1l) = 31
Mont hs(2) = "February": Days(2) = 28
Mont hs(3) = "March": Days(3) = 31
Mont hs(4) = "April": Days(4) = 30
Mont hs(5) = "May": Days(5) = 31

Mont hs(6) = "June": Days(6) = 30
Mont hs(7) = "July": Days(7) = 31
Mont hs(8) = "August": Days(8) = 31
Mont hs(9) = "Septenber”: Days(9)

30
Mont hs(10) = "Cctober": Days(10) 31
Mont hs(11) "Novenber": Days(11l) = 30

4-38 Learn Visual Basic 6.0

Mont hs(12) = "Decenber": Days(12) = 31

| bl Mont h. Capti on = Mont hs(vsbMont h. Val ue)
| bl Day. Caption = Str(vsbDay. Val ue)

| bl Year. Caption = Str(vsbYear. Val ue)
Grade = "first”

End Sub

More Exploration of the Visual Basic Toolbox 4-39

optLevel Click Event:

Private Sub optLevel _Cick(lndex As Integer)
Sel ect Case | ndex

Case O

Grade = "first"
Case 1

Grade = "second"
Case 2

G ade = "third"
Case 3

Grade = "fourth"
Case 4

Grade = "fifth"
Case 5

Grade = "sixth"
End Sel ect
End Sub
vsbDay Change Event:

Private Sub vsbDay Change()
| bl Day. Caption = Str(vsbDay. Val ue)
End Sub

vsbMonth Change Event:

Private Sub vsbMont h_Change()
| bl Mont h. Capti on = Mont hs(vsbMont h. Val ue)
End Sub

vsbYear Change Event:

Private Sub vsbYear Change()
| bl Year. Caption = Str(vsbYear. Val ue)
End Sub

Learn Visual Basic 6.0

5. Creating a Stand-Alone Visual Basic Application

Review and Preview

We've finished looking at most of the Visual Basic tools and been introduced to
most of the Basic language features. Thus far, to run any of the applications
studied, we needed Visual Basic. In this class, we learn the steps of developing a
stand-alone application that can be run on any Windows-based machine. We'll
also look at some new components that help make up applications.

Designing an Application

Before beginning the actual process of building your application by drawing the
Visual Basic interface, setting the object properties, and attaching the Basic
code, many things should be considered to make your application useful.

A first consideration should be to determine what processes and functions you
want your application to perform. What are the inputs and outputs? Develop a
framework or flow chart of all your application's processes.

Decide what tools you need. Do the built-in Visual Basic tools and functions meet
your needs? Do you need to develop some tools or functions of your own?

Design your user interface. What do you want your form to look like? Consider
appearance and ease of use. Make the interface consistent with other Windows

applications. Familarity is good in program design.

Write your code. Make your code readable and traceable - future code modifiers
will thank you. Consider developing reusable code - modules with utility outside
your current development. This will save you time in future developments.

5-2 Learn Visual Basic 6.0

Make your code 'user-friendly." Try to anticipate all possible ways a user can
mess up in using your application. It's fairly easy to write an application that works
properly when the user does everything correctly. It's difficult to write an
application that can handle all the possible wrong things a user can do and still not
bomb out.

Debug your code completely before distributing it. There's nothing worse than
having a user call you to point out flaws in your application. A good way to find all
the bugs is to let several people try the code - a mini beta-testing program.

Using General Sub Procedures in Applications

So far in this class, the only procedures we have studied are the event-driven
procedures associated with the various tools. Most applications have tasks not
related to objects that require some code to perform these tasks. Such tasks are
usually coded in a general Sub procedure (essentially the same as a subroutine
in other languages).

Using general Sub procedures can help divide a complex application into more
manageable units of code. This helps meet the above stated goals of readability
and reusability.

Defining a Sub Procedure:

The form for a general Sub procedure named GenlSubProc is:

Sub GenlSubProc(Arguments) 'Definition header

End Sub

The definition header names the Sub procedure and defines any arguments
passed to the procedure. Arguments are a comma-delimited list of variables
passed to and/or from the procedure. If there are arguments, they must be
declared and typed in the definition header in this form:

Varl As Typel, Var2 As Typez, ...

Creating a Stand-Alone Visual Basic Application 5-3

Sub Procedure Example:

Here is a Sub procedure (USMexConvert) that accepts as inputs an amount in
US dollars (USDollars) and an exchange rate (UStoPeso). It then outputs an
amount in Mexican pesos (MexPesos).

Sub USMexConvert (USDollars As Single, UStoPeso As Single,

MexPesos As Single)
MexPesos = UsDollars * UsToPeso
End Sub

Calling a Sub Procedure:

There are two ways to call or invoke aSub procedure. You can also use these to
call event-driven procedures.

Method 1:
Call GenlSubProc(Arguments) (if there are no Arguments, do not type the
parentheses)
Method 2:
GenlSubProc Arguments

| prefer Method 1 - it's more consistent with calling protocols in other languages
and it cleanly delineates the argument list. It seems most Visual Basic
programmers use Method 2, though. | guess they hate typing parentheses!
Choose the method you feel more comfortable with.
Example
To call our dollar exchange routine, we could use:

Call USMexConvert (USDollars, UStoMex, MexPesos)

or

USMexConvert USDollars, UStoMex, MexPesos

5-4 Learn Visual Basic 6.0

Locating General Sub Procedures:

General Sub procedures can be located in one of two places in your application:
attached to aform or attached to a module. Place the procedure in the form if it
has a purpose specifically related to the form. Place itin a module ifitis a
general purpose procedure that might be used by another form or module or
another application.

Whether placing the procedure in a form or module, the methods of creating the
procedure are the same. Select or open the form or module's code window.
Make sure the window's Object list says (General) and the Procedure list says
(Declarations). You can now create the procedure by selecting Add Procedure
from Visual Basic's Tools menu. A window appears allowing you to select Type
Sub and enter a name for your procedure. Another way to create a Sub is to go to
the last line of the General Declarations section, type Sub followed by a space
and the name of your procedure. Then, hit Enter. With either method for
establishing a Sub, Visual Basic will form a template for your procedure. Fill in
the Argument list and write your Basic code. In selecting the Insert Procedure
menu item, note another option for your procedure is Scope. You have the choice
of Public or Private. The scope word appears before the Sub word in the
definition heading. If a module procedure is Public, it can be called from any other
procedure in any other module. If a module procedure is Private, it can only be
called from the module it is defined in. Note, scope only applies to procedures in
modules. By default, all event procedures and general procedures in a form are
Private - they can only be called from within the form. You must decide the scope
of your procedures.

Passing Arguments to Sub Procedures:

A quick word on passing arguments to procedures. By default, they are passed
by reference. This means if an argument is changed within the procedure, it will
remain changed once the procedure is exited.

C programmers have experienced the concept of passing by value, where a
parameter changed in a procedure will retain the value it had prior to calling the
routine. Visual Basic also allows calling by value. To do this, place the word
ByVal in front of each such variable in the Argument list.

Creating a Stand-Alone Visual Basic Application 5-5

Creating a Code Module

If you're going to put code in a module, you'll need to know how to create and save
a module. A good way to think about modules is to consider them forms without
any objects, just code.

To create a module, click on the New Module button on the toolbar, or select the
Module option from the Insert menu. The module will appear. Note any modules
appear in the Project Window, along with your form(s). You use the Project
Window to move among forms and modules.

Once the module is active, establish all of your procedures as outlined above. To
name the module, click on the properties window while the module is active. Note
Name is the only property associated with a module. Saving a module is just like
saving a form - use the Save File and Save File As options.

Using General Function Procedures in Applications

Related to Sub procedures are Function procedures. A Function procedure, or
simply Function, performs a specific task within a Visual Basic program and
returns a value. We've seen some built-in functions such as the MsgBox and the

Format function.

Defining a Function:

The form for a general Function named GenlFcn is:

Function GenlFcn(Arguments) As Type 'Definition header

GenlFcn = ...
End Function

The definition header names the Function and specifies its Type (the type of the
returned value) and defines any input Arguments passed to the function. Note
that somewhere in the function, a value for GenlFcn must be computed for return
to the calling procedure.

5-6 Learn Visual Basic 6.0

Function Example:

Here is a Function named CylVol that computes the volume of a cylinder of
known height (Height) and radius (Radius).

Function CylVol(Height As Single, Radius As Single) As Single
Dim Area As Single

Const Pl = 3.1415926

Area = Pl * Radius " 2

CylVol = Area * Height

End Sub

Calling a Function:

To call or use a Function, you equate a variable (of proper type) to the Function,
with its arguments. That is, if the Function GenlFunc is of Type Integer, then use
the code segment:

Dim RValue as Integer

RValue = GenlFunc(Arguments)
Example
To call the volume computation function, we could use:

Dim Volume As Single

Volume = CylVol(Height, Radius)
Locating Function Procedures:
Like Sub procedures, Functions can be located in forms or modules. They are
created using exactly the same process described for Sub procedures, the only

difference being you use the keyword Function.

And, like Sub procedures, Functions (in modules) can be Public or Private.

Creating a Stand-Alone Visual Basic Application 5-7

Quick Example: Temperature Conversion

1.

Open the Temperature Conversion application from last class. Note in the
vsbTemp_Change and vsbTemp_Scroll procedures, there is a lot of repeated
code. We'll replace this code with a Sub procedure that prints the values and a
Function procedure that does the temperature conversion.

. Add a module to your application. Create a Function (Public by default) named

DegF_To_DegC.

Public Function DegF _To DegC(DegF As Integer) As I|nteger
DegF _To _DegC = Cint((DegF - 32) * 5/ 9)
End Function

Go back to your form. Create a Sub procedure named ShowTemps. Fill in the

code by cutting from an old procedure. Note this code uses the new Function to
convert temperature and prints both values in their respective label boxes.

Private Sub ShowTenps()

| bl TenpF. Caption = Str(TenpF)
TenmpC = DegF_To_DegC(TenpF)

| bl TenpC. Caption = Str(TenmpQC)
End Sub

No arguments are needed since TempF and TempC are global to the form.

. Rewrite the vsbTemp_Change and vsbTemp_Scroll procedures such that they

call the new Sub procedure:

Private Sub vsbTenp_ Change()
TenpF = vsbTenp. Val ue

Cal | ShowTenps

End Sub

Private Sub vsbTenp_Scroll ()
Cal |l vsbTenp_Change
End Sub

Note how vsbTemp_Scroll simply calls vsbTemp_Change since they use the
same code. This is an example of calling an event procedure.

Save the application and run it. Note how much neater and modular the code is.

5-8 Learn Visual Basic 6.0

Quick Example: Image Viewer (Optional)

1. Open the Image Viewer application from last class. Note the code in the
cmdShow_Click andfillmage_DblClick events is exactly the same. Delete the
code in the fillmage_DDbIClick procedure and simply have it call the
cmdShow_Click procedure. That s, replace the fillmage_DblClick procedure
with:

Private Sub fillmage_Dbl dick()
Call cmdShow Cick
End Sub

2. This is another example of calling an event procedure. Save your application.

Adding Menus to an Application

As mentioned earlier, it is important that the interface of your application be
familar to a seasoned, or not-so-seasoned, Windows user. One such familiar
application component is the Menu bar. Menus are used to provide a user with
choices that control the application. Menus are easily incorporated into Visual
Basic programs using the Menu Editor.

A good way to think about elements of a menu structure is to consider them as a
hierarchical list of command buttons that only appear when pulled down from the
menu bar. When you click on a menu item, some action is taken. Like command
buttons, menu items are named, have captions, and have properties.

Example

Here is a typical menu structure:

File Edit Format
New Cut Bold
Open Copy Italic
Save Paste Underline
Size
Exit 10
15

20

Creating a Stand-Alone Visual Basic Application 5-9

The underscored characters are access keys, just like those on command
buttons. The level of indentation indicates position of a menu item within the
hierarchy. For example, New is a sub-element of the File menu. The line under
Save in the File menu is a separator bar (separates menu items).

With this structure, the Menu bar would display:
File Edit Format

The sub-menus appear when one of these ‘top’ level menu items is selected.
Note the Size sub-menu under Format has another level of hierarchy. Itis good
practice to not use more than two levels in menus. Each menu element will have a
Click event associated with it.

The Menu Editor allows us to define the menu structure, adding access keys and
shortcut keys, if desired. We then add code to the Click events we need to
respond to. The Menu Editor is selected from the Tools menu bar or by clicking
the Menu Editor on the toolbar. This selection can only be made when the form

needing the menu is active. Upon selecting the editor, and entering the example
menu structure, the editor window looks like this:

= Menu Editor

Caption: |&File oK. |
Name: ImnuFiIe Cancel I
Index: I Shortcut: I(Nune) EI

HelpContextlD: ||] NegotiatePosition: 0-MNone

[T Checked X Enabled X ¥isible ™ WindowList

Ll Ll il Ll | Next I ‘ Insert I | Delete I

&File

& New
---&0pen =
---&Save

---E&xit

&Edit

=-Cult CirleX
---&Copy Ctrl+C
~--&Paste Ctrl+Y
Fiormat E‘

Each item in the menu structure requires several entries in this design box.

5-10 Learn Visual Basic 6.0

The Caption box is where you type the text that appears in the menu bar. Access
keys are defined in the standard way using the ampersand (&). Separator bars (a
horizontal line used to separate menu items) are defined by using a Caption of a
single hyphen (-). When assigning captions and access keys, try to use conform
to any established Windows standards.

The Name box is where you enter a control name for each menu item. This is
analogous to the Name property of command buttons and is the hame used to set
properties and establish the Click event procedure for each menu item. Each
menu item must have a name, even separator bars! The prefix mnu is used to
name menu items. Sub-menu item names usually refer back to main menu
headings. For example, if the menu item New is under the main heading File
menu, use the name mnuFileNew.

The Index box is used for indexing any menu items defined as control arrays.

The Shortcut dropdown box is used to assign shortcut keystrokes to any item in
a menu structure. The shortcut keystroke will appear to the right of the caption for
the menu item. An exa mple of such a keystroke is using Ctrl+X to cut text.

The HelpContextID and NegotiatePosition boxes relate to using ortline help
and object linking embedding, and are beyond the scope of this discussion.

Each menu item has four properties associated with it. These properties can be
set at design time using the Menu Editor or at run-time using the standard dot
notation. These properties are:

Checked Used to indicate whether a toggle option is turned on
or off. If True, a check mark appears next to the
menu item.

Enabled If True, menu item can be selected. If False, menu
item is grayed and cannot be selected.

Visible Controls whether the menu item appears in the
structure.

WindowList Used with Multiple Document Interface (MDI) - not
discussed here.

At the bottom of the Menu Editor form is a list box displaying the hierarchical list of
menu items. Sub-menu items are indented to their level in the hierarchy. The right
and left arrows adjust the levels of menu items, while the up and down arrows
move ite ms within the same level. The Next, Insert, and Delete buttons are used
to move the selection down one line, insert a line above the current selection, or
delete the current selection, respectively.

Creating a Stand-Alone Visual Basic Application 5-11

Let’s look at the process of entering the example menu structure. To do this, we
‘stack’ the three menus on top of each other, that is enter items as a long list. For
each item in this list, we provide a Caption (with access key, if any), a Name
(indicative of where it is in the structure), a shortcut key (if any), and provide
proper indentation to indication hierarchical location (use the left and right arrows
to move in and out).

After entering this structure, the complete list box at the bottom of the Menu Editor
would look like this (notice access keys are indicated with ampersands and
shortcut keys are listed at the right, and, the assigned names are shown at the left
- these don't really appear in the Menu Editor list box; they are shown to illustrate
one possible naming convention):

Name

mnuFile &File

mnuFileNew | ... &New
mnuFileOpen | ... &Open
mnuFileSave | ... &Save

mnuFileBar | ... -

mnuFileExit | ... E&xit

mnuEdit &Edit

mnuEditCut | ... Cué&t Ctrl+X
mnuEditCopy | &Copy Ctrl+C
mnuEditPaste | ... &Paste Ctrl+V
mnuFmt F&ormat

mnuFmtBold | Bold

mnuFmtlitalic | Italic
mnuFmtUnderline | Underline
mnuFmtSize | ... Size
mnuFmMtSizel0 | 10
mnuFmtSizel5 | ... 15
mnuFmtSize20 | ... 20

At first, using the Menu Editor may seem a little clunky. After you've done a
couple of menu structures, however, its use becomes obvious. A neat thing is:
after setting up your menu, you can look at it in the Visual Basic design mode and
see if it looks like it should. In the next example, you'll get practice setting up a
similar menu structure.

5-12 Learn Visual Basic 6.0

Example 5-1

Note Editor

1. Starta new project. We will use this application the rest of this class. We will
build a note editor with a menu structure that allows us to control the appearance
of the text in the editor box. Since this is the first time we've built menus, I'll
provide the steps involved.

2. Place a large text box on a form. Set the properties of the form and text box:

Form1:
BorderStyle 1-Fixed Single
Caption Note Editor
Name frmEdit
Textl:
BorderStyle 1-Fixed Single
MultiLine True
Name txtEdit
ScrollBars 2-Vertical
Text [Blank]

The form should look something like this when you're done:

w. Mote Editor M=l E3

Creating a Stand-Alone Visual Basic Application 5-13

3. We want to add this menu structure to the Note Editor:

FEile Format
New Bold
Italic

Exit Underline
Size

Small

Medium
Large

Note the identified access keys. Bring up the Menu Editor and assign the
following Captions, Names, and Shortcut Keys to each item. Make sure each
menu item is at is proper location in the hierarchy.

Caption Name Shortcut
&File mnuFile [None]
&New mnuFileNew [None]
- mnuFileBar [None]
E&xit mnuFileExit [None]
F&ormat mnuFmt [None]
& Bold mnuFmt Bold Ctrl+B
<alic mnuFmtltalic Ctrl+l
&Underline mnuFmtUnderline Ctrl+U
&Size mnuFmtSize [None]
&Small mnuFmtSizeSmall Ctrl+S
&Medium mnuFmtSizeMedium Ctrl+M
&Large mnuFmtSizelLarge Ctrl+L

The Small item under the Size sub-menu should also be Checked to indicate the

initial font size. When done, look through your menu structure in design mode to
make sure it looks correct. With a menu, the form will appear like:

w. Mote Editor =] 3

File Faormat

5-14 Learn Visual Basic 6.0

4. Each menu item that performs an action requires code for its Click event. The
only menu items that do not have events are the menu and sub-menu headings,
namely File, Format, and Size. All others need code. Use the following code for
each menu item Click event. (This may look like a lot of typing, but you should be
able to use a lot of cut and paste.)

If mnuFileNew is clicked, the program checks to see if the user really wants a
new file and, if so (the default response), clears out the text box:

Private Sub mmuFi | eNew Cl i ck()

"If user wants new file, clear out text

D m Response As I nteger

Response = MsgBox("Are you sure you want to start a new
file?", vbYesNo + vbQuestion, "New File")

If Response = vbYes Then txtEdit.Text = ""

End Sub

If mnuFileExit is clicked, the program checks to see if the user really wants to
exit. If not (the default response), the user is returned to the program:

Private Sub mmuFil eExit _Cick()
'Make sure user really wants to exit
Di m Response As | nteger
Response = MsgBox("Are you sure you want to exit the
note editor?", vbYesNo + vbCritical + vbDefaultButton2,
"Exit Editor")
I f Response = vbNo Then
Exit Sub
El se
End
End I f
End Sub

If mnuFmtBold is clicked, the program toggles the current bold status:

Private Sub mmuFm Bol d_Cl i ck()

" Toggl e bold font status

mmuFnt Bol d. Checked = Not (mmuFnt Bol d. Checked)
txt Edit. FontBold = Not (txtEdit.FontBol d)

End Sub

Creating a Stand-Alone Visual Basic Application 5-15

If mnuFmtltalic is clicked, the program toggles the current italic status:

Private Sub mmuFntltalic_Cick()

"Toggle italic font status

muFm I talic. Checked = Not (mmuFmtItalic. Checked)
txtEdit.Fontltalic = Not (txtEdit.Fontltalic)

End Sub

If mnuFmtUnderline is clicked, the program toggles the current underline status:

Private Sub mmuFnt Underline_ i ck()

" Toggl e underline font status

muFnt Under | i ne. Checked = Not (muFnt Underl i ne. Checked)
t xt Edi t. Font Underline = Not (txtEdit.FontUnderline)

End Sub

If either of the three size sub-menus is clicked, indicate the appropriate check
mark location and change the font size:

Private Sub muFnt Si zeSmal | _d i ck()
'"Set font size to small

muFnt Si zeSmal | . Checked = True
muFnt Si zeMedi um Checked = Fal se
muFnt Si zeLar ge. Checked = Fal se
txtEdit. FontSize = 8

End Sub

Private Sub mmuFm Si zeMedi um C i ck()
'"Set font size to nedium

muFnt Si zeSmal | . Checked = Fal se
muFm Si zeMedi um Checked = True
muFnt Si zeLar ge. Checked = Fal se
txtEdit. FontSize = 12

End Sub

Private Sub muFnt Si zeLarge_d i ck()
"Set font size to |arge

muFnt Si zeSnal | . Checked = Fal se
muFmnt Si zeMedi um Checked = Fal se
muFnt Si zeLar ge. Checked = True
txtEdit. FontSize = 18

End Sub

5-16 Learn Visual Basic 6.0

5. Save your application. We will use it again in Class 6 where we’'ll learn how to
save and open text files created with the Note Editor. Test out all the options.
Notice how the toggling of the check marks works. Try the shortcut keys.

Using Pop-Up Menus

Pop-up menus can show up anywhere on a form, usually being activated by a
single or double-click of one of the two mouse buttons. Most Windows
applications, and Windows itself, use pop-up menus. For example, using the right
hand mouse button on almost any object in Windows 95 will display a pop-up
menu. In fact, with the introduction of such pop-up menus with Windows 95, the
need for adding such menus to Visual Basic applications has been reduced.

Adding pop-up menus to your Visual Basic application is a two step process.
First, you need to create the menu using the Menu Editor (or, you can use any
existing menu structure with at least one sub-menu). If creating a unique pop-up
menu (one that normally does not appear on the menu bar), it's Visible property is
set to be False at design time. Once created, the menu is displayed on a form
using the PopupMenu method.

The PopupMenu method syntax is:
ObjectName.PopupMenu MenuName, Flags, X, Y

The ObjectName can be omitted if working with the current form. The arguments
are:

MenuName Full-name of the pop-up menu to display.
Flags Specifies location and behavior of menu (optional).
X, Y (X, Y) coordinate of menu in twips (optional; if either value

Is omitted, the current mouse coordinate is used).

The Flags setting is the sum of two constants. The first constant specifies

location:
Value Meaning Symbolic Constant
0 Left side of menu is at X coordinate vbPopupMenuLeftAlign
4 Menu is centered at X coordinate vbPopupMenuCenterAlign

8 Right side of menu is at X coordinate vbPopupMenuRightAlign

Creating a Stand-Alone Visual Basic Application 5-17

The second specifies behavior:

Value Meaning Symbolic Constant
0 Menu reacts only to left mouse button vbPopupMenuLeftButton
2 Menu reacts to either mouse button vbPopupMenuRightButton

You need to decide where to put the code that displays the pop-up menu, that is
the PopupMenu method. Usually, a pop-up menu is displayed in response to a
Click event or MouseDown event. The standard (starting with Windows 95)
seems to be leaning toward displaying a pop-up menu in response to aright
mouse button click.

Just like other menus, each item on your pop-up menu will need code for the
corresponding Click event. Many times, though, the code is simply a call to an
existing menu item’s Click event.

Assigning Icons to Forms

Notice that whenever you run an application, a small icon appears in the upper left
hand corner of the form. This icon is also used to represent the form when it is
minimized at run-time. The icon seen is the default Visual Basic icon for forms.
Using the Icon property of a form, you can change this displayed icon.

The idea is to assign a unique icon to indicate the form’s function. To assign an
icon, click on the Icon property in the Property Window for the form. Click on the
ellipsis (...) and a window that allows selection of icon files will appear.

The icon file you load must have the .ico filename extension and format. When
you first assign an icon to a form (at design time), it will not appear on the form. It
will only appear after you have run the application once.

Designing Your Own Icon with IconEdit

Visual Basic offers a wealth of icon files from which you could choose an icon to
assign to your form(s). But, it's also fun to design your own icon to add that
personal touch.

PC Magazine offers a free ultility called IconEdit that allows you to design and

save icons. Included with these notes is this program and other files (directory
IconEdit). To install these files on your machine, copy the folder to your hard drive.

5-18 Learn Visual Basic 6.0

To run IconEdit, click Start on the Windows 95 task bar, then click Run. Find the
IconEdit.exe program (use Browse mode). You can also establish an shortcut to
start IconEdit from your desktop, if desired. The following Editor window will
appear:

‘*E'; IconEdit =1 E3

File Edit Icon Window Help

% Iconl.ico !IEI!!!

H EEEENEEE
L8 [o]l lem

The basic idea of IconEdit is to draw an icon in the 32 x 32 grid displayed. You
can draw single points, lines, open rectangles and ovals, and filled rectangles and
ovals. Various colors are available. Once completed, the icon file can be saved
for attaching to a form.

Another fun thing to do with IconEdit is to load in Visual Basic icon files and see
how much artistic talent really goes into creating an icon.

We won't go into a lot of detail on using the IconEdit program here - | just want you
to know it exists and can be used to create and save icon files. Its use is fairly
intuitive. Consult the on-line help of the program for details. And, there is a .txt
file included that is very helpful.

Creating a Stand-Alone Visual Basic Application 5-19

Creating Visual Basic Executable Files

Up to now, to run any of the applications created, we needed Visual Basic. The
goal of creating an application is to let others (without Visual Basic) use it. This is
accomplished by creating an executable version of the application.

Before creating an executable, you should make sure your program is free of
bugs and operating as desired. Save all forms, modules, and project files. Any
later changes to the application will require re-creating the executable file.

The executable file will have the extension .exe. To create an exe file for your
application, select Make [Project name] exe from Visual Basic’s File menu.
This will display the Make EXE File dialog box, where you name the exe file. To
open the Options box, click that button. The EXE Options dialog box will appear:

Projectl - Project Properties

Make i Compile I

—Mersion Number ————— 1 Application

Major: Minor: Revision: :
Title: |Examples-2

| il:u]n e
Icon: IFrmEdit o i @
[Auko Increment

—Mersion Information

Type: Walue:
ICn:nmpan':.f Marme x |
<

Command Ling Arguments: I

Conditional Compilation Arguments: I

(] 4 i Cancel I Help |

We'll only concern ourselves with two pieces of information in this box: Title and
Icon. The Title is the name you want to give your application. It does not have to
be the same as the Project name. The Icon is selected from icons assigned to
form(s) in your application. The selected icon is used to identify the application
everywhere it is needed in Windows 95.

Once you have selected these options, return to the Make EXE File dialog box,

select a directory (best to use the same directory your application files are in) and
name for your executable file. Click OK and the exe file is created.

5-20 Learn Visual Basic 6.0

Use Windows Explorer to confirm creation of the file. And, while there, double-
click the executable file name and the program will run!

Creating a Stand-Alone Visual Basic Application 5-21

Example 5-2

Note Editor - Building an Executable and Attaching an Icon

. Open your Note Editor project. Attach an icon to the form by setting the Icon
property. If you want to, open up the Image Viewer project from last class to take
alook at icon files. The icon | used is note.ico

. Create an executable version of your Note Editor. Confirm creation of the exe file
and run it under the Windows Explorer.

. Something you might want to try with your application is create a Windows 95
shortcut to run your program, that is, display a clickable icon. To get started, click
the Start button on the taskbar, then Settings, then Taskbar. Here, you can add
programs to those that show up when you select Start. The process is
straightforward. Find your application, specify the folder you want the shortcut to
appear in, and name your application. When done, the icon will appear in the
specified location.

5-22 Learn Visual Basic 6.0

Using the Visual Basic Package & Deployment Wizard

We were able to run the Note Editor executable file because Visual Basic is
installed on our system. If you gave someone a copy of your exe file and they tried
to run it, it wouldn’t work (unless they have Visual Basic installed also). The
reason it wouldn't run is that the executable file also needs some ancillary files
(primarily, so-called dynamic link libraries) to run properly. These libraries provide
most of the code associated with keeping things on a form working properly.

So to allow others to run your application, you need to give them the executable
file (exe) and at least two dynamic link libraries. Unfortunately, these dynamic link
libraries take up over 1 Meg of disk space, so it's hard to move those around on a
floppy disk.

Visual Basic solves this ‘distribution problem’ by providing a very powerful tool
called the Visual Basic Package & Deployment Wizard. This wizard is
installed along with Visual Basic.

The Package & Deployment Wizard prepares your application for distribution. It
helps you determine which files to distribute, creates a Setup program (written in
Visual Basic) that works like all other Windows Setup programs (setup.exe),
compresses all required files to save disk space, and writes the compressed files
to the distribution media of choice, usually floppy disk(s).

To start the Package & Deployment Wizard, click the Start button in Windows,
then find the Visual Basic program folder - click on Visual Basic Tools, then
choose Package & DeploymentWizard The setup follows several steps. The
directions provided with each step pertain to the simple applications we develop
in class. For more complicated examples, you need to modify the directions,
especially regarding what files you need to distribute with your application.

Creating a Stand-Alone Visual Basic Application 5-23

Step 1. Initial Information. Enter the path and file name for your project file
(.vbp). Click the ellipsis (...) to browse vbp files. If an executable (.exe) file does
not exist, one will be created. Click the ‘Package’ button to continue. If you have

previously saved a setup package for the selected project, it will load the package
file created during that session.

o Package and Deployment Wizard

Select projeck:

’ :_I Browse. ., l

Bundle this project into a distributable package, such as an
Internet cab or a setup program,

Package

Send one of this project's packages to a distribution site, such as
an Inkernet server,

Deploy

Fename, duplicate, and delete vour packaging and deployment
scripts for this project,

Manage
Scripks

Close i Help i

Step 2. Package Type. Choose the Standard Setup Package (we want a
standard setup program). Click Next to continue.

Step 3. Package Folder. Select a directory where you want the application
distribution package to be saved. Click Next to continue. Click Back to return to
the previous step.

Step 4. Included Files. The Package & Deployment Wizard will list all files it
believes are required for your application to function properly. If your application
requires any files not found by the wizard (for example, external data files you have
created), you would add them to the setup list here (click Add). To continue, click
Next. Click Back to return to the previous step.

Step 5. Cab Options. Distribution files are called cab files (have a cab
extension). You can choose a Single cab file written to your hard drive (if you use
CD ROM distribution), or Multiple cab files (to allow distribution on floppy disks). If
you choose, Multiple, you also specify the capacity of the disks you will use to

5-24 Learn Visual Basic 6.0

write your distribution file(s). Make your choice. Click Next to Continue. Click
Back to return to the previous step.

Step 6. Installation Title. Enter a title you want your application to have. Click
Next to Continue. Click Back to return to previous step.

Step 7. Start Menu Items. This step determines where your installed
application will be located on the user’s Start menu. We will use the default
choice. Click Next to Continue. Click Back to return to previous step.

Step 8. Install Locations. The wizard gives you an opportunity to change the
locations of installed files. Click Next to Continue. Click Back to return to
previous step.

Step 9. Shared Files. Some files in your application may be shared by other
applications. Shared files will not be removed if the application is uninstalled.
Decide if you have shared files. Click Next to Continue. Click Back to return to
previous step.

Step 10. Finished! Provide a name for saving the script for this wizard session
(a file that saves answers to all the questions you just answered). Click Finish to

Continue. Click Back to return to previous step. The wizard will create and write
the cab files and tell you where they are saved. Click Close. You will be returned
to the Package & Deployment Wizard opening window. Click Close.

Step 11. Write Distribution Media. This is not a step in the wizard, but one you
must take. The cab files (distribution files) the wizard wrote must now be copied
to your distribution media. If you wrote a single cab file (for CD ROM), copy that
file, the setup.exe file (the setup application), and the setup.Ist file to your CD
ROM). If you wrote multiple files (for floppy disks), copy the setup.exe, setup.lst,
and first cab file (1 at end of file name) to floppy number 1. Copy the second cab
file (2 at end of file name) to floppy number 2. Copy all subsequent cab files to as
many floppies as needed. Properly label all floppies.

To install the application using the distribution CD ROM or floppy disk(s), a user
simply puts CD ROM or floppy number 1 in a drive. Then, through the Windows
Explorer, run the setup.exe program. The user will be taken through the
installation procedure step-by-step. The procedure is nearly identical to the
installation process for all Microsoft products.

The Package & Deployment Wizard is a very powerful tool. We've only looked at
using it for simple applications. As your programming skills begin to include
database access and other advanced topics, you will need to become familiar
with other files that should be distributed with your applications.

Creating a Stand-Alone Visual Basic Application 5-25

Example 5-3

Note Editor - Creating a Distribution Disk

1. Open your Note Editor project again. Create a distribution disk using the
Package & Deployment Wizard.

2. Tryinstalling the application on your computer. Better yet, take the disk to another
Windows 95/98/NT-based machine, preferably without Visual Basic installed.
Install the application using the distribution disk and test its operation.

5-26 Learn Visual Basic 6.0

This page intentionally not left blank. ||

Creating a Stand-Alone Visual Basic Application 5-27

Exercise 5

US Capitals Quiz

Develop an application that quizzes a user on states and capitals in the United
States. Use a menu structure that allows the user to decide whether they want to
name states or capitals and whether they want mulitple choice or type-in answers.
Throughly test your application. Design an icon for your program using IconEdit or
some other program. Create an executable file. Create a distribution disk using the
Application Setup Wizard. Give someone your application disk and have them install
it on their computer and try out your nifty little program.

My Solution:
Form:
mnuOptions
, w US Capitals =1 B3
mnuFile v
\Eile Dptionz
bHeadGiven —* Gfate: 11iiiiiliii
: I «—1 IbiGiven
IbIHeadAnswer _:’Capital: -— IbiComment
tXtAnswer ———— il IblAnswer(0)
(under txtAnswer)
«——1— IblAnswer(1)
<————— IblAnswer(2)
«——+— IblAnswer(3)

cmdNext ——=» SRR

Hext Question | |

- .. o S T IblIScore
cmdExit T . 11111010111

5-28 Learn Visual Basic 6.0

Properties:

Form frmCapitals:
BorderStyle = 1 - Fixed Single
Caption = US Capitals

CommandButton cmdNext:

Caption = &Next Question
Enabled = False

CommandButton cmdExit:
Caption = E&xit

TextBox txtAnswer:
FontName = MS Sans Serif
FontSize = 13.2
Visible = False

Label IblIComment:
Alignment = 2 - Center

BackColor = &HO0C00000& (Blue)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 13.2

Fontltalic = True

ForeColor = &HOO00FFFF& (Yellow)

Label IblScore:

Alignment = 2 - Center
AutoSize = True

BackColor = &HOOOOFFFF& (Yellow)

BorderStyle = 1 - Fixed Single
Caption = 0%

FontName = MS Sans Serif
FontSize = 15.6

FontBold = True

Label IblAnswer (control array):
Alignment = 2 - Center

BackColor = &HOOFFFFFF& (White)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 13.2
Index=0,1,2,3

Creating a Stand-Alone Visual Basic Application

5-29

Label IbIHeadAnswer:
Caption = Capital:
FontName = MS Sans Serif
FontSize = 13.2
FontBold = True

Label IbIHeadGiven:
Caption = State:
FontName = MS Sans Serif
FontSize = 13.2
FontBold = True

Menu mnuFile:
Caption = &File

Menu mnuFileNew:
Caption = &New

Menu mnuFileBar:
Caption =-

Menu mnuFileExit:
Caption = E&xit

Menu mnuOptions:
Caption = &Options

Menu mnuOptionsCapitals:

Caption = Name &Capitals
Checked = True

Menu mnuOptionsState:
Caption = Name &State

Menu mnuOptionsBar:
Caption =-

Menu mnuOptionsMC.:
Caption = &Multiple Choice Answers
Checked = True

Menu mnuOptionsType:
Caption = &Type In Answers

5-30 Learn Visual Basic 6.0

Code:

General Declarations:

Option Explicit

Di m Correct Answer As | nteger

Di m NumAns As | nteger, NunmCorrect As Integer
Di m Wsound(26) As I nteger

Dim State(50) As String, Capital (50) As String

SoundEx General Function (this is a neat little function to check if spelling of two
words is similar):

Private Function SoundEx(W As String, Wound() As Integer)
As String
‘Cener ates Soundex code for W
“Al'l ows answers whose spelling is close, but not exact
DmWenp As String, S As String
DmL As Integer, | As Integer
Dim Wrrev As Integer, Wnd As Integer, Cindex As I|Integer
Wenmp = UCase(W
L = Len(W
If L <> 0 Then
S = Left(Wenp, 1)
Worev = 0
If L > 1 Then
For I =2 To L
C ndex = Asc(Md(Wenp, I, 1)) - 64
If Cndex >= 1 And G ndex <= 26 Then
Wwnd = Wsound(Ci ndex) + 48
If Wsnd <> 48 And Wnd <> Worev Then S = S +
Chr (Wnd)
Wrev = Wsnd
End If
Next
End If
El se
s=""
End If
SoundEx = S
End Function

Creating a Stand-Alone Visual Basic Application 5-31

Update_Score General Procedure:

Private Sub Update_Score(lscorrect As |Integer)
Dm1 As Integer
‘Check if answer is correct
cndNext . Enabl ed = True
cnmdNext . Set Focus
I f Iscorrect = 1 Then

NunmCorrect = NunCorrect + 1

| bl Conment . Caption = "Correct!"
El se

| bl Comment. Caption = "Sorry ...
End If
"Di splay correct answer and update score
I f nmmuQOpti onsMC. Checked = True Then

For | = 0 To 3

I f muOptionsCapitals.Checked = True Then
I f I bl Answer(1).Caption <> Capital (Correct Answer)

Then
| bl Answer (1). Caption = ""
End If
El se
If | bl Answer(l).Caption <> State(Correct Answer) Then
| bl Answer (1). Caption = ""
End I f
End |f
Next |
El se
I f nmmuQOpti onsCapital s. Checked = True Then
t Xt Answer . Text = Capi tal (Correct Answer)
El se
t xt Answer . Text = State(Correct Answer)
End If
End If
| bl Score. Capti on = Format (NumCorrect / NumAns, "##0%)
End Sub

cmdExit Click Event:

Private Sub cmdExit_Cick()
"Exit program

Call mmuFileExit_dick

End Sub

5-32 Learn Visual Basic 6.0

Creating a Stand-Alone Visual Basic Application 5-33

cmdNext Click Event:

Private Sub cnmdNext Cick()
'Cenerate the next question
cndNext . Enabl ed = Fal se

Cal | Next _Question(Correct Answer)
End Sub

Form Activate Event:

Private Sub Form Activate()
Call mmufilenew click
End Sub

Form Load Event:;

Private Sub Form Load()
Random ze Ti ner
' Load soundex function array

Wsound(1l) = 0: Wound(2) = 1. Wound(3) = 2: Wound(4) = 3
Wsound(5) = 0: Wsound(6) = 1. Wsound(7) = 2: Wound(8) =0
Wsound(9) = 0: Wound(10) = 2: Wound(1ll) = 2: Wound(12)
=4

Wsound(13) = 5: Wsound(14) = 5: Wound(15) = 0: Wound(16)
=1

Wsound(17) = 2: Wsound(18) = 6: Wsound(19) = 2: Wound(20)
=3

Wsound(21) = 0: Wound(22) = 1: Wound(23) = 0: Wound(24)
=2

Wsound(25) = 0: Wound(26) = 2

'Load state/capital arrays

State(l) = "Alabama": Capital (1) = "Montgonery"

State(2) = "Alaska": Capital (2) = "Juneau"

State(3) = "Arizona": Capital (3) = "Phoenix"

State(4) = "Arkansas": Capital (4) = "Little Rock"

State(5) = "California": Capital (5) = "Sacranento"
State(6) = "Col orado": Capital (6) = "Denver"

State(7) = "Connecticut”: Capital (7) = "Hartford"

State(8) = "Delaware": Capital (8) = "Dover"

State(9) = "Florida": Capital (9) = "Tallahassee"

State(10) = "Georgia": Capital (10) = "Atl anta"

State(1ll) = "Hawaii": Capital (11) = "Honol ul u"

5-34 Learn Visual Basic 6.0

State(12)
St at e(13)
St at e(14)
St at e(15)
St ate(16)
State(17)
State(18)
State(19)
St at e(20)
St ate(21)
St at e(22)
St at e(23)
St at e(24)
St at e(25)
St at e(26)
St at e(27)
St at e(28)
St at e(29)
St at e(30)
St at e(31)
St at e(32)
St at e(33)
St at e(34)
St at e(35)
St at e(36)
St at e(37)
St at e(38)
St at e(39)
St at e(40)
St at e(41)
State(42)
St at e(43)
St ate(44)
St at e(45)
St at e(46)
State(47)
St at e(48)
St at e(49)
St at e(50)
End Sub

"I daho": Capital (12) = "Boi se"

“I'llinois": Capital (13) = "Springfield"
"Indi ana": Capital (14) = "I ndi anapolis”
"lowa": Capital (15) = "Des Mbines"
"Kansas": Capital (16) = "Topeka"
"Kentucky": Capital (17) = "Frankfort™
"Loui siana": Capital (18) = "Baton Rouge"
"“Mai ne": Capital (19) = "Augusta"

“Maryl and": Capital (20) = "Annapolis"
"Massachusetts": Capital (21) = "Boston"
"M chigan": Capital (22) = "Lansing"

"M nnesota": Capital (23) = "Saint Paul"”
"M ssissippi": Capital (24) = "Jackson”

"M ssouri": Capital (25) = "Jefferson City"
"Montana": Capital (26) = "Hel ena”
"Nebraska": Capital (27) = "Lincoln"
"Nevada": Capital (28) = "Carson City"
"New Hanpshire": Capital (29) = "Concord"
"New Jersey": Capital (30) = "Trenton"
"New Mexico": Capital (31) = "Santa Fe"
"New York": Capital (32) = "Al bany"

"North Carolina": Capital (33) = "Ral eigh”
"North Dakota": Capital (34) = "Bi snarck"
"Chio": Capital (35) = "Col unbus"

"kl ahoma": Capital (36) = "kl ahoma City"
"Oregon": Capital (37) = "Sal enf
"Pennsyl vani a": Capital (38) = "Harrisburg"
"Rhode |sland": Capital (39) = "Providence"
"South Carolina": Capital (40) = "Col unbi a"
"Sout h Dakota": Capital (41) = "Pierre”
"Tennessee": Capital (42) = "Nashville"
"Texas": Capital (43) = "Austin”

"Uah": Capital (44) = "Salt Lake Cty"
"Vernont": Capital (45) = "Montpelier”
"Virginia": Capital (46) = "Ri chnond"
"Washi ngton": Capital (47) = "d ynpi a"
"West Virginia": Capital (48) = "Charl eston”
"W sconsin": Capital (49) = "Madi son"

"Wom ng": Capital (50) = "Cheyenne"

Creating a Stand-Alone Visual Basic Application 5-35

IblAnswer Click Event:

Private Sub | bl Answer _Cick(Ilndex As Integer)
" Check nmultiple choice answers
Dim | scorrect As |nteger
"If already answered, exit
| f crmdNext. Enabled = True Then Exit Sub
| scorrect =0
I f mMmuOpti onsCapitals.Checked
I f | bl Answer (1 ndex). Capti on
Then Iscorrect =1
El se
I f | bl Answer (1 ndex) . Caption = State(Correct Answer) Then
| scorrect =1

True Then
Capi tal (Correct Answer)

End I f
Cal | Update_Score(lscorrect)
End Sub

mnuFileExit Click Event:

Private Sub mmuFil eExit_Cick()
"End the application

End

End Sub

mnuFileNew Click Event:

Private Sub mmufil enew click()
'Reset the score and start again
NumAns = 0O

NunmCorrect = 0O

| bl Score. Caption = "0%

| bl Comment. Caption = ""
cnmdNext . Enabl ed = Fal se

Cal | Next _Question(Correct Answer)
End Sub

5-36 Learn Visual Basic 6.0

mnuOptionsCapitals Click Event:

Private Sub muOptionsCapitals _Cick()

"Set up for providing capital, given state
mMuQOpt i onsSt at e. Checked = Fal se

muQOpt i onsCapi t al s. Checked = True

| bl HeadG ven. Caption = "State:"

| bl HeadAnswer . Caption = "Capital:"

Call mufilenew click

End Sub

mnuOptionsMC Click Event:

Private Sub muOpti onsMC Cick()
"Set up for multiple choice answers
Dm1 As Integer
mMuQOpt i onsMC. Checked = True
muQOpt i onsType. Checked = Fal se
For I = 0 To 3

| bl Answer (1).Visible = True
Next |
t xt Answer . Vi si bl e = Fal se
Call mmufilenew click
End Sub

mnuOptionsState Click Event:

Private Sub muOptionsState C i ck()

"Set up for providing state, given capital
muQOpt i onsSt at e. Checked = True

mMuQOpt i onsCapi tal s. Checked = Fal se

| bl HeadG ven. Caption = "Capital:"

| bl HeadAnswer . Caption = "State: "

Call mufil enew click

End Sub

Creating a Stand-Alone Visual Basic Application

5-37

mnuOptionsType Click Event:

Private Sub muQOpti onsType Cick()
"Set up for type in answers
Dm1 As Integer
muOpt i onsMC. Checked = Fal se
mMuQOpt i onsType. Checked = True
For | = 0 To 3

| bl Answer (1). Visible
Next |
t xt Answer . Visible = True
Call mmufilenew click
End Sub

Fal se

Next_Question General Procedure:

Private Sub Next Question(Answer As |nteger)
Dim VUsed(50) As Integer, | As Integer, J As Integer
Di m | ndex(3)
| bl Conment . Caption = ""
NumAns = NumAns + 1
'Generate the next question based on sel ected options
Answer = Int(Rnd * 50) + 1
I f mMmuQOptionsCapital s. Checked = True Then
| bl G ven. Capti on = State(Answer)
El se
| bl G ven. Caption = Capital (Answer)
End If
I f nmmuQOpti onsMC. Checked = True Then
"Mul tiple choice answers
"Vused array is used to see which states have
'been sel ected as possible answers

For | =1 To 50
VUsed(l) =0
Next |

"Pick four different state indices (J) at random
'These are used to set up nmultiple choice answers
"Stored in the Index array
| =0
Do
Do
J =Int(Rnd * 50) + 1
Loop Until VUsed(J) = 0 And J <> Answer

5-38 Learn Visual Basic 6.0

VUsed(J) =1

I ndex(1) =J

I =1 + 1
Loop Until I =4

"Now replace one index (at randon) with correct answer
I ndex(Int(Rnd * 4)) = Answer
"Display multiple choice answers in | abel boxes
For I =0 To 3
I f mMmuOptionsCapitals.Checked = True Then
| bl Answer (1) . Caption = Capital (I ndex(l))
El se
| bl Answer (1) . Caption = State(lndex(l))
End If
Next |
El se
" Type-in answers
t xt Answer . Locked = Fal se
t xt Answer . Text = ""
t xt Answer . Set Focus
End If
End Sub

Creating a Stand-Alone Visual Basic Application 5-39

txtAnswer KeyPress Event:

Private Sub txt Answer _KeyPress(KeyAscii As |nteger)
' Check type in answer'
Dim | scorrect As |nteger
D m Your Answer As String, TheAnswer As String
"Exit if already answered
| f cnmdNext. Enabl ed = True Then Exit Sub
| f (KeyAscii >= vbKeyA And KeyAscii <= vbKeyZz) _
O (KeyAscii >= vbKeyA + 32 And KeyAscii <= vbKeyZ + 32) _
O KeyAscii = vbKeySpace Or KeyAscii = vbKeyBack O
KeyAscii = vbKeyReturn Then
' Accept abl e keystroke
| f KeyAscii <> vbKeyReturn Then Exit Sub
'Lock text box once answer entered
t xt Answer . Locked = True
| scorrect =0
' Convert response and correct answers to all upper
‘case for typing problenms
Your Answer = UCase(t xt Answer. Text)
I f muOpti onsCapital s. Checked = True Then
TheAnswer = UCase(Capital (Correct Answer))
El se
TheAnswer = UCase(St at e(Correct Answer))
End If
' Check for both exact and approxi mate spellings
| f Your Answer = TheAnswer O _
SoundEx(Your Answer, Wsound()) = SoundEx(TheAnswer,
Wsound()) Then Iscorrect =1
Cal |l Update_Score(lscorrect)
El se
" Unaccept abl e keystroke
KeyAscii = 0
End If
End Sub

6-1

Learn Visual Basic 6.0

6. Error-Handling, Debugging and File Input/Output

Review and Preview

In this class, we expand on our Visual Basic knowledge from past classes and
examine a few new topics. We first look at handling errors in programs, using
both run-time error trapping and debugging technigues. We then study input and
output to disks using sequential files and random access files.

Error Types

No matter how hard we try, errors do creep into our programs. These errors can
be grouped into three categories:

1. Syntax errors
2. Run-time errors
3. Logic errors

Syntax errors occur when you mistype a command or leave out an expected
phrase or argument. Visual Basic detects these errors as they occur and even
provides help in correcting them. You cannot run a Visual Basic program until all
syntax errors have been corrected.

Run-time errors are usually beyond your program's control. Examples include:
when a variable takes on an unexpected value (divide by zero), when a drive door
is left open, or when a file is not found. Visual Basic allows you to trap such errors
and make attempts to correct them.

Logic errors are the most difficult to find. With logic errors, the program will
usually run, but will produce incorrect or unexpected results. The Visual Basic
debugger is an aid in detecting logic errors.

6-2 Learn Visual Basic 6.0

Some ways to minimize errors:
P Design your application carefully. More design time means less debugging

time.
P Use comments where applicable to help you remember what you were trying

to do.
P Use consistent and meaningful naming conventions for your variables, objects,

and procedures.

Run-Time Error Trapping and Handling
Run-time errors are trappable. That is, Visual Basic recognizes an error has
occurred and enables you to trap it and take corrective action. If an error occurs
and is not trapped, your program will usually end in a rather unceremonious
manner.

Error trapping is enabled with the On Error statement:

On Error GoToerrlabel

Yes, this uses the dreaded GoTo statement! Any time a run-time error occurs
following this line, program control is transferred to the line labeled errlabel.
Recall a labeled line is simply a line with the label followed by a colon (:).

The best way to explain how to use error trapping is to look at an outline of an
example procedure with error trapping.

Sub SubExample()

: [Declare variables, ...]
On Errér GoTo HandleErrors

: [Procedure code]

Exit Sub
HandleErrors:

: [Error handling code]

End Su.b

Error-Handling, Debugging and File I nput/Output 6-3

Once you have set up the variable declarations, constant definitions, and any
other procedure preliminaries, the On Error statement is executed to enable error
trapping. Your normal procedure code follows this statement. The error handling
code goes at the end of the procedure, following the HandleErrors statement
label. This is the code that is executed if an error is encountered anywhere in the
Sub procedure. Note you must exit (with Exit Sub) from the code before reaching
the HandleErrors line to avoid inadvertent execution of the error handling code.

Since the error handling code is in the same procedure where an error occurs, all
variables in that procedure are available for possible corrective action. If at some
time in your procedure, you want to turn off error trapping, that is done with the
following statement:

On Error GoTo 0

Once a run-time error occurs, we would like to know what the error is and attempt
to fixit. This is done in the error handling code.

Visual Basic offers help in identifying run-time errors. The Err object returns, in its
Number property (Err.Number), the number associated with the current error
condition. (The Err function has other useful properties that we won'’t cover here -
consult on-line help for further information.) The Error() function takes this error
number as its argument and returns a string description of the error. Consult on-
line help for Visual Basic run-time error numbers and their descriptions.

Once an error has been trapped and some action taken, control must be returned
to your application. That control is returned via the Resume statement. There are
three options:

Resume Lets you retry the operation that caused the error.
That is, control is returned to the line where the error
occurred. This could be dangerous in that, if the error
has not been corrected (via code or by the user), an
infinite loop between the error handler and the
procedure code may result.

Resume Next Program control is returned to the line immediately
following the line where the error occurred.

Resume label Program control is returned to the line labeled label.

6-4 Learn Visual Basic 6.0

Be careful with the Resume statement. When executing the error handling portion
of the code and the end of the procedure is encountered before a Resume, an
error occurs. Likewise, if a Resume is encountered outside of the error handling
portion of the code, an error occurs.

General Error Handling Procedure

Development of an adequate error handling procedure is application
dependent. You need to know what type of errors you are looking for and what
corrective actions must be taken if these errors are encountered. For example, if
a 'divide by zero' is found, you need to decide whether to skip the operation or do
something to reset the offending denominator.

What we develop here is a generic framework for an error handling procedure. It
simply informs the user that an error has occurred, provides a description of the
error, and allows the user to Abort, Retry, or Ignore. This framework is a good
starting point for designing custom error handling for your applications.

The generic code (begins with label HandleErrors) is:

HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore,
"Error Number" + Str(Err.Number))
Case vbAbort
Resume ExitLine
Case vbRetry
Resume
Case vbignore
Resume Next
End Select
ExitLine:
Exit Sub

Let's look at what goes on here. First, this routine is only executed when an error
occurs. A message box is displayed, using the Visual Basic provided error
description [Error(Err.Number)] as the message, uses acritical icon along with
the Abort, Retry, and Ignore buttons, and uses the error number [Err.Number]
as the title. This message box returns a response indicating which button was
selected by the user. If Abort is selected, we simply exit the procedure. (Thisis
done using a Resume to the line labeled ExitLine. Recall all error trapping must
be terminated with a Resume statement of some kind.) If Retry is selected, the
offending program line is retried (in a real application, you or the user would have
to change something here to correct the condition causing the error). If Ignore is

Error-Handling, Debugging and File I nput/Output 6-5

selected, program operation continues with the line following the error causing
line.

To use this generic code in an existing procedure, you need to do three things:

1. Copy and paste the error handling code into the end of your procedure.

2. Place an Exit Sub line immediately preceding the HandleErrors labeled line.

3. Place the line, On Error GoTo HandleErrors, at the beginning of your
procedure.

For example, if your procedure is the SubExample seen earlier, the modified
code will look like this:

Sub SubExample()

: [Declare variables, ...]
On Err(.)r GoTo HandleErrors

: [Procedure code]

Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore,
"Error Number" + Str(Err.Number))
Case vbAbort
Resume ExitLine
Case vbRetry
Resume
Case vbignore
Resume Next
End Select
ExitLine:
Exit Sub
End Sub

Again, this is a very basic error-handling routine. You must determine its utility in your
applications and make any modifications necessary. Specifically, you need code to
clear error conditions before using the Retry option.

6-6 Learn Visual Basic 6.0

One last thing. Once you've written an error handling routine, you need to test it to
make sure it works properly. But, creating run-time errors is sometimes difficult
and perhaps dangerous. Visual Basic comes to the rescue! The Visual Basic
Err object has a method (Raise) associated with it that simulates the occurrence
of a run-time error. To cause an error with value Number, use:

Err.Raise Number

We can use this function to completely test the operation of any error handler we
write. Don't forget to remove the Raise statement once testing is completed,
though! And, to really get fancy, you can also use Raise to generate your own
‘application-defined’ errors. There are errors specific to your application that you
want to trap.

To clear an error condition (any error, not just ones generated with the Raise
method), use the method Clear:

Err.Clear

Error-Handling, Debugging and File I nput/Output 6-7

Example 6-1

Simple Error Trapping

1. Starta new project. Add a text box and a command button.

2. Setthe properties of the form and each control:

Form1.:
BorderStyle 1-Fixed Single
Caption Error Generator
Name frmError
Commandl:
Caption Generate Error
Default True
Name cmdGenError
Textl:
Name txtError
Text [Blank]

The form should look something like this:

w. Error Generator =] E3

6-8 Learn Visual Basic 6.0

3. Attach this code to the cmdGenError_Click event.

Private Sub cnmdGenError_Click()
On Error GoTo Handl eErrors
Err. Rai se Val (txtError. Text)
Err.d ear
Exit Sub
Handl eErrors:
Sel ect Case MsgBox(Error (Err. Nunber), vbCritical +
vbAbort Retryl gnore, "Error Nunmber" + Str(Err.Nunber))
Case vbAbort
Resune ExitlLine
Case vbRetry
Resune
Case vbl gnore
Resunme Next
End Sel ect
Exi t Li ne:
Exit Sub
End Sub

In this code, we simply generate an error using the number input in the text box.

The generic error handler then displays a message box which you can respond to

in one of three ways.

4. Save your application. Try it out using some of these typical error numbers (or
use numbers found with on-line help). Notice how program control changes
depending on which button is clicked.

Error Number Error Description
6 Overflow
9 Subscript out of range
11 Division by zero
13 Type mismatch
16 Expression too complex
20 Resume without error
52 Bad file name or number
53 File not found
55 File already open
61 Disk full
70 Permission denied

92 For loop not initialized

Error-Handling, Debugging and File I nput/Output 6-9

Debugging Visual Basic Programs

We now consider the search for, and elimination of, logic errors. These are
errors that don’t prevent an application from running, but cause incorrect or
unexpected results. Visual Basic provides an excellent set of debugging tools to
aid in this search.

Debugging a code is an art, not a science. There are no prescribed processes
that you can follow to eliminate all logic errors in your program. The usual
approach is to eliminate them as they are discovered.

What we’ll do here is present the debugging tools available in the Visual Basic
environment (several of which appear as buttons on the toolbar) and describe
their use with an example. You, as the program designer, should select the
debugging approach and tools you feel most comfortable with.

The interface between your application and the debugging tools is via three
different debug windows: the Immediate Window, the Locals Window, and the
Watch Window. These windows can be accessed from the View menu (the
Immediate Window can be accessed by pressing Ctrl+G). Or, they can be
selected from the Debug Toolbar (accessed using the Toolbars option under
the View menu):

m| M %= (S ‘%EF&&‘%
/

. | Watch
Immediate
Locals

All debugging using the debug windows is done when your application is in break
mode. You can enter break mode by setting breakpoints, pressing Ctrl+Break,
or the program will go into break mode if it encounters an untrapped error or a
Stop statement.

Once in break mode, the debug windows and other tools can be used to:

Determine values of variables

Set breakpoints

Set watch variables and expressions

Manually control the application

Determine which procedures have been called
Change the values of variables and properties

TUUTUUUTU

6-10 Learn Visual Basic 6.0

Example 6-2

Debugging Example

1. Unlike other examples, we'll do this one as a group. It will be used to demonstrate

use of the debugging tools.

. The example simply has a form with a single command button. The button is used
to execute some code. We won't be real careful about proper naming
conventions and such in this example.

w. Debug Example =] E3

. The code attached to this button’s Click event is a simple loop that evaluates a
function at several values.

Private Sub Commandl _Cli ck()
Dim X As Integer, Y As I|Integer
X =

Loop Wiile X <= 20
End Sub

This code begins with an X value of 0 and computes the Y value using the general
integer function Fcn. It then increments X by 1 and repeats the Loop. It continues
looping While X is less than or equal to 20. The function Fcn is computed using:

Function Fcn(X As Integer) As |Integer
Fcn = Cnt(0.1 * X" 2)
End Function

Admittedly, this code doesn’t do much, especially without any output, but it makes
a good example for looking at debugger use. Set up the application and get
ready to try debugging.

Error-Handling, Debugging and File Input/Output 6-11

Using the Debugging Tools

There are several debugging tools available for use in Visual Basic. Access to

these tools is provided with both menu options and buttons on the Debug toolbar.

These tools include breakpoints, watch points, calls, step into, step over, and step
out.

The simplest tool is the use of direct prints to the immediate window.

Printing to the Immediate Window:

You can print directly to the immediate window while an application is running.
Sometimes, this is all the debugging you may need. A few carefully placed print
statements can sometimes clear up all logic errors, especially in small
applications.
To print to the immediate window, use the Print method:

Debug.Print [List of variables separated by commas or semi-colons]

Debug.Print Example:

1. Place the following statement in the Command1_Click procedure
after the line calling the general procedure Fcn:

Debug. Print X; Y
and run the application.
2. Examine the immediate window. Note how, at each iteration of the
loop, the program prints the value of X and Y. You could use this
information to make sure X is incrementing correctly and that Y values

look acceptable.

3. Remove the Debug.Print statement.

6-12 Learn Visual Basic 6.0

Breakpoints:
K

In the above examples, the program ran to completion before we could look at the
debug window. In many applications, we want to stop the application while it is
running, examine variables and then continue running. This can be done with
breakpoints.

A breakpoint is a line in the code where you want to stop (temporarily) the
execution of the program, that is force the program into break mode. To set a
breakpoint, put the cursor in the line of code you want to break on. Then, press
<F9> or click the Breakpointbutton on the toolbar or select Toggle Breakpoint
from the Debug menu. The line will be highlighted.

When you run your program, Visual Basic will stop when it reaches lines with
breakpoints and allow you to use the immediate window to check variables and
expressions. To continue program operation after a breakpoint, press <F5>, click
the Run button on the toolbar, or choose Start from the Run menu.

You can also change variable values using the immediate window. Simply type a
valid Basic expression. This can sometimes be dangerous, though, as it may
change program operation completely.

Breakpoint Example:

1. Set a breakpoint on the X = X + 1line in the sample program. Run the
program.

2. When the program stops, display the immediate window and type the
following line:

Print X;Y

3. The values of these two variables will appear in the debug window. You
can use a question mark (?) as shorthand for the command Print, if
you'd like. Restart the application. Print the new variable values.

4. Try other breakpoints if you have time. Once done, all breakpoints can
be cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints
from the Debug menu. Individual breakpoints can be toggled using
<F9> or the Breakpointbutton on the toolbar.

Error-Handling, Debugging and File Input/Output 6-13

Viewing Variables in the Locals Window:

=

The locals window shows the value of any variables within the scope of the
current procedure. As execution switches from procedure to procedure, the
contents of this window changes to reflect only the variables applicable to the
current procedure. Repeat the above example and notice the values of X and Y
also appear in the locals window.

Watch Expressions:
[

The Add Watch option on the Debug menu allows you to establish watch
expressions for your application. Watch expressions can be variable values or
logical expressions you want to view or test. Values of watch expressions are
displayed in the watch window.

In break mode, you can use the Quick Watch button on the toolbar to add watch

expressions you need. Simply put the cursor on the variable or expression you
want to add to the watch list and click the Quick Watch button.

Waitch expressions can be edited using the Edit Watch option on the Debug
menu.

Watch Expression Example:
1. Set a breakpoint at the X = X + 1 line in the example.

2. Setawatch expression for the variable X. Run the application.
Notice X appears in the watch window. Every time you re-start the
application, the value of X changes.

3. Atsome point in the debug procedure, add a quick watch on Y.
Notice it is now in the watch window.

4. Clear the breakpoint. Add a watch on the expression: X =Y. Set
Watch Type to ‘Break When Value Is True.” Run the application.
Notice it goes into break mode and displays the watch window
whenever X =Y. Delete this last watch expression.

6-14 Learn Visual Basic 6.0

Call Stack:

Bl

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or selecting
Call Stack from the View menu) will display all active procedures, that is those
that have not been exited.

Call Stack helps you unravel situations with nested procedure calls to give you
some idea of where you are in the application.

Call Stack Example:

1. Set a breakpoint on the Fcn = Cint() line in the general function
procedure. Run the application. It will break at this line.

2. Press the Call Stack button. It will indicate you are currently in the Fcn
procedure which was called from the Command1_Click procedure.
Clear the breakpoint.

Single Stepping (Step Into): I_l
VE

While at a breakpoint, you may execute your program one line at a time by
pressing <F8>, choosing the Step Into option in the Debug menu, or by clicking

the Step Into button on the toolbar.

This process is single stepping. It allows you to watch how variables change (in
the locals window) or how your form changes, one step at a time.

You may step through several lines at a time by using Run To Cursor option.
With this option, click on a line below your current point of execution. Then press
Ctrl+<F8> (or choose Run To Cursor in the Debug menu). the program will run
through every line up to the cursor location, then stop.

Error-Handling, Debugging and File Input/Output 6-15

Step Into Example:
1. Set a breakpoint on the Do line in the example. Run the application.

2. When the program breaks, use the Step Into button to single step
through the program.

3. At some point, put the cursor on the Loop While line. Try the Run To
Cursor option (press Ctrl+<F8>).

Procedure Stepping (Step Over):

|E|

While single stepping your program, if you come to a procedure call you know
functions properly, you can perform procedure stepping. This simply executes
the entire procedure at once, rather than one step at a time.

To move through a procedure in this manner, press Shift+<F8>, choose Step
Over from the Debug menu, or press the Step Over button on the toolbar.

Step Over Example:
1. Run the previous example. Single step through it a couple of times.

2. One time through, when you are at the line calling the Fcn function,
press the Step Over button. Notice how the program did not single
step through the function as it did previously.

Function Exit (Step Out):
oz |

While stepping through your program, if you wish to complete the execution of a
function you are in, without stepping through it line -by-line, choose the Step Out
option. The function will be completed and you will be returned to the procedure
accessing that function.

To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the

Debug menu, or press the Step Out button on the toolbar. Try this on the
previous example.

6-16 Learn Visual Basic 6.0

Debugging Strategies

We've looked at each debugging tool briefly. Be aware this is a cursory
introduction. Use the on-line help to delve into the details of each tool described.
Only through lots of use and practice can you become a proficient debugger.
There are some guidelines to doing a good job, though.

My first suggestion is: keep it simple. Many times, you only have one or two bad
lines of code. And you, knowing your code best, can usually quickly narrow down
the areas with bad lines. Don't set up some elaborate debugging procedure if
you haven't tried a simple approach to find your error(s) first. Many times, just a
few intelligently-placed Debug.Print statements or a few examinations of the
immediate and locals windows can solve your problem.

A tried and true approach to debugging can be called Divide and Conquer. If
you're not sure where your error is, guess somewhere in the middle of your
application code. Set a breakpoint there. If the error hasn’t shown up by then, you
know it's in the second half of your code. If it has shown up, it's in the first half.
Repeat this division process until you've narrowed your search.

And, of course, the best debugging strategy is to be careful when you first design
and write your application to minimize searching for errors later.

Error-Handling, Debugging and File Input/Output 6-17

Sequential Files

In many applications, it is helpful to have the capability to read and write
information to a disk file. This information could be some computed data or
perhaps information loaded into a Visual Basic object.

Visual Basic supports two primary file formats: sequential and random access.
We first look at sequential files.

A sequential file is a line-by-ine list of data. You can view a sequential file with
any text editor. When using sequential files, you must know the order in which
information was written to the file to allow proper reading of the file.
Sequential files can handle both text data and variable values. Sequential access
is best when dealing with files that have lines with mixed information of different
lengths. | use them to transfer data between applications.

Sequential File Output (Variables)
We first look at writing values of variables to sequential files. The first step is to
Open a file to write information to. The syntax for opening a sequential file for

output is:

Open SegFileName For Output As #N

where SegFileName is the name of the file to open andN is an integer file
number. The filename must be a complete path to the file.

When done writing to the file, Close it using:
Close N

Once afile is closed, it is saved on the disk under the path and filename used to
open the file.

Information is written to a sequential file one line at a time. Each line of output
requires a separate Basic statement.

6-18 Learn Visual Basic 6.0

There are two ways to write variables to a sequential file. The first uses the Write
statement:

Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable
list is omitted, a blank line is printed to the file.) This statement will write one line
of information to the file, that line containing the variables specified in the variable
list. The variables will be delimited by commas and any string variables will be
enclosed in quotes. This is a good format for exporting files to other applications
like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer

Open TestOut For Output As #1
Write #1, A, B, C

Write #1, D

Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by commas, with B (a string variable) in quotes.
The second line will simply have the value of the variable D.

The second way to write variables to a sequential file is with the Print statement:
Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line
will be printed.) If the variables in the list are separated with semicolons (;), they
are printed with a single space between them in the file. If separated by commas
(,), they are spaced in wide columns. Be careful using the Print statement with
string variables. The Print statement does not enclose string variables in quotes,
hence, when you read such a variable back in, Visual Basic may have trouble
knowing where a string ends and begins. It's good practice to ‘tack on’ quotes to
string variables when using Print.

Error-Handling, Debugging and File Input/Output 6-19

Example

Dim A As Integer, B As String, C As Single, D As Integer

Open TestOut For Output As #1
Print#1, A; Chr(34) + B + Chr(34), C
Print#1, D

Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by spaces. B will be enclosed by quotes
[Chr(34)]. The second line will simply have the value of the variable D.

Quick Example: Writing Variables to Sequential Files
1. Startanew project.

2. Attach the following code to the Form_Load procedure. This code simply writes
a few variables to sequential files.

Private Sub Form Load()
DmA As Integer, B As String, C As Single, D As Integer
A=25

B = "Visual Basic"
C = 2.15
D=-20

Open "Test1l. Txt" For Qutput As #1
Open "Test 2. Txt" For Qutput As #2
Wite #1, A B, C

Wite #1, D

Print #2, A B, C

Print #2, D

Close 1

Cl ose 2

End Sub

3. Run the program. Use a text editor (try the Windows 95 Notepad) to examine the
contents of the two files, Test1.Txt and Test2.Txt. They are probably in the
Visual Basic main directory. Note the difference in the two files, especially how
the variables are delimited and the fact that the string variable is not enclosed in
guotes in Test2.Txt. Save the application, if you want to.

6-20 Learn Visual Basic 6.0

Error-Handling, Debugging and File Input/Output 6-21

Sequential File Input (Variables)

To read variables from a sequential file, we essentially reverse the write
procedure. First, open the file using:

Open SegFileName For Input As #N

where N is an integer file number and SeqFileName is a complete file path. The
file is closed using:

Close N

The Input statement is used to read in variables from a sequential file. The
format is:

Input #N, [variable list]

The variable names in the list are separated by commas. If no variables are
listed, the current line in the file N is skipped.

Note variables must be read in exactly the same manner as they were written. So,
using our previous example with the variables A, B, C, and D, the appropriate
statements are:

Input#1, A, B, C
Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D
from the second line. It doesn’'t matter whether the data was originally written to
the file using Write or Print (i.e. commas are ignored).

6-22 Learn Visual Basic 6.0

Quick Example: Reading Variables from Sequential Files
1. Start a new project or simply modify the previous quick example.

2. Attach the following code to the Form_Load procedure. This code reads in files
created in the last quick example.

Private Sub Form Load()

DmA As Integer, B As String, C As Single, D As Integer
Open "Test1l. Txt" For Input As #1

I nput #1, A B, C

Debug. Print "A="; A

Debug. Print "B="; B

Debug. Print "C="; C

| nput #1, D

Debug. Print "D="; D
Close 1

End Sub

Note the Debug.Print statements and how you can add some identifiers (in
guotes) for printed information.

3. Run the program. Look in the debug window and note the variable values. Save
the application, if you want to.

4. Rerun the program using Test2.Txt as in the input file. What differences do you
see? Do you see the problem with using Print and string variables? Because of
this problem, | almost always use Write (instead of Print) for saving variable
information to files. Edit the Test2.Txt file (in Notepad), putting quotes around the
words Visual Basic. Rerun the program using this file as input - it should work
fine now.

Error-Handling, Debugging and File Input/Output 6-23

Writing and Reading Text Using Sequential Files

In many applications, we would like to be able to save text information and retrieve
it for later reference. This information could be atext file created by an
application or the contents of a Visual Basic text box.

Writing Text Files:

To write a sequential text file, we follow the simple procedure: open the file, write
the file, close the file. If the file is a line-by-ine text file, each line of the file is
written to disk using a single Print statement:

Print #N, Line

where Line is the current line (a text string). This statement should be in a loop
that encompasses all lines of the file. You must know the number of lines in your
file, beforehand.

If we want to write the contents of the Text property of a text box named
txtExample to a file, we use:

Print #N, txtExample.Text
Example

We have a text box named txtExample. We want to save the contents of the Text
property of that box in a file named My Text.ned on the c: drive in the \MyFiles
directory. The code to do this is:

Open “c:\MyFiles\MyText.ned” For Output As #1
Print #1, txtExample. Text
Close 1
The text is now saved in the file for later retrieval.
Reading Text Files:
To read the contents of a previously-saved text file, we follow similar steps to the

writing process: open the file, read the file, close the file. If the file is a text file, we
read each individual line with the Line Input command:

Line Input #1, Line

6-24 Learn Visual Basic 6.0

This line is usually placed in a Do/Loop structure that is repeated untill all lines of
the file are read in. The EOF() function can be used to detect an end-of-file
condition, if you don’t know, a prioiri, how many lines are in the file.

To place the contents of a file opened with number N into the Text property of a
text box named txtExample we use the Input function:

txtExample.Text = Input(LOF(N), N)

This Input function has two arguments: LOF(N), the length of the file opened as N
and N, the file number.

Example
We have a file named MyText.ned stored on the c: drive in the \MyFiles directory.
We want to read that text file into the text property of a text box named
txtExample. The code to do this is:

Open “c:\MyFiles\MyText.ned” For Input As #1

txtExample.Text = Input(LOF(1), 1)

Close 1

The text in the file will now be displayed in the text box.

Error-Handling, Debugging and File Input/Output 6-25

Random Access Files

Note that to access a particular data item in a sequential file, you need to read in
all items in the file prior to the item of interest. This works acceptably well for
small data files of unstructured data, but for large, structured files, this process is
time-consuming and wasteful. Sometimes, we need to access data in
nonsequential ways. Files which allow nonsequential access are random
access files.

To allow nonsequential access to information, a random access file has a very
definite structure. A random access file is made up of a number of records, each
record having the same length (measured in bytes). Hence, by knowing the length
of each record, we can easily determine (or the computer can) where each record
begins. The first record in a random access file is Record 1, not O as used in
Visual Basic arrays. Each record is usually a set of variables, of different types,
describing some item. The structure of a random access file is:

Record 1
N bytes

Record 2
N bytes

Record 3
N bytes

Record Last
N bytes

A good analogy to illustrate the differences between sequential files and random
access files are cassette music tapes and compact discs. To hear a song on a
tape (a sequential device), you must go past all songs prior to your selection. To
hear a song on a CD (a random access device), you simply go directly to the
desired selection. One difference here though is we require all of our random
access records to be the same length - not a good choice on CD’s!

6-26 Learn Visual Basic 6.0

To write and read random access files, we must know the record length in
bytes. Some variable types and their length in bytes are:

Type Length (Bytes)

Integer 2

Long 4

Single 4

Double 8

String 1 byte per character

So, for every variable that is in a file’s record, we need to add up the individual
variable length’s to obtain the total record length. To ease this task, we introduce
the idea of user-defined variables.

User-Defined Variables

Data used with random access files is most often stored in user-defined
variables. These data types group variables of different types into one assembly
with a single, user-defined type associated with the group. Such types
significantly simplify the use of random access files.

The Visual Basic keyword Type signals the beginning of a user-defined type
declaration and the words End Type signal the end. An example best illustrates
establishing a user-defined variable. Say we want to use a variable that
describes people by their name, their city, their height, and their weight. We
would define a variable of Type Person as follows:

Type Person
Name As String
City As String
Height As Integer
Weight As Integer
End Type

These variable declarations go in the same code areas as normal variable
declarations, depending on desired scope. At this point, we have not reserved
any storage for the data. We have simply described to Visual Basic the layout of
the data.

Error-Handling, Debugging and File Input/Output 6-27

To create variables with this newly defined type, we employ the usual Dim
statement. For our Person example, we would use:

Dim Lou As Person

Dim John As Person

Dim Mary As Person
And now, we have three variables, each containing all the components of the
variable type Person. To refer to a single component within a user-defined type,
we use the dot-notation:

VarName.Component

As an example, to obtain Lou’s Age, we use:

Dim AgeValue as Integer

AgeValue = Lou.Age
Note the similarity to dot-notation we’ve been using to set properties of various
Visual Basic tools.

Writing and Reading Random Access Files

We look at writing and reading random access files using a user-defined
variable. For other variable types, refer to Visual Basic on-line help. To open a
random access file named RanFileName, use:

Open RanFileName For Random As #N Len = RecordLength
where N is an available file number and RecordLength is the length of each
record. Note you don’'t have to specify an input or output mode. With random
access files, as long as they're open, you can write or read to them.

To close a random access file, use:

Close N

6-28 Learn Visual Basic 6.0

As mentioned previously, the record length is the sum of the lengths of all
variables that make up a record. A problem arises with String type variables.
You don’t know their lengths ahead of time. To solve this problem, Visual Basic
lets you declare fixed lengths for strings. This allows you to determine record
length. If we have a string variable named StrExample we want to limit to 14
characters, we use the declaration:

Dim StrExample As String * 14

Recall each character in a string uses 1 byte, so the length of such a variable is 14
bytes.

Recall our example user-defined variable type, Person. Let's revisit it, now with
restricted string lengths:

Type Person
Name As String * 40
City As String * 35
Height As Integer
Weight As Integer
End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2). To open a file
named PersonData as File #1, with such records, we would use the statement:

Open PersonData For Random As #1 Len =79
The Get and Put statements are used to read from and write to random access

files, respectively. These statements read or write one record at a time. The
syntax for these statements is simple:

Get #N, [RecordNumber], variable
Put #N, [RecordNumber], variable

The Get statementreads from the file and stores data in the variable, whereas

the Put statement writes the contents of the specified variable to the file. In each
case, you can optionally specifiy the record number. If you do not specify a record
number, the next sequential position is used.

Error-Handling, Debugging and File Input/Output 6-29

The variable argument in the Get and Put statements is usually a single user-
defined variable. Once read in, you obtain the component parts of this variable
using dot-notation. Prior to writing a user-defined variable to a random access
file, you ‘load’ the component parts using the same dot-notation.

There’s a lot more to using random access files; we’ve only looked at the basics.
Refer to your Visual Basic documentation and on-line help for further information.
In particular, you need to do a little cute programming when deleting records from
a random access file or when ‘resorting’ records.

6-30 Learn Visual Basic 6.0

Using the Open and Save Common Dialog Boxes

Note to both write and read sequential and random access files, we need a file
name for the Open statement. To ensure accuracy and completeness, itis
suggested that common dialog boxes (briefly studied in Class 4) be used to get
this file name information from the user. I'll provide you with a couple of code
segments that do just that. Both segments assume you have acommon dialog
box on your form named cdlFiles, with the CancelError property set equal to
True. With this property True, an error is generated by Visual Basic when the
user presses the Cancel button in the dialog box. By trapping this error, it allows
an elegant exit from the dialog box when canceling the operation is desired.

The code segment to obtain a file name (MyFileName with default extension Ext)
for opening a file toread is:

Dim MyFileName As String, Ext As String

cdIFiles.Filter = "Files (*." + Ext + ")|*." + Ext
cdIFiles.DefaultExt = Ext

cdlFiles.DialogTitle = "Open File"

cdIFiles.Flags = cdIOFNFileMustEXxist + cdlIOFNPathMustEXxist
On Error GoTo No_Open

cdIFiles.ShowOpen

MyFileName = cdIFiles.filename

Exit Sub
No_Open:
Resume ExitLIne
ExitLine:

Exit Sub

End Sub

A few words on what's going on here. First, some properties are set such that
only files with Ext (a three letter string variable) extensions are displayed (Filter
property), the default extension is Ext (DefaultExt property), the title bar is set
(DialogTitle property), and some Flags are set to insure the file and path exist
(see Appendix Il for more common dialog flags). Error trapping is enabled to trap
the Cancel button. Finally, the common dialog box is displaye d and the filename
property returns with the desired name. That name is put in the string variable
MyFileName. What you do after obtaining the file name depends on what type of
file you are dealing with. For sequential files, you would open the file, read in the
information, and close the file. For random access files, we just open the file here.
Reading and writing to/from the file would be handled elsewhere in your coding.

Error-Handling, Debugging and File Input/Output 6-31

The code segment to retrieve a file name (MyFileName) for writing afile is:

Dim MyFileName As String, Ext As String

cdIFiles.Filter = "Files (*." + Ext + ")|*." + Ext

cdIFiles.DefaultExt = Ext

cdlFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlIOFNOverwritePrompt + cdlIOFNPathMustEXxist
On Error GoTo No_Save

cdIFiles.ShowSave

MyFileName = cdIFiles.filename

Exit Sub
No_Save:
Resume ExitLine
ExitLine:

Exit Sub

End Sub

Note this code is essentially the same used for an Open file name. The Flags
property differs slightly. The user is prompted if a previously saved file is selected
for overwrite. After obtaining a valid file name for a sequential file, we would open
the file for output, write the file, and close it. For a random access file, things are
trickier. If we want to save the file with the same name we opened it with, we
simply close the file. If the name is different, we must open a file (using a different
number) with the new name, write the complete random access file, then close it.
Like | said, it's trickier.

We use both of these code segments in the final example where we write and
read sequential files.

6-32 Learn Visual Basic 6.0

Example 6-3

Note Editor - Reading and Saving Text Files

1. We now add the capability to read in and save the contents of the text box in the
Note Editor application from last class. Load that application. Add a common
dialog box to your form. Name it cdIFiles and set the CancelError property to
True.

2. Modify the File menu (use the Menu Editor and the Insert button) in your
application, such that Open and Save options are included. The File menu sho uld
now read:

FEile
New
Open
Save

Ext
Properties for these new menu items should be:
Caption Name Shortcut

&Open mnuFileOpen [None]
&Save mnuFileSave [None]

Error-Handling, Debugging and File Input/Output 6-33

3. The two new menu options need code. Attach this code to the
mnuFileOpen_Click event. This uses a modified version of the code segment

seen previously. We assign the extension ned to our note editor files.

Private Sub mmuFi |l eOpen_d i ck()
cdlFiles.Filter = "Files (*.ned)|*. ned"
cdl Fil es. Defaul t Ext = "ned"
cdlFiles.DialogTitle = "Open File"

cdl Fil es. Flags = cdl OFNFi | eMust Exi st +
cdl OFNPat hMust Exi st

On Error GoTo No_Open

cdl Fi | es. ShowOpen

Open cdl Files.filename For Input As #1
txtEdit. Text = Input(LOF(1), 1)

Close 1

Exit Sub

No_Open:

Resune ExitLine

Exi t Li ne:

Exit Sub

End Sub

And for the mnuFileSave_Click procedure, use this code. Much of this can be
copied from the previous procedure.

Private Sub mmuFi |l eSave_C i ck()
cdlFiles.Filter = "Files (*.ned)|*. ned"
cdl Fil es. Def aul t Ext = "ned"
cdlFiles.DialogTitle = "Save File"

cdl Fil es. Fl ags = cdl OFNOverw it ePronpt +
cdl OFNPat hMust Exi st

On Error GoTo No_Save

cdl Fi | es. ShowSave

Open cdl Files.filenane For Qutput As #1
Print #1, txtEdit. Text

Close 1

Exit Sub

No_ Save:

Resunme ExitLine

Exi t Li ne:

Exit Sub

End Sub

6-34 Learn Visual Basic 6.0

Each of these procedures is similar. The dialog box is opened and, if a flename
is returned, the file is read/written. If Cancel is pressed, no action is taken.

These routines can be used as templates for file operations in other applications.

4. Save your application. Run it and test the Open and Save functions. Note you

have to save a file before you can open one. Check for proper operation of the
Cancel button in the common dialog box.

5. If you have the time, there is one major improvement that should be made to this
application. Notice that, as written, only the text information is saved, not the
formatting (bold, italic, underline, size). Whenever a file is opened, the text is
displayed based on current settings. It would be nice to save formatting
information along with the text. This can be done, but it involves a fair amount of
reprogramming. Suggested steps:

A. Add lines to the mnuFileSave_Click routine that write the text box
properties FontBold, Fontltalic, FontUnderline, and FontSize to a
separate sequential file. If your text file is named TxtFile.ned, | would
suggest naming the formatting file TxtFile.fmt. Use string functions to
put this name together. That is, chop the ned extension off the text file
name and tack on the fmt extension. You'll need the Len() and Left()
functiors.

B. Add lines to the mnuFileOpen_Click routine that read the text box
properties FontBold, Fontltalic, FontUnderline, and FontSize from
your format sequential file. You'll need to define some intermediate
variables here because Visual Basic won't allow you to read
properties directly from a file. You'll also need logic to set/reset any
check marks in the menu structure to correspond to these input
properties.

C. Add lines to themnuFileNew_Click procedure that, when the user
wants a new file, reset the text box properties FontBold, Fontltalic,
FontUnderline, and FontSize to their default values and set/reset the
corresponding menu check marks.

D. Try out the modified application. Make sure every new option works
as it should.

Actually, there are ‘custom’ tools (we’ll look at custom tools in Class 10) that do
what we are trying to do with this modification, that is save text box contents with
formatting information. Such files are called ‘rich text files’ or rtf files. You may
have seen these before when transferring files from one word processor to
another.

Error-Handling, Debugging and File Input/Output 6-35

6. Another thing you could try: Modify the message box that appears when you try to
Exit. Make it ask if you wish to save your file before exiting - provide Yes, No,

Cancel buttons. Program the code corresponding to each possible response.
Use calls to existing procedures, if possible.

6-36 Learn Visual Basic 6.0

Exercise 6-1

Information Tracking

Design and develop an application that allows the user to enter (on a daily basis)
some piece of information that is to be saved for future review and reference.
Examples could be stock price, weight, or high temperature for the day. The input
screen should display the current date and an input box for the desired information.
all values should be saved on disk for future retrieval and update. A scroll bar should
be available for reviewing all previously-stored values.

My Solution:
Form:
mnuFile
¥ wWeight Program M=l E3
File
Labell __—’ Date WEight \\ Label2
r AH—
[Mew Fite \txtWeight
::::::::::::/:::::::::::::::::
IblEile / cdlFiles
Properties:
Form frmWeight

BorderStyle = 1 - Fixed Single
Caption = Weight Program

VScrollBar vsbControl:
Min=1
Value =1

Error-Handling, Debugging and File I nput/Output

6-37

TextBox txtWeight:
Alignment = 2 - Center
FontName = MS Sans Serif
FontSize = 13.5

Label IblFile:
BackColor = &HOOOOFFFF& (White)
BorderStyle = 1 - Fixed Single
Caption = New File
FontName = MS Sans Serif
FontBold = True
Fontltalic = True
FontSize = 8.25

Label IblDate:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1- Fixed Single
FontName = MS Sans Serif
FontSize = 13.5

Label Label2:
Alignment = 2 - Center
Caption = Weight
FontName = MS Sans Serif
FontSize = 13.5
FontBold = True

Label Labell:
Alignment = 2 - Center
Caption = Date
FontName = MS Sans Serif
FontSize = 13.5
FontBold = True

CommonDialog cdlIFiles:
CancelError = True

Menu mnuFile:
Caption = &File

Menu mnuFileNew:
Caption = &New

6-38 Learn Visual Basic 6.0

Menu mnuFileOpen:
Caption = &Open

Menu mnuFileSave:
Caption = &Save

Menu mnulLine:
Caption =-

Menu mnuFileExit:
Caption = E&xit

Code:

General Declarations:

Option Explicit

Di m Dat es(1000) As Date

Di m Wei ght s(1000) As String
Dm NumiX's As | nteger

Init General Procedure:

Sub Init()

NumAfs = 1: vsbControl.Value = 1. vsbControl.Max =1
Dat es(1) = Format (Now, "m dd/yy")

Wei ghts(1) = ""

| bl Dat e. Capti on = Dates(1)

t xt Wei ght . Text = Wei ghts(1)

I bl File.Caption = "New Fil e"

End Sub

Form Load Event:

Private Sub Form Load()
f r mMAéi ght . Show

Call Init

End Sub

Error-Handling, Debugging and File Input/Output 6-39

mnufileExit Click Event:

Private Sub muFil eExit _Cick()
'Make sure user really wants to exit
Di m Response As | nteger
Response = MsgBox("Are you sure you want to exit the
wei ght progran?", vbYesNo + vbCritical + vbDefaul tButton2,
"Exit Editor")
| f Response = vbNo Then
Exit Sub
El se
End
End If
End Sub

mnuFileNew Click Event:

Private Sub mmuFi |l eNew Cli ck()

"User wants new file

Di m Response As | nteger

Response = MsgBox("Are you sure you want to start a new
file?", vbYesNo + vbQuestion, "New File")

| f Response = vbNo Then

Exit Sub
El se

Call Init
End |f
End Sub

mnuFileOpen Click Event:

Private Sub muFi | eOQpen_Cl i ck()

Dm1 As Integer

Dim Today As Date

D m Response As | nteger

Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")

| f Response = vbNo Then Exit Sub

cdlFiles.Filter = "Files (*.wgt)]|*.wgt"

cdl Fil es. Defaul t Ext = "wgt"

cdlFiles.DialogTitle = "Open File"

cdl Fil es. Fl ags = cdl OFNFi | eMust Exi st + cdl OFNPat hMust Exi st

6-40 Learn Visual Basic 6.0

On Error GoTo No_Open
cdl Fi | es. ShowOpen
Open cdl Files.filename For Input As #1
I bl File.Caption = cdl Files.fil enane
| nput #1, NunWs
For I =1 To NumAi's
| nput #1, Dates(l), Weights(l)
Next |
Close 1
Today = Format (Now, "m dd/yy")
| f Today <> Dat es(NunmW's) Then
NumM's = NumiW(s + 1
Dat es(Numif s) = Today
Wei ght s(NumWs) = ""
End If
vsbControl . Max = NunmAi s
vsbControl .Value = Nun\W s
| bl Dat e. Caption = Dates(Numi s)
t xt Wei ght . Text = Wei ght s(NumA s)
Exit Sub
No_Open:
Resunme ExitlLine
Exi t Li ne:
Exit Sub
End Sub

mnuFileSave Click Event:

Private Sub muFi | eSave Cl i ck()
Dm1 As Integer
cdlFiles.Filter = "Files (*.wgt)]|*.wgt"
cdl Fil es. Defaul t Ext = "wgt"
cdlFiles.DialogTitle = "Save File"
cdl Files. Fl ags = cdl OFNOverw i tePronpt +
cdl OFNPat hMust Exi st
On Error GoTo No_Save
cdl Fi | es. ShowSave
Open cdl Files.filename For Qutput As #1
I bl File.Caption = cdlFiles.fil enane
Wite #1, Nunmi s
For I =1 To Num/Xs

Wite #1, Dates(l), Weights(l)

Error-Handling, Debugging and File Input/Output 6-41

Next |

Close 1

Exit Sub
No_Save:

Resune ExitLine
Exi t Li ne:

Exit Sub

End Sub

6-42 Learn Visual Basic 6.0

txtWeight Change Event:

Private Sub txtWei ght Change()
Wei ght s(vsbControl . Val ue) = txtWei ght. Text
End Sub

txtWeight KeyPress Event:

Private Sub txtWight KeyPress(KeyAscii As |nteger)
| f KeyAscii >= vbKeyO And KeyAscii <= vbKey9 Then
Exit Sub
El se
KeyAscii =0
End |f
End Sub

vsbControl Change Event:

Private Sub vsbControl Change()

| bl Dat e. Capti on = Dates(vsbControl . Val ue)
t xt Wei ght . Text = Wei ght s(vsbControl . Val ue)
t xt Wei ght . Set Focus

End Sub

Error-Handling, Debugging and File Input/Output 6-43

Exercise 6-2

‘Recent Files’ Menu Option

Under the File menu on nearly every application (that opens files) is a list of the four
most recently-used files (usually right above the Exit option). Modify your information
tracker to implement such a feature. This is not trivial -- there are lots of things to
consider. For example, you'll need a file to store the last four file names. You need to
open that file and initialize the corresponding menu entries when you run the
application -- you need to rewrite that file when you exit the application. You need
logic to re-order file names when a new file is opened or saved. You need logic to
establish new menu items as new files are used. You'll need additional error-trapping
in the open procedure, in case a file selected from the menu no longer exists. Like |
said, a lot to consider here.

My Solution:
These new menu items immediately precede the existing Exit menu item:

Menu mnuFileRecent
Caption = [Blank]
Index =0, 1, 2, 3 (a control array)
Visible = False

Menu mnuFileBar:
Caption =-
Visible = False

Code Modifications (new code is bold and italicized):
General Declarations:

Option Explicit

Di m Dat es(1000) As Date

Di m Wi ght s(1000) As String

Dim NumiX's As I nteger

Dm NFiles As Integer, RFile(3) As String, MenuQOpen As
| nteger, FNmenu As String

6-44 Learn Visual Basic 6.0

Rfile Update General Procedure:

Sub RFile_Update(NewFile As String)
‘“Routine to place newest file nane in proper order
“in menu structure
Dm1l As Integer, J As Integer, InList As Integer
' Convert nane to all upper case letters
NewFi | e = UCase(NewFi | e)
"See if file is already in list
InList =0
For 1 =0 To NFiles - 1
If RFile(l) = NewFile Then InList = 1. Exit For
Next
"If file not in list, increment nunber of itens wth
"a maxi mum of 4. Then, nove others down, then pl ace
"new nane at top of |ist
If InList = O Then
NFiles = NFiles + 1
If NFiles > 4 Then
NFiles = 4
El se
If NFiles = 1 Then mmuFi | eBar. Visible = True
muFi | eRecent (NFiles - 1).Visible = True
End If
If NFiles <> 1 Then

For | = NFiles - 1 To 1 Step -1
RFile(l) = RRile(l - 1)
Next |
End If
RFile(0) = NewFile
El se

"If file already in list, put nane at top and shift
‘others accordingly
If I <> 0 Then

For J =1 - 1 To O Step -1
RFile(d + 1) = RFile(Jd)
Next J
RFile(0) = NewFile
End If
End If

"Set menu captions according to new |ist

Error-Handling, Debugging and File Input/Output 6-45

For 1 =0 To NFiles - 1

muFi | eRecent (1). Caption = "&" + Format(l + 1, "# ") +
RFile(l)
Next

End Sub

6-46 Learn Visual Basic 6.0

Form Load Event:

Private Sub Form Load()
Dm1 As Integer
"Open .ini file and load in recent file nanes
Open "weight.ini" For Input As #1
NFiles = 0: MenuQOpen =0
For I =0 To 3
I nput #1, RFile(l)
If RFile(l) <> "" Then
NFiles = NFiles + 1
mmuFi | eBar. Vi si ble = True
muFi | eRecent (1) . Capti on
RFile(l)
mmuFi | eRecent (1). Visible
End I f
Next
Close 1

f r mMAéi ght . Show
Call Init
End Sub

"&" + Format(l + 1, "# ") +

True

mnuFileExit Click Event:

Private Sub muFil eExit _Click()
'Make sure user really wants to exit
Di m Response As Integer, | As Integer
Response = MsgBox("Are you sure you want to exit the
wei ght progran?", vbYesNo + vbCritical + vbDefaul tButton2,
"Exit Editor")
| f Response = vbNo Then
Exit Sub
El se
"Wite out .ini file when done

Open "weight.ini™ For Qutput As #1

For | =0 To 3
Wite #1, RFile(l)

Next |

Close 1

End

End If

Error-Handling, Debugging and File Input/Output 6-47

End Sub

6-48 Learn Visual Basic 6.0

mnuFileOpen Click Event:

Private Sub muFi | eQpen_Cl i ck()
Dm1 As Integer
Di m Today As Date
D m Response As | nteger
DmFile To Open As String
Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")
| f Response = vbNo Then Exit Sub
I f MenuOpen = 0 Then
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdl Files. Defaul t Ext = "wgt"
cdlFiles.DialogTitle = "Open File"
cdl Fil es. Fl ags = cdl OFNFi | eMust Exi st +
cdl OFNPat hMust Exi st
On Error GoTo No_Open
cdl Fi | es. ShowOpen
File To Open = cdlFiles.filenane

El se

File To_Open = FNmenu
End |f
MenuOpen = 0

On Error GoTo BadOpen

Open File_To_Open For Input As #1
IblFile.Caption = File_To_Open

| nput #1, NumW's

For | =1 To NunW s

| nput #1, Dates(l), Weights(l)
Next |
Close 1

Call RFile_Update(File_To_Open)
Today = Fornmat (Now, "mm dd/yy")
| f Today <> Dates(NumW's) Then
NumM's = NunWs + 1
Dat es(NumAf s) = Today
Wei ght s(NumiAs) = ""
End I f
vsbControl . Max = Nun s
vsbControl . Value = NumAi s
| bl Dat e. Caption = Dates(Numi s)
t xt Wei ght . Text = Wei ght s(Numi s)
Exit Sub

Error-Handling, Debugging and File Input/Output 6-49

No_Open:

Resume ExitLine
Exi t Li ne:

Exit Sub

6-50 Learn Visual Basic 6.0

BadOpen:
Sel ect Case MsgBox(Error (Err.Nunber), vbCritical +
vbRetryCancel, "File Open Error")
Case vbRetry
Resune
Case vbCancel
Resunme No_Open
End Sel ect
End Sub

mnuFileRecent Click Event:

Private Sub mmuFi |l eRecent _Cick(lndex As Integer)
FNmenu = RFi |l e(1 ndex): MenuOpen =1
Call muFil eOpen_dick

End Sub

mnuFileSave Click Event:

Private Sub mmuFil eSave i ck()

Dm1 As Integer

cdlFiles.Filter = "Files (*.wgt)|™*.wgt"
cdl Fil es. Defaul t Ext = "wgt"
cdlFiles.DialogTitle = "Save File"

cdl Files. Flags = cdl OFNOverwri t ePronpt +
cdl OFNPat hMust Exi st

On Error GoTo No_Save

cdl Fi | es. ShowSave

Open cdl Files.filenane For Qutput As #1
I bl File.Caption = cdl Files.fil enane
Wite #1, Nuni s

For | =1 To NunW s
Wite #1, Dates(l), Weights(l)
Next |
Close 1
Call RFile_ Update(cdl Files.filenane)
Exit Sub
No_ Save:
Resune ExitLine
Exi t Li ne:

Exit Sub

Error-Handling, Debugging and File Input/Output 6-51

End Sub

6-52 Learn Visual Basic 6.0

| This page intentionally not left blank. ||

7-1

Learn Visual Basic 6.0

7. Graphics Techniques with Visual Basic

Review and Preview

In past classes, we've used some graphics tools: line tools, shape tools, image
boxes, and picture boxes. In this class, we extend our graphics programming
skills to learn how to draw lines and circles, do drag and drop, perform simple
animation, and study some basic plotting routines.

Graphics Methods

Graphics methods apply to forms and picture boxes (remember a picture box is
like a form within a form). With these methods, we can draw lines, boxes, and
circles. Before discussing the commands that actually perform the graphics
drawing, though, we need to look at two other topics: screen management and
screen coordinates.

In single program environments (DOS, for example), when something is drawn on
the screen, it stays there. Windows is a multi-tasking environment. If you switch
from a Visual Basic application to some other application, your Visual Basic form
may become partially obscured. When you return to your Visual Basic
application, you would like the form to appear like it did before being covered. All
controls are automatically restored to the screen. Graphics methods drawings
may or may not be restored - we need them to be, though. To accomplish this, we
must use proper screen management.

The simplest way to maintain graphics is to set the form or picture box's
AutoRedraw property to True. In this case, Visual Basic always maintains a
copy of graphics output in memory (creates persistent graphics). Another way
to maintain drawn graphics is (with AutoRedraw set to False) to put all graphics
commands in the form or picture box's Paint event. This event is called whenever
an obscured object becomes unobscured. There are advantages and
disadvantages to both approaches (beyond the scope of discussion here). For
now, we will assume our forms won't get obscured and, hence, beg off the
guestion of persistent graphics and using the AutoRedraw property and/or Paint
event.

7-2 Learn Visual Basic 6.0

All graphics methods described here will use the default coordinate system:

. ScaleWidth =

Note the x (horizontal) coordinate runs from left to right, starting at 0 and extending
to ScaleWidth - 1. They (vertical) coordinate goes from top to bottom, starting at
0 and ending at ScaleHeight - 1. Points in this coordinate system will always be
referred to by a Cartesian pair, (X, y). Later, we will see how we can use any
coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “graphics”
dimensions of an object. Due to border space, they are not the same as the
Width and Height properties. For all measurements in twips (default coordinates),
ScaleWidth is less than Width and ScaleHeight is less than Height. That is, we
can’t draw to all points on the form.

PSet Method:

To set a single point in a graphic object (form or picture box) to a particular color,
use the PSet method. We usually do this to designate a starting point for other
graphics methods. The syntax is:

ObjectName.PSet (X, y), Color

where ObjectName is the object name, (X, y) is the selected point, and Color is

the point color (discussed in the next section). If the ObjectName is omitted, the
current form is assumed to be the object. If Color is omitted, the object's
ForeColor property establishes the color. PSet is usually used to initialize some

further drawing process.

Graphics Techniques with Visual Badc 7-3

Pset Method Example:

This form has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400
(Height 2805). The command:

PSet (1000, 500)

will have the result:

4095

F 3975 >I|

w. Forml = T
N

(1000, 500)
................ > .
2805

2400
_;

The marked point (in color ForeColor, black in this case) is pointed to by the
Cartesian coordinate (1000, 500) - this marking, of course, does not appear on
the form. If you want to try this example, and the other graphic methods, put the
code in the Form_Click event. Run the project and click on the form to see the
results (necessary because of the AutoRedraw problem).

CurrentX and CurrentY:

After each drawing operation, the coordinate of the last point drawn to is
maintained in two Visual Basic system variables, CurrentX and CurrentY. This
way we always know where the next drawing operation will begin. We can also
change the values of these variables to move this last point. For example, the
code:

CurrentX = 1000
CurrentY =500

is equivalent to:

PSet(1000, 500)

7-4 Learn Visual Basic 6.0

Line Method:

The Line method is very versatile. We can use it to draw line segments, boxes,
and filled boxes. To draw a line, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color
where ObjectName is the object name, (x1, y1) the starting coordinate, (x2, y2)
the ending coordinate, and Color the line color. Like PSet, if ObjectName is
omitted, drawing is done to the current form and, if Color is omitted, the object’s
ForeColor property is used.
To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

There is no need to specify the start point since CurrentX and CurrentY are
known.

To draw a box bounded by opposite corners (x1, y1) and (x2, y2), use:
ObjectName.Line (x1, y1) - (x2, y2), Color, B
and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

Graphics Techniques with Visual Badc 7-5

Line Method Examples:
Using the previous example form, the commands:

Line (1000, 500) - (3000, 2000)
Line - (3000, 1000)

draws these line segments:

w Forml =] E3
(1000, 500)

N |+ (3000, 1000)

------- (3000, 2000)

The command:
Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is
specified):

w Forml =] B3
(1000, 500)

-------- (3000,2000)

7-6 Learn Visual Basic 6.0

Circle Method:
The Circle method can be used to draw circles, ellipses, arcs, and pie slices.
We'll only look at drawing circles - look at on-line help for other drawing modes.
The syntax is:

ObjectName.Circle (X, y), r, Color
This command will draw a circle with center (x, y) and radius r, using Color.
Circle Example:
With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

W Forml [_ O]

(2000, 1000)

Print Method:

Another method used to 'draw' to a form or picture box is the Print method. Yes,
for these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no
object name is provided, printing is to the current form.

Information will print be ginning at the object's CurrentX and CurrentY value. The
color used is specified by the object's ForeColor property and the font is
specified by the object's Font characteristics.

Graphics Techniques with Visual Badc 7-7

Print Method Example:

The code (can’t be in the Form_Load procedure because of that pesky
AutoRedraw property):

CurrentX=200
CurrentY=200
Print "Here is the line of text"

will produce this result (I've used a large font):

w Forml M=] B3

Here is the line of text

Cls Method:
To clear the graphics drawn to an object, use the Cls method. The syntax is:
ObjectName.Cls

If no object name is given, the current form is cleared. Recall Cls only clears the
lowest of the three display layers. This is where graphics methods draw.

For each graphic method, line widths, fill patterns, and other graphics features can
be controlled via other object properties. Consult on-line help for further
information.

7-8 Learn Visual Basic 6.0

Using Colors

Notice that all the graphics methods can use a Color argument. If that argument
is omitted, the ForeColor property is used. Color is actually a hexadecimal (long
integer) representation of color - look in the Properties Window at some of the
values of color for various object properties. So, one way to get color values is to
cut and paste values from the Properties Window. There are other ways, though.

Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix |) to represent
some basic colors. Any of these constants can be used as a Color argument.

Constant Value Color
vbBlack 0x0 Black
vbRed OxFF Red
vbGreen OxFFO00 Green
vbYellow OxXFFFF Yellow
vbBlue OxFF0000 Blue
vbMagenta OxFFOOFF Magenta
vbCyan OXFFFFO0 Cyan
vbWhite OXFFFFFF White
QBCaolor Function:

For Microsoft QBasic, GW-Basic and QuickBasic programmers, Visual Basic
replicates the sixteen most used colors with the QBColor function. The color is
specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color

0 Black 8 Gray

1 Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow

7 White 15 Light (bright) white

Graphics Techniques with Visual Badc 7-9

RGB Function:

The RGB function can be used to produce one of 2% (over 16 million) colors! The
syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the
corresponding primary colors. These measures can range from O (least intensity)
to 255 (greatest intensity). For example, RGB(255, 255, 0) will produce yellow.

Any of these four representations of color can be used anytime your Visual Basic
code requires a color value.

Color Examples:
frmExample.BackColor = vbGreen

picExample.FillColor = QBColor(3)
IbIExample.ForeColor = RGB(100, 100, 100)

7-10 Learn Visual Basic 6.0

Mouse Events
Related to graphics methods are mouse events. The mouse is a primary

interface to performing graphics in Visual Basic. We've already used the mouse
to Click and DbIClick on objects. Here, we see how to recognize other mouse

events to allow drawing in forms and picture boxes.

MouseDown Event:

The MouseDown event procedure is triggered whenever a mouse button is
pressed while the mouse cursor is over an object. The form of this procedure is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As Single)

End Su.b

The arguments are:

Button Specifies which mouse button was pressed.

Shift Specifies state of Shift, Ctrl, and Alt keys.

XY Coordinate of mouse cursor when button was
pressed.

Values for the Button argument are:

Symbolic Constant Value Description

vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Values for the
Shift argument are:

Symbolic Constant Value Description

vbShiftMask 1 Shift key is pressed.
vbCtrIMask 2 Ctrl key is pressed.
vbAltMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift =5
(vbShiftMask + vbAltMask), both the Shift and Alt keys are being pressed when
the MouseDown event occurs.

Graphics Techniqueswith Visual Basc 7-11

MouseUp Event:
The MouseUp event is the opposite of the MouseDown event. It is triggered
whenever a previously pressed mouse button is released. The procedure outline
is:
Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X As Single, Y
As Single)
End Sub

The arguments are:

Button Specifies which mouse button was released.

Shift Specifies state of Shift, Ctrl, and Alt keys.

X, Y Coordinate of mouse cursor when button was
released.

The Button and Shift constants are the same as those for the MouseDown event.
MouseMove Event:

The MouseMove event is continuously triggered whenever the mouse is being
moved. The procedure outline is:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)
End Sub

The arguments are:

Button Specifies which mouse button(s), if any, are pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys
X, Y Current coordinate of mouse cursor

7-12 Learn Visual Basic 6.0

The Button and Shift constants are the same as those for the MouseDown event.
A difference here is that the Button argument can also represent multiple button
presses or no press at all. For example, if Button = 0, no button is pressed as the
mouse is moved. If Button = 3 (vbLeftButton + vbRightButton), both the left and
right buttons are pressed while the mouse is being moved.

Graphics Techniqueswith Visual Basc 7-13

Example 7-1

Blackboard

1. Starta new application. Here, we will build a blackboard we can scribble on with
the mouse (using colored ‘chalk’).

2. Set up a simple menu structure for your application using the Menu Editor. The
menu should be:

File
New

Exit

Properties for these menu items should be:

Caption Name

&File mnuFile
&New mnuFileNew
- mnuFileSep
E&xit mnuFileExit

3. Puta picture box and a single label box (will be used to set color) on the form. Set
the following properties:

Form1:
BorderStyle 1-Fixed Single
Caption Blackboard
Name frmDraw
Picturel:
Name picDraw
Labell:
BorderStyle 1-Fixed Single
Caption [Blank]

Name IblColor

7-14 Learn Visual Basic 6.0

The form should look something like this:

w Blackboard =]
Filz

4. Now, copy and paste the label box (create a control array namedIblColor) until
there are eight boxes on the form, lined up vertically under the original box. When
done, the form will look just as above, except there will be eight label boxes.

5. Type these lines in the general declarations area. DrawOn will be used to
indicate whether you are drawing or not.

Option Explicit
Di m DrawOn As Bool ean

Graphics Techniqueswith Visual Basc 7-15

6. Attach code to each procedure.

The Form_Load procedure loads colors into each of the label boxes to allow
choice of drawing color. It also sets the BackColor to black and the ForeColor
to Bright White.

Private Sub Form Load()
"Load drawing colors into control array
Dm1 As Integer
For I =0 To 7
| bl Col or(1).BackCol or = @BCol or (I + 8)
Next |
pi cDraw. ForeCol or = BCol or (15) * Bright Wite
pi cDr aw. BackCol or @BCol or (0) * Bl ack
End Sub

In the mnuFileNew_Click procedure, we check to see if the user really wants to
start over. If so, the picture box is cleared with the Cls method.

Private Sub muFi | eNew C i ck()

' Make sure user wants to start over

D m Response As I nteger

Response = MsgBox("Are you sure you want to start a new
drawi ng?", vbYesNo + vbQuestion, "New Draw ng")

I f Response = vbYes Then picDraw. C s

End Sub

In the mnuFileExit_Click procedure, make sure the user really wants to stop the
application.

Private Sub mmuFil eExit _Cick()

' Make sure user wants to quit

Di m Response As | nteger

Response = MsgBox("Are you sure you want to exit the
Bl ackboard?", vbYesNo + vbCritical + vbDefaultButton2,
"Exit Bl ackboard")

I f Response = vbYes Then End

End Sub

7-16 Learn Visual Basic 6.0

When the left mouse button is clicked, drawing is initialized at the mouse cursor
location in the picDraw_MouseDown procedure.

Private Sub picDraw _MouseDown(Button As Integer, Shift
As Integer, X As Single, Y As Single)

' Drawi ng begins

If Button = vbLeftButton Then

DrawOn = True

pi cDraw. Current X = X
picDraw. CurrentY = Y
End If
End Sub

When drawing ends, the DrawOn switch is toggled in picDraw_MouseUp.

Private Sub picDraw _MuseUp(Button As Integer, Shift As
Integer, X As Single, Y As Single)

" Drawi ng ends

If Button = vbLeftButton Then DrawOn = Fal se

End Sub

While mouse is being moved and DrawOn is True, draw lines in current color in
the picDraw_MouseMove procedure.

Private Sub pi cDraw MouseMove(Button As Integer, Shift
As Integer, X As Single, Y As Single)

"Drawi ng conti nues

If DrawOn Then picDraw. Line -(X, Y), picDraw ForeCol or
End Sub

Finally, when a label box is clicked, the drawing color is changed in the
IblColor_Click procedure.

Private Sub | bl Color _Cick(lndex As Integer)
' Make audi bl e tone and reset draw ng col or
Beep

pi cDr aw. For eCol or = | bl Col or (I ndex) . BackCol or
End Sub

7. Run the application. Click on the label boxes to change the color you draw with.
Fun, huh? Save the application.

Graphics Techniqueswith Visual Basc 7-17

8. A challenge for those who like challenges. Add Open and Save options that
allow you to load and save pictures you draw. Suggested steps (may take a while
- | suggest trying it outside of class):

A. Change the picture box property AutoRedraw to True. Thisis

necessary to save pictures. You will notice the drawing process slows
down to accommodate persistent graphics.

B. Add the Open option. Write code that brings up a common dialog box
to get a filename to open (will be a .bmp file) and put that picture in the
picDraw.Picture property using the LoadPicture function.

C. Add the Save option. Again, add code to use a common dialog box to
get a proper filename. Use the SavePicture method to save the
Image property of the picDraw object. We save the Image property,
not the Picture property, since this is where Visual Basic maintains the
persistent graphics.

D. One last change. The Cls method in the mnuFileNew_Click code will
not clear a picture loaded in via the Open code (has to do with using
AutoRedraw). So, replace the Cls statement with code that manually
erases the picture box. I'd suggest using the BF option of the Line
method to simply fill the space with a box set equal to the BackColor
(white). | didn't say this would be easy.

7-18 Learn Visual Basic 6.0

Drag and Drop Events

Related to mouse events are drag and drop events. This is the process of
using the mouse to pick up some object on a form and move it to another location.
We use drag and drop all the time in Visual Basic design mode to locate objects
on our application form.

Drag and drop allows you to design a simple user interface where tasks can be
performed without commands, menus, or buttons. Drag and drop is very intuitive
and, at times, faster than other methods. Examples include dragging a file to
another folder or dragging a document to a printer queue.
Any Visual Basic object can be dragged and dropped, but we usually use picture
and image boxes. The item being dragged is called the source object. The item
being dropped on (if there is any) is called the target.
Object Drag Properties:
If an object is to be dragged, two properties must be set:
DragMode Enables dragging of an object (turns off ability to
receive Click or MouseDown events). Usually use 1-
Automatic (vbAutomatic).
Draglcon Specifies icon to display as object is being dragged.
As an object is being dragged, the object itself does not move, only the Draglcon.
To move the object, some additional code using the Move method (discussed in
a bit) must be used.
DragDrop Event:

The DragDrop event is triggered whenever the source object is dropped on the
target object. The procedure form is:

Sub ObjectName_DragDrop(Source As Control, X As Single, Y As Single)

End Su.b
The arguments are:

Source Object being dragged.
X, Y Current mouse cursor coordinates.

Graphics Techniqueswith Visual Basc 7-19

DragOver Event:

The DragOver event is triggered when the source object is dragged over
another object. Its procedure form is:

Private Sub ObjectName_DragOver(Source As Control, X As Single, Y
As Single, State As Integer)
End Sub
The first three arguments are the same as those for the DragDrop event. The
State argument tells the object where the source is. Its values are 0-Entering

(vbEnter), 1-Leaving (vbLeave), 2-Over (vbOver).

Drag and Drop Methods:

Drag Starts or stops manual dragging (won't be addressed
here - we use Automatic dragging)
Move Used to move the source object, if desired.
Example

To move the source object to the location specified by coordinates X and Y, use:
Source.Move X, Y

The best way to illustrate the use of drag and drop is by example.

7-20 Learn Visual Basic 6.0

Example 7-2

Letter Disposal

1. We'll build a simple application of drag and drop where unneeded
correspondence is dragged and dropped into a trash can. Start a new
application. Place four image boxes and a single command button on the form.
Set these properties:

Form1l.
BackColor White
BorderStyle 1-Fixed Single
Caption Letter Disposal
Name frmDispose
Commandl:
Caption &Reset
Name cmdReset
Imagel.
Name imgCan
Picture trash01.ico
Stretch True
Image2:
Name imgTrash
Picture trashOl.ico
Visible False
Image3:
Name imgBurn
Picture trash02b.ico
Visible False
Image4:
Draglcon draglpg.ico
DragMode 1-Automatic
Name imgLetter
Picture mail06.ico
Stretch True

Graphics Techniqueswith Visual Basc 7-21

The form will look like this:

w. Letter Disposal

— 1 Imagel

L Image2

1 Image3

Some explanation about the images on this form is needed. The letter image is
the control to be dragged and the trash can (at Imagel location) is where it will be
dragged to. The additional images (the other trash can and burning can) are not
visible at run-time and are used to change the state of the trash can, when
needed. We could load these images from disk files at run-time, but it is much
guicker to place them on the form and hide them, then use them when required.

. The code here is minimal. The Form_DragDrop event simply moves the letter
image if it is dropped on the form.

Private Sub Form DragDrop(Source As Control, X As
Single, Y As Single)

Source. Move X, Y

End Sub

. TheimgCan_DragDrop event changes the trash can to a burning pyre if the
letter is dropped on it.

Private Sub ingCan_DragDrop(lndex As |Integer, Source As
Control, X As Single, Y As Single)

"Burn mail and nmake it di sappear

i mgCan. Pi cture = i ngBurn. Pi cture

Sour ce. Vi si bl e Fal se

End Sub

7-22 Learn Visual Basic 6.0

4. The cmdReset_Click event returns things to their original state.

Private Sub cndReset d i ck()
"Reset to trash can picture

i ngCan. Pi cture = ingTrash. Picture
i ngLetter.Visible = True

End Sub

5. Save and run the application. Notice how only the drag icon moves. Notice the
letter moves once it is dropped. Note, too, that the letter can be dropped
anywhere. The fire appears only when it is dropped in the trash.

Graphics Techniqueswith Visual Basc 7-23

Timer Tool and Delays

;
7

Many times, especially in using graphics, we want to repeat certain operations at
regular intervals. Thetimer tool allows such repetition. The timer tool does not
appear on the form while the application is running.

Timer tools work in the background, only being invoked at time intervals you
specify. This is multi-tasking - more than one thing is happening at a time.

Timer Properties:

Enabled Used to turn the timer on and off. When on, it
continues to operate until the Enabled property is set
to False.

Interval Number of milliseconds between each invocation of

the Timer Event.
Timer Events:
The timer tool only has one event, Timer. It has the form:

Sub TimerName_Timer()

End Sub
This is where you put code you want repeated every Interval seconds.
Timer Example:

To make the computer beep every second, no matter what else is going on, you
add a timer tool (named timExample) to the form and set the Interval property to
1000. That timer tool's event procedure is then:

Sub timExample_Timer()
Beep
End Sub

In complicated applications, many timer tools are often used to control numerous
simultaneous operations. With experience, you will learn the benefits and
advantages of using timer tools.

7-24 Learn Visual Basic 6.0

Simple Delays:

If you just want to use a simple delay in your Visual Basic application, you might
want to consider the Timer function. This is not related to the Timer tool. The
Timer function simply returns the number of seconds elapsed since midnight.

To use the Timer function for a delay of Delay seconds (the Timer function seems
to be accurate to about 0.1 seconds, at best), use this code segment:

Dim TimeNow As Single

TimeNow = Timer
Do While Timer - TimeNow < Delay
Loop

One drawback to this kind of coding is that the application cannot be interrupted
while in the Do loop. So, keep delays to small values.

Animation Techniques

One of the more fun things to do with Visual Basic programs is to create animated
graphics. We'll look at a few simple animation techniques here. I'm sure you'll
come up with other ideas for animating your application.

One of the simplest animation effects is a chieved by toggling between two
images. For example, you may have a picture of a stoplight with a red light. By
quickly changing this picture to one with a green light, we achieve a dynamic
effect - animation. Picture boxes andimage boxes are used to achieve this
effect.

Another approach to animation is to rotate through several pictures - each a slight
change in the previous picture - to obtain a longer animation. This is the principle
motion pictures are based on - pictures are flashed by us at 24 frames per
second and our eyes are tricked into believing things are smoothly moving.
Control arrays are usually used to achieve this type of animation.

More elaborate effects can be achieved by moving an image while, at the same,
time changing the displayed picture. Effects such as a little guy walking across
the screen are easily achieved. An object is moved using the Move method. You
can do both absolute and relative motion (using an object's Left and Top
properties).

Graphics Techniqueswith Visual Basc 7-25

For example, to move a picture box named picExample to the coordinate (100,
100), use:

picExample.Move 100, 100
To move it 20 twips to the right and 50 twips down, use:

picExample.Move picExample.Left + 20, picExample.Top + 50

Quick Example: Simple Animation

1. Start a new application. Place three image boxes on the form. Set the following
properties:

Imagel:
Picture mail02a.ico
Visible False
Image2:
Picture mail02b.ico
Visible False
Images3:
Picture mail02a.ico
Stretch True

Make Image3 larger than default size, using the ‘handles.’

A few words about what we're going to do. Imagel holds a closed envelope,
while Image2 holds an opened one. These images are not visible - they will be
selected for display in Image3 (which is visible) as Image3 is clicked. (This is
similar to hiding things in the drag and drop example.) It will seem the envelope is
being torn opened, then repaired.

2. Attach the following code to the Image3_Click procedure.

Private Sub I mage3_Cdick()
Static PicNum As | nteger
If PicNum= 0 Then

| mage3. Picture = Image2. Picture : PicNum= 1
El se

| mage3. Picture = Imagel. Picture : PicNum= 0
End If

End Sub

7-26 Learn Visual Basic 6.0

When the envelope is clicked, the image displayed in Image3is toggled (based
on the value of the static variable PicNum).

3. Run and save the application.

Quick Example: Animation with the Timer Tool

1. Inthis example, we cycle through four different images using timer controlled
animation. Start a new application. Put two image boxes, a timer tool, and a
command button on the form. Set these properties:

Imagel:
Picture trffcOl.ico
Visible False

Now copy and paste this image box three times, so there are four elements in
the Imagel control array. Set the Picture properties of the other three

elements to:
Imagel(1):

Picture trffcO2.ico
Imagel(2):

Picture trffcO3.ico
Imagel(3):

Picture trffcO4.ico
Image2:

Picture trffcOl.ico

Stretch True
Commandl1:

Caption Start/Stop
Timerl:

Enabled False

Interval 200

Graphics Techniqueswith Visual Basc 7-27

The form should resemble this:

w Forml Mi=] E3

2. Attach this code to the Commandl_Click procedure.

Private Sub Conmandl C i ck()
Ti mer 1. Enabl ed = Not (Ti nmer1. Enabl ed)
End Sub

The timer is turned on or off each time this code is invoked.

3. Attach this code to the Timerl Timer procedure.

Private Sub Tinmerl Tinmer()

Static PicNum As I nteger

PicNum = PicNum + 1

If PicNum > 3 Then PicNum = 0

| mage2. Picture = I magel(Pi cNum . Picture
End Sub

This code changes the image displayed in the Image2 box, using the static
variable PicNum to keep track of what picture is next.

4. Save and run the application. Note how the timer tool and the four small icons do
not appear on the form at run-time. The traffic sign appears to be spinning, with
the display updated by the timer tool every 0.2 seconds (200 milliseconds).

5. You can make the sign ‘walk off’ one side of the screen by adding this line after
setting the Picture property:

| mge2. Move | mage2. Left + 150

7-28 Learn Visual Basic 6.0

Random Numbers (Revisited) and Games

Another fun thing to do with Visual Basic is to create games. You can write
games that you play against the computer or against another opponent.

To introduce chaos and randomness in games, we use random numbers.
Random numbers are used to have the computer roll a die, spin a roulette wheel,
deal a deck of cards, and draw bingo numbers. Visual Basic develops random
numbers using its built-in random number generator.

Randomize Statement:

The random number generator in Visual Basic must be seeded. A Seed value
initializes the generator. The Randomize statement is used to do this:

Randomize Seed
If you use the same Seed each time you run your application, the same sequence
of random numbers will be generated. To insure you get different numbers every
time you use your application (preferred for games), use the Timer function to
seed the generator:

Randomize Timer

With this, you will always obtain a different sequence of random numbers, unless
you happen to run the application at exactly the same time each day.

Rnd Function:
The Visual Basic function Rnd returns a single precision, random number
between 0 and 1 (actually greater than or equal to 0 and less than 1). To produce
random integers (I) between Imin and Imax (again, what we usually do in games),
use the formula:
I = Int((Imax - Imin + 1) * Rnd) + Imin
Rnd Example:
To roll a six-sided die, the number of spots would be computed using:
NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

Graphics Techniqueswith Visual Basc 7-29

Randomly Sorting N Integers

In many games, we have the need to randomly sort a number of integers. For
example, to shuffle a deck of cards, we sort the integers from 1 to 52. To
randomly sort the state names in a states/capitals game, we would randomize the
values from 1 to 50.

Randomly sorting N integers is a common task. Here is a ‘self-documenting’
general procedure that does that task. Calling arguments for the procedure are N
(the largest integer to be sorted) and an array, NArray, dimensioned to N
elements. After calling the routine N_Integers, the N randomly sorted integers
are returned in NArray. Note the procedure randomizes the integers from 1 to N,
not 0 to N - the zeroth array element is ignored.

Private Sub N_Integers(N As Integer, Narray() As Integer)
'Randomly sorts N integers and puts results in Narray
Dim | As Integer, J As Integer, T As Integer
‘Order all elements initially
For1=1To N: Narray(l) = I: Next |
'J is number of integers remaining
ForJ=Nto 2 Step-1
[=Int(Rnd *J) + 1
T = Narray(J)
Narray(J) = Narray(l)
Narray(l) =T
Next J
End Sub

7-30 Learn Visual Basic 6.0

Example 7-3

One-Buttoned Bandit

1. Start a new application. In this example, we will build a computer version of a slot
machine. We'll use random numbers and timers to display three random pictures.
Certain combinations of pictures win you points. Place two image boxes, two
label boxes, and two command buttons on the form.

2. Set the following properties:

Form1:

BorderStyle 1-Fixed Single

Caption One -Buttoned Bandit

Name frmBandit
Commandl:

Caption &Spin It

Default True

Name cmdSpin
Command2:

Caption E&xit

Name cmdExit
Timerl:

Enabled False

Interval 100

Name timSpin
Timer2:

Enabled False

Interval 2000

Name timDone
Labell:

Caption Bankroll

FontBold True

Fontltalic True

FontSize 14

Graphics Techniqueswith Visual Basc 7-31

Label2:
Alignment 2-Center
AutoSize True
BorderStyle 1-Fixed Single
Caption 100
FontBold True
FontSize 14
Name IbIBank
Imagel:
Name imgChoice
Picture earth.ico
Visible False

Copy and paste this image box three times, creating a control element
(imgChoice) with four elements total. Set the Picture property of the
other three boxes.

Imagel(1):

Picture snow.ico
Imagel(2):

Picture misc44.ico
Imagel(3):

Picture face03.ico
Image2:

BorderStyle 1-Fixed single

Name imgBandit

Stretch True

Copy and paste this image box two times, creating a three element control
array (Image?2). You don't have to change any properties of the newly
created image boxes.

7-32 Learn Visual Basic 6.0

When done, the form should look something like this:

% One-Buttoned Bandit M=l E3

............ BN SR D\|mage2

IR DR DA DR D R control
S I I P array

Imagel ol e (visible)
control . . ; s

array
(not

visible)

A few words on what we're doing. We will randomly fill the three large
image boxes by choosing from the four choices in the non-visible image
boxes. One timer (timSpin) will be used to flash pictures in the boxes.
One timer (timDone) will be used to time the entire process.

3. Type the following lines in the general declarations area of your form's code
window. Bankroll is your winnings.

Option Explicit
Di m Bankrol |l As I nteger

4. Attach this code to the Form_Load procedure.

Private Sub Form Load()

Random ze Ti ner

Bankrol | = Val (| bl Bank. Capti on)
End Sub

Here, we seed the random number generator and initialize your bankroll.

5. Attach the following code to the cmdExit_Click event.

Private Sub cndExit _dick()

MsgBox "You ended up with" + Str(Bankroll) + " points.",
vbOKOnly, "Gane Over™

End

End Sub

When you exit, your final earnings are displayed in a message box.

Graphics Techniqueswith Visual Basc 7-33

6. Attach this code to the cmdSpin_Click event.

Private Sub cnmdSpin_dick()

If Bankroll = 0 Then
MsgBox "Qut of Cash!", vbOKOnly, "Game Over"
End

End If

Bankrol| = Bankroll - 1

| bl Bank. Caption = Str(Bankroll)
t i nSpi n. Enabl ed True

ti mbone. Enabl ed True

End Sub

Here, we first check to see if you're out of cash. If so, the game ends. If not, you
are charged 1 point and the timers are turned on.

7. This is the code for the timSpin_Timer event.

Private Sub tinSpin_Tinmer ()

i ngBandi t (0). Picture i mgChoice(Int(Rnd * 4)).Picture
i ngBandit(1). Picture i mgChoi ce(Int(Rnd * 4)).Picture
i ngBandi t (2). Picture I mgChoi ce(Int(Rnd * 4)).Picture
End Sub

Every 0.1 seconds, the three visible image boxes are filled with a random image.
This gives the effect of the spinning slot machine.

8. And, the code for the timDone_Timer event. This event is triggered after the
bandit spins for 2 seconds.

Private Sub tinmDone_Ti ner ()

Dim PO As Integer, P1 As Integer, P2 As |nteger
Dim W nni ngs As I nteger

Const FACE = 3

ti mSpi n. Enabl ed = Fal se

ti mDone. Enabl ed = Fal se
PO = Int(Rnd * 4)
PL = Int(Rnd * 4)
P2 = Int(Rnd * 4)

i mgBandi t (0). Picture
i nmgBandit(1).Picture
i ngBandit (2).Picture

i mgChoi ce(PO) . Picture
i mgChoi ce(P1). Picture
i ngChoi ce(P2). Picture

7-34 Learn Visual Basic 6.0

If PO = FACE Then
Wnnings =1
I f P1 = FACE Then
Wnnings = 3
If P2 = FACE Then
W nni ngs = 10
End |f
End | f
El self PO = P1 Then
W nnings = 2
If P1 = P2 Then Wnnings = 4

End If

Bankrol |l = Bankroll + W nnings
| bl Bank. Caption = Str(Bankroll)
End Sub

First, the timers are turned off. Final pictures are displayed in each position.
Then, the pictures are checked to see if you won anything.

9. Save and run the application. See if you can become wealthy.
10. If you have time, try these things.

A. Rather than display the three final pictures almost simultaneously, see if
you can stop each picture from spinning at a different time. You'll need
a few more Timer tools.

B. Add some graphics and/or printing to the form when you win. You'll
need to clear these graphics with each new spin - use the Cls method.

C. Seeif you can figure out the logic | used to specify winning. See if you
can show the one-buttoned bandit returns 95.3 percent of all the
'money' put in the machine. This is higher than what Vegas machines
return. But, with truly random operation, Vegas is guaranteed their
return. They can't lose!

Graphics Techniqueswith Visual Basc 7-35

User-Defined Coordinates

Another major use for graphics in Visual Basic is to generate plots of data. Line
charts, bar charts, and pie charts can all be easily generated.

We use the Line tool and Circle tool to generate charts. The difficult part of using
these tools is converting our data into the Visual Basic coordinate system. For
example, say we wanted to plot the four points given by:

0 2 P
X=0,y= (6,13)
X=2,y=7 @7
x=5y=11 > (5.11)
X=6,y=13

02—

To draw such a plot, for each point, we would need to scale each (x, y) pair to fit
within the dimensions of the form specified by the ScaleWidth and ScaleHeight
properties. This is a straightforward, but tedious computation.

An easier solution lies in the ability to incorporate user-defined coordinatesin a
Visual Basic form. The simplest way to define such coordinates is with the Scale
method. The form for this method is:

ObjectName.Scale (x1, y1) - (X2, y2)

The point (x1, y1) represents thetop left corner of the newly defined coordinate
system, while (x2, y2) represents thelower right corner. If ObjectName is
omitted, the scaling is associated with the current form.

Once the coordinate system has been redefined, all graphics methods must use
coordinates in the new system. To return to the default coordinates, use the
Scale method without any arguments.

7-36 Learn Visual Basic 6.0

Scale Example:

Say we wanted to plot the data from above. We would first define the following
coordinate system:

Scale (0, 13) - (6, 2)

This shows that x ranges from O (left side of plot) to 6 (right side of plot), while y
ranges from 2 (bottom of plot) to 13 (top of plot). The graphics code to plot this
function is then:

Pset (0, 2)
Line-(2,7)
Line - (5, 11)
Line - (6, 13)

Note how much easier this is than would be converting each number pair to twips.

Simple Function Plotting (Line Charts)

Assume we have a function specified by a known number of (x, y) pairs. Assume
N points in two arrays dimensionedto N - 1. x(N - 1), andy(N - 1). Assume the
points are sorted in the order they are to be plotted. Can we set up a general
procedure to plot these functions, that is create aline chart? Of course!

The process is:

1. Go through all of the points and find the minimum x value (Xmin),
maximum x value (Xmax), minimum y value (Ymin) and the maximum y
value (Ymax). These will be used to define the coordinate system.
Extend each y extreme (Ymin and Ymax) a little bit - this avoids having
a plotted point ending up right on the plot border.

2. Define a coordinate system using Scale:
Scale (Xmin, Ymax) - (Xmax, Ymin)

Ymax is used in the first coordinate because, recall, it defines the
upper left corner of the plot region.

Graphics Techniqueswith Visual Basc 7-37

3. Initialize the plotting procedure at the first point using PSet:
PSet (x(0), y(0))

4. Plot subsequent points with the Line procedure:

Line - (x(i), y(1))

Here is a general procedure that does this plotting using these steps. It
can be used as a basis for more elaborate plotting routines. The
arguments are ObjectName the name of the object (form or picture box)
you are plotting on, N the number of points, X the array of x points, and Y
the array of y points.

Sub LineChart(ObjectName As Control, N As Integer, X() As Single, Y() As
Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim | As Integer
Xmin = X(0): Xmax = X(0)
Ymin =Y(0): Ymax = Y(0)
ForI=1ToN-1
If X(1) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(I)
If Y(I) < Ymin Then Ymin = Y(I)
If Y(I) > Ymax Then Ymax = Y(I)
Next |
Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin * Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
ObjectName.PSet (X(0), Y(0))
ForlI=1ToN-1
ObjectName.Line - (X(1), Y(1))
Next |
End Sub

7-38 Learn Visual Basic 6.0

Simple Bar Charts

Here, we have a similar situation, N points in arrays X(N - 1) and Y(N - 1). Can
we draw a bar chart using these points? The answer again is yes.

The procedur e to develop a bar chart is similar to that for line charts:

1. Find the minimum x value (Xmin), the maximum X value (Xmax), the
minimum y value (Ymin) and the maximum y value (Ymax). Extend the
y extremes a bit.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Ymin)

3. For each point, draw a bar using the Line procedure:
Line (x(i), 0) - (x(), y())

Here, we assume the bars go from 0 to the corresponding y value. You

may want to modify this. You could also add color and widen the bars
by using the DrawWidth property (the example uses blue bars).

Graphics Techniqueswith Visual Basc 7-39

Here is a general procedure that draws a bar chart. Note its similarity to
the line chart procedure. Modify it as you wish. The arguments are
ObjectName the name of the object (form or picture box) you are plotting
on, N the number of points, X the array of x points, and Y the array of y
points.

Sub BarChart(ObjectName As Control, N As Integer, X() As Single, Y() As Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim | As Integer
Xmin = X(0): Xmax = X(0)
Ymin =Y(0): Ymax = Y(0)
ForlI=1ToN-1
If X(1) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(1)
If Y(I) < Ymin Then Ymin = Y(l)
If Y(I) > Ymax Then Ymax = Y(I)
Next |
Ymin = (1-0.05 * Sgn(Ymin)) * Ymin * Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
ForlI=0ToN-1
ObjectName.Line (X(I), 0) - (X(I), Y(1)), vbBlue
Next |
End Sub

7-40 Learn Visual Basic 6.0

Example 7-4

Line Chart and Bar Chart Application

1. Starta new application. Here, we'll use the general line chart and bar chart
procedures to plot a simple sine wave.

2. Puta picture box on a form. Set up this simple menu structure using the Menu
Editor:

Plot
Line Chart
Bar Chart
Spiral Chart

Exit
Properties for these menu items should be:

Caption Name

&Plot mnuPlot
&Line Chart mnuPlotLine
&Bar Chart mnuPlotBar
&Spiral Chart mnuPlotSpiral
- mnuPlotSep
E&xit mnuPlotExit

Other properties should be:

Form1:
BorderStyle 1-Fixed Single
Caption Plotting Examples
Name frmPlot

Picturel:
BackColor White

Name picPlot

Graphics Techniqueswith Visual Basc 7-41

The form should resemble this:

. Plotting Examples Mi=]

3. Place this code in the general declarations area. This makes the x and y arrays
and the number of points global.

Option Explicit
Dm N As | nteger
Dim X(199) As Single
Dim Y(199) As Single
Dim YD(199) As Single

4. Attach this code to the Form_Load procedure. This loads the arrays with the
points to plot.

Private Sub form Load()
Dm1 As Integer
Const Pl = 3.14159
N = 200
For I = 0 To N- 1
X(1) I
Y(1) Exp(-0.01 * 1) * Sin(PI * I / 10)
YD(I) = Exp(-0.012 * 1) * (Pl * Cos(PI * I / 10) / 10 -
0.01 * Sin(Pl * 1 [/ 10))
Next |
End Sub

5. Attach this code to the mnuPlotLine_Click event. This draws the line chart.

Private Sub muPIl ot Li ne_Cli ck()
Call LineChart(picPlot, N X)

7-42 Learn Visual Basic 6.0

End Sub

Graphics Techniqueswith Visual Basc 7-43

6. Attach this code to the mnuPlotBar_Click event. This draws the bar chart.

Private Sub muPl ot Bar _Cl i ck()
Call BarChart(picPlot, N X Y)
End Sub

7. Attach this code to the mnuPlotSpiral_Click event. This draws a neat little
spiral. [Using the line chart, it plots the magnitude of the sine wave (Y array) on
the x axis and its derivative (YD array) on the y axis, in case you are interested.]

Private Sub muPl ot Spiral _Cick()
Call LineChart(picPlot, N, Y, YD)
End Sub

8. And, code for the mnuPlotExit_Click event. This stops the application.

Private Sub mmuPl ot Exit_C i ck()
End
End Sub

9. Put the LineChart and BarChart procedures from these notes in your form as
general procedures.

10. Finally, save and run the application. You're ready to tackle any plotting job now.
11. These routines just call out for enhancements. Some things you might try.
A. Label the plot axes using the Print method.

B. Draw grid lines on the plots. Use dotted or dashed lines at regular
intervals.

C. Put titling information on the axes and the plot.

D. Modify the line chart routine to allow plotting more than one function.
Use colors or different line styles to differentiate the lines. Add a
legend defining each plot

E. See if you can figure out how to draw a pie chart. Use the Circle method to
draw the pie segments. Figure out how to fill these segments with different
colors and patterns. Label the pie segments.

7-44 Learn Visual Basic 6.0

Exercise 7-1

Blackjack

Develop an application that simulates the playing of the card game Blackjack. The
idea of Blackjack is to score higher than a Dealer’s hand without exceeding twenty-
one. Cards count their value, except face cards (jacks, queens, kings) count for ten,
and aces count for either one or eleven (your pick). If you beat the Dealer, you get 10
points. If you get Blackjack (21 with just two cards) and beat the Dealer, you get 15
points.

The game starts by giving two cards (from a standard 52 card deck) to the Dealer
(one face down) and two cards to the player. The player decides whether to Hit (get
another card) or Stay. The player can choose as many extra cards as desired. If the
player exceeds 21 before staying, it is a loss (-10 points). If the player does not
exceed 21, it becomes the dealer’s turn. The Dealer add cards until 16 is exceeded.
When this occurs, if the dealer also exceeds 21 or if his total is less than the player’s,
he loses. If the dealer total is greater than the player total (and under 21), the dealer
wins. If the dealer and player have the same total, it is a Push (no points added or
subtracted). There are lots of other things you can do in Blackjack, but these simple
rules should suffice here. The cards should be reshuffled whenever there are fewer
than fifteen (or so) cards remaining in the deck.

Graphics Techniqueswith Visual Basc 7-45

My Solution (not a trivial problem):

Form:

IbIResults IbIWinnings

W Blackjack Game

imgSuit

There are so many things here, | won't label them all. The button names are obvious.
The definition of the cards is not so obvious. Each card is made up of three different
objects (each a control array). The card itself is a shape (shpDealer for dealer
cards, shpPlayer for player cards), the number on the card is a label box (IbIDealer
for dealer cards, IblPlayer for player cards), and the suit is an image box (imgDealer
for dealer cards, imgPlayer for player cards). There are six elements (one for each
card) in each of these control arrays, ranging from element O at the left to element 5 at
the right. The zero elements of the dealer card controls are obscured by shpBack
(used to indicate a face down card).

7-46 Learn Visual Basic 6.0

Properties:

Form frmBlackJack:
BackColor = &HOOFF8080& (Light Blue)
BorderStyle = 1 - Fixed Single
Caption = Blackjack Game

CommandButton cmdDeal:
Caption = &DEAL
FontName = MS Sans Serif
FontSize= 13.5

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdStay:
Caption = &STAY
FontName = MS Sans Serif
FontSize= 13.5

CommandButton cmdHit :
Caption = &HIT
FontName = MS Sans Serif
FontSize= 13.5

Image imgSuit:
Index =3
Picture = misc37.ico
Visible = False

Image imgSuit:
Index =2
Picture = misc36.ico
Visible = False

Image imgSuit:
Index =1
Picture = misc35.ico
Visible = False

Image imgSuit:
Index =0
Picture = misc34.ico
Visible = False

Graphics Techniqueswith Visual Basc 7-47

Shape shpBack:
BackColor = &HOOFFOOFF& (Magenta)
BackStyle = 1- Opaque
BorderWidth = 2
FillColor = &HOOOOFFFF& (Yellow)
FillStyle = 7 - Diagonal Cross
Shape = 4- Rounded Rectangle

Label IbIPlayer:
Alignment = 2 - Center
BackColor = &HOOFFFFFF&
Caption =10
FontName = MS Sans Serif
FontBold = True
FontSize = 18
ForeColor = &HO0C00000& (Blue)
Index=5,4,3,2,1,0

Image imgPlayer:
Picture = misc35.ico
Stretch = True
Index=5,4,3,2,1,0

Shape shpPlayer:
BackColor = &HOOFFFFFF& (White)
BackStyle = 1 - Opaque
BorderWidth = 2
Shape = 4- Rounded Rectangle
Index=5,4,3,2,1,0

Label IbIDealer:
Alignment = 2 - Center
BackColor = &HOOFFFFFF&
Caption =10
FontName = MS Sans Serif
FontBold = True
FontSize = 18
ForeColor = &HO0C00000& (Blue)
Index=5,4,3,2,1,0

Image imgDealer:
Picture = misc35.ico
Stretch = True
Index=5,4,3,2,1,0

7-48 Learn Visual Basic 6.0

Shape shpDealer:
BackColor = &HOOFFFFFF& (White)
BackStyle = 1 - Opaque
BorderWidth = 2
Shape = 4- Rounded Rectangle
Index=5,4,3,2,1,0

Label Label2:
BackColor = &HOOFF8080& (Light Blue)
Caption = Player:
FontName = MS Sans Serif
FontBold = True
FontSize = 18

Label IbIResults:
Alignment = 2 - Center
BackColor = &HO080FFFF& (Light Yellow)
BorderStyle = 1- Fixed Single
FontName = MS Sans Serif
FontSize = 18

Label Label3:
BackColor = &HOOFF8080& (Light Blue)
Caption = Won
FontName = MS Sans Serif
FontBold = True
FontSize = 18

Label IbIWinnings:
Alignment = 2 - Center
BackColor = &HO080FFFF& (Light Yellow)
BorderStyle = 1 - Fixed Single
Caption=0
FontName = MS Sans Serif
FontSize = 18

Graphics Techniqueswith Visual Basc 7-49

Code:

General Declarations:

Option Explicit

Di m Car dNane(52) As String

Dim CardSui t (52) As Integer

Di m CardVval ue(52) As Integer

Dim Wnnings As Integer, CurrentCard As I|nteger

Dim Aces_Deal er As Integer, Aces Player As |nteger

Dim Score_Deal er As Integer, Score_Player As |nteger

Di m NunmCar ds_Deal er As Integer, NunmCards_ Pl ayer As |nteger

Add_Dealer General Procedure:

Sub Add Deal er ()

Dm1 As Integer

"Adds a card at index | to dealer hand

NumCar ds_Deal er = NuntCards Dealer + 1

| = NunCards_Dealer - 1

| bl Deal er (1) . Caption = CardNane(Current Card)

i ngDeal er(1).Picture =

i mgSui t (CardSuit (CurrentCard)). Picture
Score_Deal er = Score_Deal er + CardVal ue(Current Card)
I f CardValue(CurrentCard) = 1 Then Aces Dealer =
Aces Dealer + 1

CurrentCard = CurrentCard + 1

| bl Deal er(1).Visible = True
i ngDeal er(1).Visible = True
shpDeal er (1) . Visible = True

End Sub

Add_Player General Procedure:

Sub Add_ Pl ayer ()

Dm1 As Integer

"Adds a card at index | to player hand
NunCar ds_Pl ayer = NunCards_Pl ayer + 1

| = NunCards_Player - 1

| bl Pl ayer (1). Caption = CardNanme(Current Card)
i ngPl ayer(1).Picture =
inmgSuit(CardSuit(CurrentCard)).Picture

7-50 Learn Visual Basic 6.0

Score_Pl ayer = Score_Pl ayer + CardVal ue(Current Card)
| f CardVal ue(CurrentCard) = 1 Then Aces_Pl ayer =
Aces Pl ayer + 1

| bl Pl ayer(1). Visible True

i ngPl ayer(1).Visible True

shpPl ayer (1).Visible = True

CurrentCard = CurrentCard + 1

End Sub

Graphics Techniques with Visual Badc

7-51

End_Hand General Procedure:

Sub End _Hand(Msg As String, Change As Integer)

shpBack. Vi si bl e = Fal se

| bl Results. Caption =

'Hand has ended -

Msg

W nni ngs = Wnni ngs + Change
| bl Wi nni ngs. Caption =
cndHi t . Enabl ed = Fal se

cndSt ay. Enabl ed =
cndDeal . Enabl ed

End Sub

update w nni ngs

St r (W nni ngs)

Fal se
True

New_Hand General Procedure:

Sub New_Hand()

' Deal a new hand

Dm1 As Integer

'Clear table of cards

For | = 0 To 5
| bl Deal er (1) . Vi si bl
I ngDeal er (1) . Vi si bl
shpDeal er (1) . Vi si bl
| bl Pl ayer(1). Visi bl
I mgPl ayer (1) . Vi si bl
shpPl ayer (1) . Vi si bl

Next |

| bl Resul ts. Caption =
cndHi t . Enabl ed = True
cndSt ay. Enabl ed = True

cndDeal . Enabl ed = Fal se

e
e
e
e
e
e

Fal se
Fal se
Fal se
Fal se
Fal se
Fal se

If CurrentCard > 35 Then Cal
'"Get two deal er cards

Scor e_Deal er

shpBack. Vi si bl e = True
Cal | Add_Deal er

Cal | Add_Deal er

"Get two player cards
Score_Player = 0: Aces_Pl ayer
Cal | Add_PI ayer
Cal | Add_Pl ayer

" Check for

bl ackj acks

= 0: Aces_Deal er

Shuffl e _Cards

0: Nuntards_Deal er

0: NunCards_Pl ayer

7-52 Learn Visual Basic 6.0

| f Score_Deal er 11 And Aces_Deal er

1 Then Score_Deal er

=21
| f Score_Player = 11 And Aces_Player = 1 Then Score_Pl ayer
=21
| f Score_Dealer = 21 And Score_Player = 21 Then
Cal | End_Hand("Two Bl ackj acks!", 0)
Exit Sub
El self Score_Dealer = 21 Then
Cal | End_Hand("Deal er Bl ackjack!", -10)
Exit Sub
El self Score Player = 21 Then
Call End_Hand("Pl ayer Bl ackjack!", 15)
Exit Sub
End If
End Sub

N_Integers General Procedure:

Private Sub N _ Integers(N As I nteger,
"Randomly sorts N integers and puts

Dm1l As Integer, J As Integer,
"Order all elenents initially
For I =1 To N0 Narray(l) = 1: Next
"J is nunber of integers renaining
For J = Nto 2 Step -1

| =Int(Rnd * J) + 1

T = Narray(J)

Narray(J) = Narray(l)

Narray(l) =T
Next J
End Sub

Shuffle_Cards General Procedure:

Sub Shuffle_Cards()

"Shuffle a deck of cards. That i s,

Narray() As |nteger)
results in Narray

T As | nteger

randomy sort

"the integers from1l to 52 and convert to cards.

"Cards 1-13 are the ace through king

of hearts

"Cards 14-26 are the ace through king of clubs
"Cards 27-39 are the ace through king of dianonds
'Cards 40-52 are the ace through king of spades

"When done:

Graphics Techniqueswith Visual Basc 7-53

"The array el ement CardNanme(i) has the nane of the ith
card
"The array elenment CardSuit(i) is the index to the ith
card suite
"The array el enent CardVal ue(i) has the point value of the
ith card
Dim CardUsed(52) As I nteger
DmJ As Integer
Call N_Integers(52, CardUsed())
For J = 1 to 52
Sel ect Case (CardUsed(J) - 1) Md 13 + 1
Case 1
CardNane(J) = "A"
Cardvalue(J) =1

Case 2
CardNane(J) = "2"
Cardval ue(J) = 2
Case 3

Car dName(J) = "3"

Car dval ue(J)
Case 4

CardNane(J) = "4"

Car dval ue(J)
Case 5

Car dName(J) = "5"

I
w

I
IN

Cardval ue(J) =5
Case 6

CardNane(J) = "6"

Cardval ue(J) = 6
Case 7

CardNane(J) = "7"

Cardval ue(J) =7
Case 8

CardNane(J) = "8"

Car dval ue(J)
Case 9

Car dName(J) = "9"

I
0o

Cardval ue(J) =9
Case 10

Car dName(J) = "10"

Cardval ue(J) = 10
Case 11

CardNane(J) = "J"

7-54 Learn Visual Basic 6.0

CardVval ue(J) = 10
Case 12

CardNane(J) = "Q

Cardval ue(J) = 10

Case 13
CardNane(J) = "K"
Cardval ue(J) = 10

End Sel ect

CardSuit(J) = Int((CardUsed(J) - 1) / 13)
Next J
CurrentCard = 1
End Sub

cmdDeal Click Event:

Private Sub cndDeal Cick()
Call New_ Hand
End Sub

Graphics Techniqueswith Visual Basc 7-55

cmdExit Click Event:

Private Sub cnmdExit_dick()
" Show final wi nnings and quit
I f Wnnings > 0 Then
MsgBox "You won" + Str(Wnnings) + " points!", vbOKOnly,
"Ganme Over"
El self Wnnings = 0 Then
MsgBox "You broke even.”, vbOKOnly, "Ganme Over™
El se
MsgBox "You lost" + Str(Abs(Wnnings)) + " points!",
vbOKOnly, "Gane Over™
End If
End
End Sub

cmdHit Click Event:

Private Sub cndHit _Cick()
"Add a card if player requests
Cal | Add_PI ayer
| f Score_Player > 21 Then
Call End_Hand("Pl ayer Busts!", -10)
Exit Sub
End If
| f NuntCards_Pl ayer = 6 Then
cndH t. Enabl ed = Fal se
Call cmdStay_dick
Exit Sub
End If
End Sub

cmdStay Click Event:

Private Sub cnmdStay_Cick()
Dim ScoreTenp As Integer, AcesTenp As I|nteger
' Check for aces in player hand and adjust score
"to highest possible
cndHi t. Enabl ed = Fal se
cndSt ay. Enabl ed = Fal se
I f Aces_Player <> 0 Then
Do

7-56 Learn Visual Basic 6.0

Score_Pl ayer = Score_Player + 10
Aces Pl ayer = Aces Pl ayer - 1
Loop Until Aces_Player = 0 Or Score_Player > 21
If Score_ Player > 21 Then Score_ Pl ayer = Score_ Pl ayer -
10
End |f
"Uncover deal er face down card and pl ay deal er hand
shpBack. Vi si bl e = Fal se
Next Tur n:
ScoreTenp = Score_Deal er: AcesTenp = Aces_Deal er
' Check for aces and adjust score
| f AcesTenp <> 0 Then
Do
ScoreTenp = ScoreTenp + 10
AcesTenp = AcesTenp - 1
Loop Until AcesTenp = 0 Or ScoreTenp > 21
I f ScoreTenp > 21 Then ScoreTenp = ScoreTenp - 10
End |f
" Check if deal er won
| f ScoreTenp > 16 Then
| f ScoreTenp > Score_ Player Then
Call End_Hand("Deal er Wns!", -10)
Exit Sub
El self ScoreTenp = Score_Pl ayer Then
Call End_Hand("It's a Push!", 0)
Exit Sub
El se
Call End_Hand("Pl ayer Wns!", 10)
Exit Sub
End If
End If
"If six cards shown and deal er hasn't won, player w ns
| f NuntCards_Dealer = 6 Then
Call End_Hand("Pl ayer Wns!", 10)
Exit Sub
End If
"See if hit is needed
| f ScoreTenp < 17 Then Call Add_Deal er
| f Score_Dealer > 21 Then
Call End_Hand("Deal er Busts!", 10)
Exit Sub
End |f
GoTo Next Turn

Graphics Techniqueswith Visual Basc 7-57

End Sub

Form_Load Event:

Private Sub Form Load()

' Seed random nunber generator, shuffle cards, deal new
hand

Random ze Ti ner

Call Shuffle_Cards

Call New_Hand

End Sub

7-58 Learn Visual Basic 6.0

Exercise 7-2

Information Tracking Plotting

Add plotting capabilities to the information tracker you developed in Class 6. Plot
whatever information you stored versus the date. Use a line or bar chart.

My Solution:

Form (like form in Homework 6, with a picture box and Plot menu item added):

¥ Weight Program Mi=] E3
B
. Date Weight
E | | =]
: hd
[Wesw Fie
............................... | .
picPlot .
New Properties:
Form frmWeight
FontName = MS Sans Serif
FontSize = 10

PictureBox picPlot:

BackColor = &HOOFFFFFF& (White)
DrawWidth =2

Menu mnuFilePlot:
Caption = &Plot

Graphics Techniques with Visual Badc

7-59

New Code:

mnuFilePlot Click Event:

Private Sub mmuFil ePl ot _Cick()

Dim X(100) As Integer, Y(100) As Integer
Dm1 As Integer

Dm Xmn As Integer, Xmax As |nteger
DmYmn As Integer, Ymax As |nteger
Dim Legend As String

Xmn =0: Xmax = 0

Ymin Val (Wi ghts(1)): Ymax = Ymin

For I =1 To NumA's

X(1) = DateDi ff("d", Dates(1l), Dates(l))
Y(1) = Val (Weights(1))

[f X(1) < Xmn Then Xmn = X(I)

[f X(I) > Xmax Then Xmax = X(1)

If Y(1) < Ymn Then Ymn = Y(I)

[f Y(I) > Ymax Then Ymax = Y(I)
Next |

Xmn=Xmn- 1: Xmax = Xmax + 1

Ynin = (1 - 0.05* Sgn(Ymn)) * Ymn
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax

pi cpl ot. Scal e (Xm n, Ymax) - (Xmax, Ymni n)
ds

picplot.C's

For I =1 To NumA's

picplot.Line (X(1), Ymn)-(X(1), Y(1)), @QBColor(1)
Next |
Legend = Str(Ymax)
Current X = picplot.Left - Text Wdth(Legend)
CurrentY = picplot.Top - 0.5 * Text Hei ght (Legend)
Print Legend
Legend = Str(Ym n)
Current X = picplot.Left - Text Wdth(Legend)
CurrentY = picplot. Top + picplot.Height - 0.5 *
Text Hei ght (Legend)
Print Legend
End Sub

7-60 Learn Visual Basic 6.0

This page intentionally not left blank. ||

8-1

Learn Visual Basic 6.0

8. Database Access and Management

Review and Preview

In past classes, we've seen the power of the built-in Visual Basic tools. In this
class, we look at one of the more powerful tools, the Data Control. Using this tool,
in conjunction with associated ‘data-aware’ tools, allows us to access and
manage databases. We only introduce the ideas of database access and
management - these topics alone could easily take up a ten week course.

A major change in Visual Basic, with the introduction of Version 6.0, is in its
database management tools. New tools based on ActiveX Data Object (ADO)
technology have been developed. These new tools will eventually replace the
older database tools, called DAO (Data Access Object) tools. We will only
discuss the ADO tools. Microsoft still includes the DAO tools for backward
compatibility. You might want to study these on your own, if desired.

Database Structure and Terminology

In simplest terms, a database is a collection of information. This collection is
stored in well-defined tables, or matrices.

The rows in a database table are used to describe similar items. The rows are
referred to as database records. In general, no two rows in a database table will
be alike.

The columns in a database table provide characteristics of the records. These
characteristics are called database fields. Each field contains one specific piece
of information. In defining a database field, you specify the data type, assign a
length, and describe other attributes.

8-2 Learn Visual Basic 6.0

Here is a simple database example:

Field
ID No Name Date of Birth Height Weight
1 |Bob Jones 01/04/58 72 170
2 |Mary Rodgers 11/22/61 65 125 —‘ Record
3 |Sue Williams 06/11/57 68 130

Table

In this database table, each record represents a single individual. The fields
(descriptors of the individuals) include an identification number (ID No), Name,
Date of Birth, Height, and Weight.

Most databases use indexes to allow faster access to the information in the
database. Indexes are sorted lists that point to a particular row in a table. In the
example just seen, the ID No field could be used as an index.

A database using a single table is called aflat database. Most databases are
made up of many tables. When using multiple tables within a database, these
tables must have some common fields to allow cross-referencing of the tables.
The referral of one table to another via a common field is called arelation. Such

groupings of tables are called relational databases.

In our first example, we will use a sample database that comes with Visual Basic.
This database (BIBLIO.MDB) is found in the main Visual Basic directory (try
c:\Program Files\Microsoft Visual Studio\VB98). It is a database of books about
computers. Let's look at its relational structure. The BIBLIO.MDB database is
made up of four tables:

Authors Table (6246 Records, 3 Fields)

Au_ID Author | Year Born

Database Access and M anagement

8-3

Publishers Table (727 Records, 10 Fields)

PubID Name Company Fax Comments
Title Author Table (16056 Records, 2 Fields)

ISBN Au_ID
Titles Table (8569 Records, 8 Fields)

Title Year Pub ISBN PubID Comments

The Authors table consists of author identification numbers, the author's name,

and the year born. The Publishers table has information regarding book
publishers. Some of the fields include an identification number, the publisher

name, and pertinent phone numbers. The Title Author table correlates a book’s

ISBN (a universal number assigned to books) with an author’s identification

number. And, the Titles table has several fields describing each individual book,

including title, ISBN, and publisher identification.

8-4 Learn Visual Basic 6.0

Note each table has two types of information: source data and relational data.
Source data is actual information, such as titles and author names. Relational
data are references to data in other tables, such as Au_ID and PubD. Inthe
Authors, Publishers and Title Author tables, the first column is used as the table
index. Inthe Titles table, the ISBN value is the index.

Using the relational data in the four tables, we should be able to obtain a complete
description of any book title in the database. Let’s look at one example:

Titles Publishers
Title ISBN PublD PublID Publisher
Step-by-step dBase IV 0-0280095-25 52 52 - McGraw-Hill
Title Author Authors
ISBV Au_ID Au_ID Author
0-0280095-2-5 | > 171 171_*Wraye, Toby

Here, the book in the Titles table, entitled “Step-by-step dBase 1V,” has an ISBN
of 0-0280095-2-5 and a PubID of 52. Taking the PublID into the Publishers
table, determines the book is published by McGraw-Hill and also allows us to
access all other information concerning the publisher. Using the ISBN in the Title
Author table provides us with the author identification (Au_ID) of 171, which,
when used in the Authors table, tells us the book’s author is Toby Wraye.

We can form alternate tables from a database’s inherent tables. Such virtual
tables, orlogical views, are made using queries of the database. A query is
simply a request for information from the database tables. As an example with

the BIBLIO.MDB database, using pre-defined query languages, we could ‘ask’ the
database to form a table of all authors and books published after 1992, or provide
all author names starting with B. We'll look briefly at queries.

Database Access and M anagement 8-5

Keeping track of all the information in a database is handled by a database
management system (DBMS). They are used to create and maintain
databases. Examples of commercial DBMS programs are Microsoft Access,
Microsoft FoxPro, Borland Paradox, Borland dBase, and Claris FileMaker. We
can also use Visual Basic to develop a DBMS. Visual Basic shares the same
‘engine’ used by Microsoft Access, known as the Jet engine. In this class, we will
see how to use Visual Basic to access data, display data, and perform some
elementary management operations.

8-6 Learn Visual Basic 6.0

ADO Data Control
éﬂ

The ADO (ActiveX Data Object) data control is the primary interface between a
Visual Basic application and a database. It can be used without writing any code
atall' Or, it can be a central part of a complex database management system.
This icon may not appear in your Visual Basic toolbox. If it doesn’t, select Project
from the main menu, then click Components. The Components window will
appear. Select Microsoft ADO Data Control, then click OK. The control will be
added to your toolbox.

As mentioned in Review and Preview, previous versions of Visual Basic used
another data control. That control is still included with Visual Basic 6.0 (for
backward compatibility) and has as its icon:

Make sure you are not using this data control for the work in this class. This
control is suitable for small databases. You might like to study it on your own.

The data control (or tool) can access databases created by several other
programs besides Visual Basic (or Microsoft Access). Some other formats
supported include Btrieve, dBase, FoxPro, and Paradox databases.

The data control can be used to perform the following tasks:

Connect to a database.

Open a specified database table.

Create a virtual table based on a database query.

Pass database fields to other Visual Basic tools, for display or
editing. Such tools are bound tools (controls), or data aware.
Add new records or update a database.

Trap any errors that may occur while accessing data.

. Close the database.

PwnE

Nowx

Database Access and M anagement 8-7

Data Control Properties:

Align
Caption
ConnectionString

LockType

Recordset

RecordSource

Determines where data control is displayed.
Phrase displayed on the data control.

Contains the information used to establish a
connection to a database.

Indicates the type of locks placed on records
during editing (default setting makes databases
read-only).

A set of records defined by a data control’s
ConnectionString and RecordSource properties.
Run-time only.

Determines the table (or virtual table) the data
control is attached to.

As arule, you need one data control for every database table, or virtual table, you
need access to. One row of a table is accessible to each data control at any one
time. This is referred to as the current record.

When a data control is placed on a form, it appears with the assigned caption and

four arrow buttons:

Move to first row /
\rH 4 | Caption kiM

Move to previous row

The arrows are used to

Move to last row

/

navigate through the table rows (records). As indicated,

Move to next row

the buttons can be used to move to the beginning of the table, the end of the table,
or from record to record.

8-8 Learn Visual Basic 6.0

Data Links

After placing a data control on a form, you set the ConnectionString property.
The ADO data control can connect to a variety of database types. There are three
ways to connect to a database: using a data link, using an ODBC data source, or
using a connection string. In this class, we will look only at connection to a
Microsoft Access database using a data link. A data link is a file with a UDL
extension that contains information on database type.

If your database does not have a data link, you need to create one. This process
is best illustrated by example. We will be using the BIBLIO.MDB database in our
first example, so these steps show you how to create its data link:

1. Open Windows Explorer.

2. Open the folder where you will store your data link file.

3. Right-click the right side of Explorer and choose New. From the list of files,

select Microsoft Data Link.

Rename the newly created file BIBLIO.UDL

Right-click this new UDL file and click Properties.

Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider

(an Access database).

Click the Next button to go to the Connection tab.

Click the ellipsis and use the Select Access Database dialog box to choose

the BIBLIO.MDB file which is in the Visual Basic main folder. Click Open.

9. Click Test Connection. Then, click OK (assuming it passed). The UDL file
is now created and can be assigned to ConnectionString, using the steps
below.

ook

0 N

If a data link has been created and exists for your database, click the ellipsis that
appears next to the ConnectionString property. Choose Use Data Link File.
Then, click Browse and find the file. Click Open. The data link is now assigned
to the property. Click OK.

Database Access and M anagement 8-9

Assigning Tables

Once the ADO data control is connected to a database, we need to assign a
table to that control. Recall each data control is attached to a single table,
whether it is a table inherent to the database or the virtual table we discussed.
Assigning a table is done via the RecordSource property.

Tables are assigned by making queries of the database. The language used to
make a query is SQL (pronounced ‘sequel,” meaning structured query language).
SQL is an English-like language that has evolved into the most widely used
database query language. You use SQL to formulate a question to ask of the
database. The data base ‘answers’ that question with a new table of records and
fields that match your criteria.

Atable is assigned by placing a valid SQL statement in the RecordSource
property of a data control. We won't be learning any SQL here. There are many
texts on the subject - in fact, many of them are in the BIBLIO.MDB database we've
been using. Here we simply show you how to use SQL to have the data control
‘point’ to an inherent database table.

Click on the ellipsis next to RecordSource in the property box. A Property
Pages dialog box will appear. In the box marked Command Text (SQL), type
this line:

SELECT * FROM TableName

This will select all fields (the * is a wildcard) from a table named TableName in
the database. Click OK.

Setting the RecordSource property also establishes the Recordset property,
which we will see later is a very important property.

In summary, the relationship between the data control and its two primary
properties (ConnectionString and RecordSource) is:

Database file
- Database table ADO Data control

.............................. \ éﬂ
Current record

ConnectionString ~ RecordSource

8-10 Learn Visual Basic 6.0

Bound Data Tools

Most of the Visual Basic tools we've studied can be used as bound, or data-
aware, tools (or controls). That means, certain tool properties can be tied to a
particular database field. To use a bound control, one or more data controls must
be on the form.

Some bound data tools are:

Label Can be used to provide display-only access to a
specified text data field.
Text Box Can be used to provide read/write access to a

specified text data field. Probably, the most
widely used data bound tool.

Check Box Used to provide read/write access to a Boolean
field.

Combo Box Can be used to provide read/write access to a
text data field.

List Box Can be used to provide read/write access to a
text data field.

Picture Box Used to display a graphical image from a bitmap,

icon, or metafile on your form. Provides read/write
access to a image/binary data field.

Image Box Used to display a graphical image from a bitmap,
icon, or metafile on your form (uses fewer
resources than a picture box). Provides
read/write access to a image/binary data field.

There are also three ‘custom’ data aware tools, the DataCombo (better than
using the bound combo box), DataL.ist (better than the bound list box), and
DataGrid tools, we will look at later.

Bound Tool Properties:

DataChanged Indicates whether a value displayed in a bound
control has changed.

DataField Specifies the name of a field in the table pointed
to by the respective data control.

DataSource Specifies which data control the control is bound

to.

Database Access and Management 8-11

If the data in a data-aware control is changed and then the user changes focus to
another control or tool, the database will automatically be updated with the new
data (assuming LockType is set to allow an update).

To make using bound controls easy, follow these steps (in order listed) in placing
the controls on a form:

1. Draw the bound control on the same form as the data control to which it
will be bound.
2. Setthe DataSource property. Click on the drop-down arrow to list the

data controls on your form. Choose one.
3. Set the DataField property. Click on the drop-down arrow to list the

fields associated with the selected data control records. Make your
choice.
4. Set all other properties, as required.

By following these steps in order, we avoid potential data access errors.

The relationships between the bound data control and the data control are:

Database table ADO Data control
e 8

DataSource

DataField | (field in current record)

Bound data
control

8-12 Learn Visual Basic 6.0

Example 8-1

Accessing the Books Database

1. Start a new application. We’'ll develop a form where we can skim through the
books database, examining titles and ISBN values. Place an ADO data control,
two label boxes, and two text boxes on the form.

2. Ifyou haven't done so, create a data link for the BIBLIO.MDB database following
the steps given under Data Links in these notes.

3. Set the following properties for each control. For the data control and the two text
boxes, make sure you set the properties in the order given.

Form1.:
BorderStyle
Caption
Name

Adodc1:
Caption
ConnectionString

RecordSource
Name

Labell:
Caption

Label2:
Caption

Textl:
DataSource
DataField
Locked
MultiLine
Name

Text [Blank]

1-Fixed Single
Books Database
frmBooks

Book Titles

BIBLIO.UDL (in whatever folder you saved it in -
select, don't type)

SELECT * FROM Titles

dtaTitles

Title

ISBN

dtaTitles (select, don't type)
Title (select, don't type)
True

True

txtTitle

Database Access and M anagement

8-13

Text2:
DataSource dtaTitles (select, don't type)
DataField ISBN (select, don’t type)
Locked True
Name txtISBN

Text [Blank]

When done, the form will look something like this (try to space your controls as

shown; we'll use all the blank space as we continue with this example):

w. Book:z Database =] B3
Title R [=1 =11
oo MDA Rook Tites I RERERRESS

. Save the application. Run the application. Cycle through the various book titles
using the data control. Did you notice something? You didn’t have to write one
line of Visual Basic code! This indicates the power behind the data tool and

bound tools.

8-14 Learn Visual Basic 6.0

Creating a Virtual Table

Many times, a database table has more information than we want to display. Or,
perhaps a table does not have all the information we want to display. For
instance, in Example 8 -1, seeing the Title and ISBN of a book is not real
informative - we would also like to see the Author, but that information is not
provided by the Titles table. In these cases, we can build our own virtual table,
displaying only the information we want the user to see.

We need to form a different SQL statement in the RecordSource property. Again,
we won't be learning SQL here. We will just give you the proper statement.

Quick Example: Forming a Virtual Table

1. We'll use the results of Example 8-1 to add the Author name to the form.
Replace the RecordSource property of the dtaTitles control with the following
SQL statement:

SELECT Author,Titles.ISBN, Title FROM Authors,[Title Author], Titles
WHERE Authors.Au_ID=[Title Author].Au_ID AND Titles.ISBN=[Title
Author].ISBN ORDER BY Author

This must be typed as a single line in the Command Text (SQL) area that appears
when you click the ellipsis by the RecordSource property. Make sure it is typed in
exactly as shown. Make sure there are spaces after ‘'SELECT’, after
‘Author,Titles.ISBN,Title’, after ‘FROM’, after ‘Authors,[Title Author], Titles’, after
‘WHERE', after ‘Authors.Au_ID=[Title Author].Au_ID’, after ‘AND’, after
Titles.ISBN=[Title Author].ISBN’, and separating the final three words ‘ORDER
BY Author’. The program will tell you if you have a syntax error in the SQL
statement, but will give you little or no help in telling you what's wrong.

Here’s what this statement does: It selects the Author, Titles.ISBN, and Title
fields from the Authors, Title Author, and Titles tables, where the respective

Au_ID and ISBN fields match. Itthen orders the resulting virtual table, using

authors as an index.

Database Access and Management 8-15

2. Add a label box and text box to the form, for displaying the author name. Set the
control properties.

Label3:
Caption Author
Textl:
DataSource dtaTitles (select, don't type)
DataField Author (select, don’t type)
Locked True

Name txtAuthor
Text [Blank]

When done, the form should resemble this:

w. Book:z Database =] B3
. futhar DR
.. Title R (=1 =1

o M Book Ties IICTRSESRRRES

3. Save, then rerun the application. The author's names will now appear with the
book titles and ISBN values. Did you notice you still haven’t written any code? |
know you had to type out that long SQL statement, but that’s not code, technically
speaking. Notice how the books are now ordered based on an alphabetical
listing of authors’ last names.

8-16 Learn Visual Basic 6.0

Finding Specific Records

In addition to using the data control to move through database records, we can
write Visual Basic code to accomplish the same, and other, tasks. This is
referred to as programmatic control. In fact, many times the data control
Visible property is set to False and all data manipulations are performed in code.
We can also use programmatic control to find certain records.

There are four methods used for moving in a database. These methods replicate
the capabilities of the four arrow buttons on the data control:

MoveFirst Move to the first record in the table.
MovelLast Move to the last record in the table.
MoveNext Move to the next record (with respect to the current

record) in the table.
MovePrevious Move to the previous record (with respect to the
current record) in the table.

When moving about the database programmatically, we need to test the BOF
(beginning of file) and EOF (end of file) properties. The BOF property is True
when the current record is positioned before any data. The EOF property is True
when the current record has been positioned past the end of the data. If either
property is True, the current record is invalid. If both properties are True, then
there is no data in the database table at all.

These properties, and the programmatic control methods, operate on the

Recordset property of the data control. Hence, to move to the first record in a

table attached to a data control named dtaExample, the syntax is:
dtaExample.Recordset.MoveFirst

There is a method used for searching a database:

Find Find a record that meets the specified search
criteria.

This method also operates on the Recordset property and has three arguments
we will be concerned with. To use Find with a data control named dtaExample:

dtaExample.Recordset.Find Criteria,NumberSkipped,SearchDirection
The search Criteria is a string expression like a WHERE clause in SQL. We

won't go into much detail on such criteria here. Simply put, the criteria describes
what particular records it wants to look at. For example, using our book

Database Access and Management 8-17

database, if we want to look at books with titles (the Title field) beginning with S,
we would use:

Criteria = “Title >=‘S™

Note the use of single quotes around the search letter. Single quotes are used to
enclose strings in Criteria statements. Three logical operators can be used:
equals (=), greater than (>), and less than (<).

The NumberSkipped argument tells how many records to skip before beginning

the Find. This can be used to exclude the current record by setting
NumberSkipped to 1.

The SearchDirection argument has two possible values: adSearchForward or
adSearchBackward. Note, in conjunction with the four Move methods, the
SearchDirection argument can be used to provide a variety of search types
(search from the top, search from the bottom, etc.)

If a search fails to find a record that matches the criteria, the Recordset's EOF or
BOF property is set to True (depending on search direction). Another property
used in searches is the Bookmark property. This allows you to save the current
record pointer in case you want to return to that position later. The example
illustrates its use.

8-18 Learn Visual Basic 6.0

Example 8-2

‘Rolodex’ Searching of the Books Database

1. We expand the book database application to allow searching for certain author
names. We'll use a ‘rolodex’ approach where, by pressing a particular letter
button, books with author last names corresponding to that button appear on the
form.

2. We want a row of buttons starting at ‘A’ and ending at ‘Z’ to appear on the lower
part of our form. Drawing each one individually would be a big pain, so we'll let
Visual Basic do all the work in the Form_Load procedure. What we’ll do is
create one command button (the ‘A’), make it a control array, and then
dynamically create 25 new control array elements at run-time, filling each with a
different letter. We'll even let the code decide on proper spacing.

So, add one command button to the previous form. Name itcmdLetter and give
it a Caption of A. Setits Index property to 0 to make it a control array element.
On my form, things at this point look like this:

w. Bookz Databaze =] B3
© . futhar DR
C . Title R (=1 =1 A
o [Book Tites LTRSS
ZﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁZZ

Database Access and Management 8-19

3. Attach this code to the Form_Load procedure. This code sets up the rolodex
control array and draws the additional 25 letter buttons on the form. (Sorry, you
have to type some code now!)

Private Sub Form Load()

Dm1l As Integer

*Si ze buttons

cndLetter(0). Wdth = (frnmBooks. Scal eWdth - 2*
cndLetter(0). Left) / 26

For I =1 To 25

Load cndLetter(l) " Create new control array el enent
"Position new | etter next to previous one
cndLetter(l).Left = cndLetter(l - 1).Left +
cndLetter(0). Wdth

"Set caption and nmeke visible

cndLetter(1). Caption = Chr(vbKeyA + 1)
cndLetter(l).Visible True

Next |

End Sub

At this point, even though all the code is not in place, you could run your
application to check how the letter buttons look. My finished form (at run-time)
looks like this:

w. Book:z Databaze E

Author

Adamz, Pat

Title ISBH

Fou pro 2.5 advanced developer's handbook, ID'I 332534-1-4

14| 4 |Book Titles 3 | Hl

ﬁ-‘«lBlElDlElFlGlHl I|J|K|L|M|N|D|F’|D|H|S|T|LI|V|W|><|Y|2

Notice how Visual Basic adjusted the button widths to fit nicely on the form.

8-20 Learn Visual Basic 6.0

4. Attach this code to the cmdLetter_Click procedure. In this procedure, we use a
search criteria that finds the first occurrence of an author name that begins with
the selected letter command button. If the search fails, the record displayed prior
to the search is retained (using the Bookmark property).

Private Sub cndLetter Cick(lndex As Integer)
Di m BookMark1l As Vari ant
"Mark your place in case no match is found
BookMar k1l = dtaTitl es. Recordset. Booknar k
"Move to top of table to start search
dtaTitl es. Recordset. MoveFi r st
dtaTitl es. Recordset. Find "Author >="" +
cndLetter (1l ndex). Caption + """, 0, adSearchForward
If dtaTitl es. Recordset. EOF = True Then

dt aTi t| es. Recordset . Booknar k = BookMar k1
End | f
t xt Aut hor . Set Focus
End Sub

Let's look at the search a little closer. We move to the top of the database using
MoveFirst. Then, the Find is executed (notice the selected letter is surrounded
by single quotes). If EOF is True after the Find, it means we didn’t find a match to
the Criteria and Bookmarkis returned to its saved value.

5. Save your application. Test its operation. Note once the program finds the first
occurrence of an author name beginning with the selected letter (or next highest
letter if there is no author with the pressed letter), you can use the data control
navigation buttons (namely the right arrow button) to find other author names
beginning with that letter.

Database Access and Management 8-21

Data Manager

At this point, we know how to use the data control and associated data bound
tools to access a database. The power of Visual Basic lies in its ability to
manipulate records in code. Such tasks as determining the values of particular
fields, adding records, deleting records, and moving from record to record are
easily done. This allows us to build a complete database management system
(DBMS).

We don’t want to change the example database, BIBLIO.MDB. Let’s create our
own database to change. Fortunately, Visual Basic helps us out here. The
Visual Data Manager is a Visual Basic Add-In that allows the creation and
management of databases. It is simple to use and can create a database
compatible with the Microsoft Jet (or Access) database engine.

To examine an existing database using the Data Manager, follow these steps:

1. SelectVisual Data Manager from Visual Basic's Add-In menu (you
may be asked if you want to add SYSTEM.MDA to the .INI file- answer
No.)

2. SelectOpen Database from the Data Manager File menu.

3. Select the database type and nhame you want to examine.

Once the database is opened, you can do many things. You can simply look
through the various tables. You can search for particular records. You can apply
SQL queries. You can add/delete records. The Data Manager is a DBMS in
itself. You might try using the Data Manager to look through the BIBLIO.MDB
example database.

To create a new database, follow these steps:

1. SelectVisual Data Manager from Visual Basic’s Add-In menu (you
may be asked if you want to add SYSTEM.MDA to the .INI file - answer
No.

2. Sel)ect New from the Data Manager File menu. Choose database type
(Microsoft Access, Version 7.0), then select a directory and enter a
name for your database file. Click OK.

3. The Database window will open. Right click the window and select
New Table. Inthe Name box, enter the name of your table. Then
define the table’s fields, one at a time, by clicking Add Field, then
entering a field name, selecting a data type, and specifying the size of
the field, if required. Once the field is defined, click the OK button to
add it to the field box. Once all fields are deined, click the Build the
Table button to save your table.

8-22 Learn Visual Basic 6.0

Example 8-3

Phone Directory - Creating the Database

1. With this example, we begin the development of a simple phone directory. In the
directory, we will keep track of names and phone numbers. We'll be able to edit,
add and delete names and numbers from the directory. And, we’'ll be able to
search the directory for certain names. In this first step, we’ll establish the
structure for the database we’ll use. The directory will use a single table, with
three fields: Name, Description, and Phone. Name will contain the name of the
person or company, Description will contain a descriptive phrase (if desired) of
who the person or company is, and Phone will hold the phone number.

2. Start the Data Manager. Use the previously defined steps to establish a new
database (this is a Microsoft Access, Version 7.0 database). Use PhonelList as
a Name for your database table. Define the three fields. Each should be a Text
data type. Assign a size of 40 to the Name and Description fields, a size of 15
to the Phone field. When all fields have been defined, the screen should look like
this:

Table Structure E3

Table Mame: |PhoneList

Eield List: Marme: |Phone

Mame Twpe: T [T Eizedlenmth

Descriitinn it
Size: Iiu ¥ | Yariablelenath
CollatingOrder: Il[':z.'l_. [T | Butelnerement

[AllowZerolength

ordinalPosition: IU [Required

YalidationText: I

WalidationRule: I

Remove Field Defaulthalue; I

Index List: Mame:; |
[T Fritars: [T Unigue [T Fareian
[T Eeguired = Tgrmarerll
Figlds:
Add Index I Remove Index | I

Build the Table | Close |

Database Access and Management 8-23

When done with the field definitions, click Build the Table to save your
new table. You will be returned to the Database Tables window.

. We're now ready to enter some data in our database. From the Database Tables
window, right click the PhoneL.ist table and select Open. The following window
will appear:

¥s' Dynaset:PhoneList
&dd Edit Delete Close
Sork Filter Move Find

Field Mame: Yalue (F4=Zoom)

flame: ||

Drescription: l

Phione: i

1K [+ |[BOF)/D

At this point, add several (at least five - make them up or whatever) records to
your database. The steps for each record are: (1) click Add to add a record, (2)
fill in the three fields (or, at least the Name and Phone fields), and (3) click
Update to save the contents.

You can also Delete records and Find records, if desired. You can move
through the records using the scroll bar at the bottom of the screen. When
done entering records, click Close to save your work. Select Exit from the
Data Manager File menu. Your database has been created.

8-24 Learn Visual Basic 6.0

Database Management

The Data Manager is a versatile utility for creating and viewing databases.
However, its interface is not that pretty and its use is somewhat cumbersome. We
would not want to use it as a database management system (DBMS). Nor,
would we expect users of our programs to have the Data Manager available for
their use. The next step in our development of our database skills is to use Visual
Basic to manage our databases, that is develop a DBMS.

We will develop a simple DBMS. It will allow us to view records in an existing
database. We will be able to edit records, add records, and delete records.
Such advanced tasks as adding tables and fields to a database and creating a
new database can be done with Visual Basic, but are far beyond the scope of the
discussion here.

To create our DBMS, we need to define a few more programmatic control
methods associated with the data control Recordset property. These methods
are:

AddNew A new record is added to the table. All fields are
set to Null and this record is made the current
record.

Delete The current record is deleted from the table. This

method must be immediately followed by one of
the Move methods because the current record is
invalid after a Delete.

Update Saves the current contents of all bound tools.

To edit an existing record, you simply display the record and make any required
changes. The LockType property should be set toadLockPessimistic (locks
each record as itis edited). Then, when you move off of that record, either with a
navigation button or through some other action, Visual Basic will automatically
update the record. If desired, or needed, you may invoke the Update method to

force an update (use LockType = asLockOptimistic). For a data control named
dtaExample, the syntax for this statement is:
dtaExample.Recordset.Update

To add a record to the database, we invoke the AddNew method. The syntax for
our example data control is:

dtaExample.Recordset. AddNew

This statement will blank out any bound data tools and move the current record to
the end of the database. At this point, you enter the new values. When you move

Database Access and Management 8-25

off of this record, the changes are automatically made to the database. Another
way to update the database with the changes is via the Update method.

After adding a record to a database, you should invoke the Refresh property of
the data control to insure proper sorting (established by RecordSource SQL
statement) of the new entry. The format is:

dtaExample.Refresh

To delete a record from the database, make sure the record to delete is the
current record. Then, we use the Delete method. The syntax for the example data
control is:

dtaExample.Recordset.Delete

Once we execute a Delete, we must move (using one of the ‘Move’ methods) off
of the current record because it no longer exists and an error will occur if we don'’t
move. This gets particularly tricky if deleting the last record (check the EOF
property). If EOF is true, you must move to the top of the database (MoveFirst).
You then must make sure there is a valid record there (check the BOF property).
The example code demonstrates proper movement.

8-26 Learn Visual Basic 6.0

Example 8-4

Phone Directory - Managing the Database

1. Before starting, make a copy of your phone database file using the Windows
Explorer. That way, in case we mess up, you still have a good copy. And, create
a data link to the database. Here, we develop a simple DBMS for our phone
number database. We will be able to display individual records and edit them.
And, we will be able to add or delete records. Note this is a simple system and
many of the fancy ‘bells and whistles’ (for example, asking if you really want to
delete a record) that should really be here are not. Adding such amenities is left
as an exercise to the student.

2. Load your last Books Database application (Example 8-2 - the one with the
‘Rolodex’ search). We will modify this application to fit the phone number DBMS.
Resave your form and project with different names. Add three command buttons
to the upper right corner of the form. Modify/set the following properties for each
tool. For the data control and text boxes, make sure you follow the order shown.

frmBooks (this is the old name):
Caption Phone List
Name frmPhone

dtaTitles (this is the old name):
Caption Phone Numbers
ConnectionString [your phone database data link] (select, don’t type)
RecordSource SELECT * FROM PhoneList ORDER BY Name (the
ORDER keyword sorts the database by the given

field)

Name dtaPhone

LockType adLockOptimistic
Labell:

Caption Description
Label2:

Caption Phone
Label3:

Caption Name

Database Access and Management 8-27

txtAuthor (this is the old name):

DataSource dtaPhone (select, don't type)
DataField Name (select, don’t type)
Locked False
Name txtName
MaxLength 40
Tablndex 1
txtISBN (this is the old name):
DataSource dtaPhone (select, don't type)
DataField Phone (select, don't type)
Locked False
Name txtPhone
MaxLength 15
Tabindex 3

txtTitle (this is the old name):

DataSource dtaPhone (select, don't type)
DataField Description (select, don't type)
Locked False
Name txtDesc
MaxLength 40
Tablndex 2
Commandl.:
Caption &Add
Name cmdAdd
Command2:
Caption &Save
Enabled False
Name cmdSave
Command3:
Caption &Delete

Name cmdDelete

8-28 Learn Visual Basic 6.0

When done, my form looked like this:

w. Phone List M=] B3

. Mame DR
Add | Save Delete

Description LIl Phone S

ciion s MDA Prone Numbers LTI REREREEESS

ZﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁZZ

At this point, you can run your application and you should be able to navigate
through your phone database using the data control. Don't try any other options,
though. We need to do some coding.

3. InForm_Load, replace the word frmBooks with frmPhone. This will allow the
letter keys to be displayed properly.

4. Inthe cmdLetter_Click procedure, replace all occurrences of the word dtaTitles
with dtaPhone. Replace all occurrences of Author with Name. The modified
code will be:

Private Sub cndLetter Click(lndex As Integer)
Di m BookMar k1l As Vari ant
"Mark your place in case no match is found
BookMar k1 = dt aPhone. Recor dset. Booknmar k
dt aPhone. Recor dset . MoveFi r st
dt aPhone. Recordset. Find "Nanme >= '" +
cndLetter (I ndex). Caption + """
| f dt aPhone. Recordset. EOF = True Then

dt aPhone. Recor dset . Bookmar k = BookMar k1
End | f
t xt Name. Set Focus
End Sub

Database Access and Management 8-29

5. Attach this code to the cmdAdd_Click procedure. This code invokes the code
needed to add a record to the database. The Add and Delete buttons are
disabled. Click the Save button when done adding a new record.

Private Sub cndAdd_C i ck()
cndAdd. Enabl ed = Fal se
cndSave. Enabl ed = True
cmdDel et e. Enabl ed = Fal se
dt aPhone. Recor dset . AddNew
t xt Name. Set Focus

End Sub

6. Add this code to the cmdSave_Click procedure. When done entering a new

record, the command button status’s are toggled, the Recordset updated, and the
data control Refresh method invoked to insure proper record sorting.

Private Sub cndSave O i ck()
dt aPhone. Recor dset . Updat e
dt aPhone. Refresh

cndAdd. Enabl ed = True
cndSave. Enabl ed = Fal se
cndDel et e. Enabl ed = True

t xt Name. Set Focus

End Sub

7. Attach this code to the cmdDelete_Click procedure. This deletes the current
record and moves to the next record. If we bump into the end of file, we need to
check if there are no records remaining. If no records remain in the table, we
display a message box. If records remain, we move around to the first record.

Private Sub cndDel ete _Cick()
dt aPhone. Recordset . Del ete
dt aPhone. Recor dset . MoveNext
| f dt aPhone. Recordset. EOF = True Then
dt aPhone. Refresh
| f dt aPhone. Recordset. BOF = True Then
MsgBox "You nust add a record.”, vbOKOnly +
vbl nformation, "Enpty file"
Call cndAdd _dick
El se
dt aPhone. Recor dset . MoveFi r st
End |f
End |f
t xt Name. Set Focus

8-30 Learn Visual Basic 6.0

End Sub

Database Access and Management 8-31

8. Save the application. Try running it. Add records, delete records, edit records. If
you're really adventurous, you could add a button that dials your phone (via
modem) for you! Look at the custom communications control.

8-32 Learn Visual Basic 6.0

Custom Data Aware Controls

As mentioned earlier, there are three custom data aware tools, in addition to the
standard Visual Basic tools: the DatalList, DataCombo, and DataGrid ADO
tools. We'll present each of these, giving their suggested use, some properties
and some events. If the icons for these tools are not in the toolbox, select Project
from the main menu, then click Components. Select Microsoft DataList
Controls 6.0 (OLEDB) and Microsoft DataGrid 6.0 (OLEDB) in the
Components window. Click OK - the controls will appear.

Like the data control, previous versions of Visual Basic used DAO versions of the
list, combo, and grid controls, named DBList, DBCombo, and DBGrid. Make
sure you are not using these tools.

DataList Box:
=H

The first bound data custom tool is the DatalList Box. The list box is
automatically filled with a fi eld from a specified data control. Selections from the
list box can then be used to update another field from the same data control or,
optionally, used to update a field from another data control.

Some properties of the DataList box are:

DataSource Name of data control that is updated by the
selection.

DataField Name of field updated in Recordset specified by
DataSource.

RowSource Name of data control used as source of items in
list box.

ListField Name of field in Recordset specified by

RowSource used to fill list box.
BoundColumn Name of field in Recordset specified by

RowSource to be passed to DataField, once

selection is made. This is usually the same as

ListField.

BoundText Text value of BoundColumn field. This is the value
passed to DataField property.

Text Text value of selected item in list. Usually the

same as BoundText.

The most prevalent use of the DataList box is to fill the list from the database, then
allow selections. The selection can be used to fill any tool on a form, whether it is
data aware or not.

Database Access and Management 8-33

8-34 Learn Visual Basic 6.0

As a quick example, here is a DataL.ist box filled with the Title (ListField) field
from the dtaExample (RowSource) data control. The data control is bound to
the Titles table in the BIBLIO.MDB database.

. DatalList Example

dBASE I ;& Practical Guide 3
The dBASE Programming Laniguage

dBASE Il Plus

[Databaze Management ;: Developing Application Systems Uzing Ora
Whordstar 4.0-6.0 Quick Reference Guide

Oracle Triggers and Stared Procedure Pragramming

Programming in Clipper

Inzide Macintozh

Qi Online Databaze Directany

Structured C for Engineering and Technology/Book, and Dizkette

A Introduction to Azsembly Language Programming for the Intel 208
Applied Calculus “ith Linear Programming : For Buziness, Economic:
|nformation Systems Literacy and Software Productivite Toolz : Doz, "LI

4] 4] Titles PlNl

DataCombo Box:

=1

The DataCombo Box is nearly identical to the DataList box, hence we won't look
at a separate set of properties. The only differences between the two tools is that,
with the DataCombo box, the list portion appears as a drop-down box and the
user is given the opportunity to change the contents of the returned Text property.

DataGrid Tool:
FE

The DataGrid tool is, by far, the most useful of the custom data bound tools. It can
display an entire database table, referenced by a data control. The table can then
be edited as desired.

The DataGrid control is in a class by itself, when considering its capabilities. Itis
essentially a separate, highly functional program. The only property we'll be
concerned with is the DataSource property, which, as always, identifies the table
associated with the respective data control. Refer to the Visual Basic
Programmer’s Guide and other references for complete details on using the
DataGrid control.

Database Access and Management 8-35

As an example of the power of the DataGrid control, here’s what is obtained by
simply setting the DataSource property to thedtaExample data control, which is
bound to the Titles table in the BIBLIO.MDB database:

. DataGnd Example

Title rear Published [SBH =
dBASE Il : A Practical B 0-0028307-6-4 -
The dEASE Prograrmmir) 1336 0-0028326-7-3 .
dBASE Il Plus 19387 0-00238337-8
Databaze M anagement|1339 0-0131985-241
Wiordstar 4.0-6.0 Gluick | 1930 [0-0133656-1-4
Oracle Trgaers and Stof 1996 0-0134436-3-1
Programming in Clipper | 1383 0-0201145-3-3
Inzide Maclntozh 1934 0-0201 406-7-3 !
Ormni Online Databaze 01383 0-02073592-0-9 =

K | a

4] 4| Titles | 4 |N|

At this point, we can scroll through the table and edit any values we choose. Any
changes are automatically reflected in the underlying database. Column widths
can be changed at run-time! Multiple row and column selections are possible!
Like we said, a very powerful tool.

Creating a Data Report

Once you have gone to all the trouble of developing and managing a database, it
is nice to have the ability to obtain printed or displayed information from your data.
The process of obtaining such information is known as creating a data report.

There are two steps to creating a data report. First, we need to create a Data
Environment. This is designed within Visual Basic and is used to tell the data
report what is in the database. Second, we create the Data Report itself. This,
too, is done within Visual Basic. The Data Environment and Data Report files
then become part of the Visual Basic project developed as a database
management system.

The Visual Basic 6.0 data report capabilities are vast and using them is a
detailed process. The use of these capabilities is best demonstrated by
example. We will look at the rudiments of report creation by building a tabular
report for our phone database.

8-36 Learn Visual Basic 6.0

Example 8-5

Phone Directory - Building a Data Report

We will build a data report that lists all the names and phone numbers in our phone
database. We will do this by first creating a Data Environment, then a Data Report.
We will then reopen the phone database management project and add data reporting
capabilities.

Creating a Data Environment

1.

2.

Start a new Standard EXE project.

On the Project menu, click Add Data Environment. If this item is not on the
menu, click Components. Click the Designers tab, and choose Data
Environment and click OK to add the designer to your menu.

We need to point to our database. Inthe Data Environment window, right-click
the Connectionl tab and select Properties. IntheData Link Properties dialog
box, choose Microsoft Jet 3.51 OLE DB Provider. Click Next to get to the
Connection tab. Click the ellipsis button. Find your phone database (mdb) file.
Click OK to close the dialog box.

. We now tell the Data Environment what is in our database. Right-click the

Connectionl tab and click Rename. Change the name of the tab to Phone.
Right-click this newly named tab and click Add Command to create a
Command1 tab. Right-click this tab and choose Properties. Assign the
following properties:

Command Name PhonelList

Connection Phone
DataBase Object Table
ObjectName PhonelList

Click OK. All this was needed just to connect the environment to our database.

Database Access and Management 8-37

6. Display the properties window and give the data environment a name property of
denPhone. Click File and Save denPhone As. Save the environmentin an
appropriate folder. We will eventually add this file to our phone database
management system. At this point, my data environment window looks like this (]
expanded the PhoneList tab by clicking the + sign):

% Projectl - denPhone (DataEnvironment) W=l E3

] i e o] 2 [|

El@; FPhone
= Phonelist
EI Diescription
‘..[E] Phone

\[2] object(s) i

Creating a Data Report

Once the Data Environment has been created, we can create a Data Report. We will
drag things out of the Data Environment onto a form created for the Data Report, so
make sure your Data Environment window is still available.

1. On the Project menu, click Add Data Report and one will be added to your
project. If this item is not on the menu, click Components. Click the Designers
tab, and choose Data Report and click OK to add the designer to your menu.

2. Set the following properties for the report:

Name rptPhone

Caption Phone Directory

DataSource denPhone (your phone data environment - choose,
don’t type)

DataMember PhonelList (the table name - choose don't type)

3. Right-click the Data Report and click Retrieve Structure. This establishes a
report format based on the Data Environment.

4. Note there are five sections to the data report: a Report Header, a Page
Header, a Detail section, aPage Footer, and a Report Footer. The headers
and footers contain information you want printed in the report and on each page.
To place information in one of these regions, right-click the selected region, click

8-38 Learn Visual Basic 6.0

Add Control, then choose the control you wish to place. These controls are
called data report controls and properties are established just like you do for
usual controls. Try adding some headers.

5. The Detall section is used to layout the information you want printed for each
record in your database. We will place two field listings (Name, Phone) there.
Click on the Name tab in the Data Environment window and drag it to the Detail
section of the Data Report. Two items should appear: a text box Name and a
textbox Name (PhoneList). The first text box is heading information. Move this
text box into the Page Header section. The second text box is the actual value for
Name from the PhoneList table. Line this text box up under the Name header.
Now, drag the Phone tab from the Data Environment to the Data Report. Adjust
the text boxes in the same manner. Our data report will have page headers Name
and Phone. Under these headers, these fields for each record in our database
will be displayed. When done, the form should look something like this:

H % Project] - rptPhone (DataReport)

: Phone Directory

|_|:| vl o o e a2 .
Report Header (RepaortHeader)
Page Header (PageHeader)
Mame: |

- Phone: .
[-- e

(=[5

& Detail (Phonelist_Detail)
Matme [Phonelist] . fE . . Phone [PhoneList]
& Page Footer (PageFooker)

& Report Footer (ReportFooker)

S

B

=

4 | v| -

In this form, I've resized the labels a bit and added a Report Header. Also, make
sure you close up the Detail section to a single line. Any space left in this section
will be inserted after each entry.

6. Click File and Save rptPhone As. Save the environment in an appropriate
folder. We will now reopen our phone database manager and attach this and the
data environment to that project and add capabilities to display the report.

Database Access and Management 8-39

Accessing the Data Report

1.

Reopen the phone directory project. Add a command button named cmdReport
and give it a Caption of Show Report. (There may be two tabs in your toolbox,
one named General and one named DataReport. Make sure you select from the
General tools.)

. We will now add the data environment and data report files to the project. Click

the Project menu item, then click Add File. Choose denPhone and click OK.
Also add rptPhone. Look at your Project Window. Those files should be listed
under Designers.

. Use this code in cmdReport_Click:

Private Sub cndReport_ O ick()
r pt Phone. Show
End Sub

This uses the Show method to display the data report.

Save the application and run it. Click the Show Report button and this should
appear:

% Phone Directory
ﬁ‘l Zoom [100% -]
]
My Phone Directony
Mame: Phane:
HIDwwvare (208 721-2556
Santa Claus Ty
Haoliday Travel 55-55555
Opposum Jones 111-1111
Henrietta John=an E75-9054
Ly Extension 4444444
The President 993-9939
Alan'zs Plumbing 2222222
Bok's Appliance 333-3333
Zebra Lodging 234-5657 =
Pages: W] 4 TR | _'I_I

You now have a printable copy of the phone directory. Just click the Printer icon.
Notice the relationship with this displayed report and the sections available in the
Data Report designer.

8-40 Learn Visual Basic 6.0

| This page intentionally not left blank. ||

Database Access and Management 8-41

Exercise 8

Home Inventory Database
Design and develop an application that manages a home inventory database. Add
the option of obtaining a printed list of your inventoried property.
My Solution:
Database Design:

The first step is to design a database using Data Manager (or Access). My
database is a single table (hamed MYSTUFF). Its specifications are:

Field Name Field Type Field Length
Item Text 40
Serial Number Text 20

Date Purchased Text 20

New Value Currency <N/A>
Location Text 40

This database is saved as file Homelnv.mdb. Create a data link to your database.
The link is saved as Homelnv.udl.

8-42 Learn Visual Basic 6.0

Report Design:

The second step is to use the Data Environment and Data Report designers to setup
how you want the printed home inventory to appear. Use your discretion here. My
final report design is saved in denHomelnv and rptHomelnv. We will access this

report from our Visual Basic application. My Data Report design looks like this:

% Projectl - rptHomelnv (DataReport)

' Home Inventory
|_|:I|||||||1|||||||2|||||||3|||||||4|||||||5||_‘
Report Header (Sectiond)

HQWE:'H?EH'{QW::::::.|:::::::::|:::::::::|:::::::::|:::

Page Header (Seckionz)

A e I I F

& Detail (Sectionl)

O Ulem:. et [MyStuff]l . . | .o Serial lumber: | SetialMumber. ||m
- |Date Purchased: Date Purchazed [M‘)]IStuff]. Py Hew Value: | Mewy Walue . :
_lLocation: | Location [MySturf] “ ‘

& Page Footer (Section3)

il # Report Fooker {SeckionS)

1] 1 1 1 1 1 pam—

|_ ||||| £

4 | Ml
O]]

Database Access and Management 8-43

Project Design:

Form:
txtDate txtSerial txtltem txtValue
. Home Inventory
Labell — Trem | \ 4 / / cmdNext
. v
Label2 —— Senal Mumber Mest lterm _
_—— cmdPrevious
Label3 ——— Purchase Date / : /
'S Erew:uuslh;ua/
Labe|4 — NEW -liuralue —_——
Label5 —— [ocation «— {xtLocation
Add ltem | Delete Item Show Bepest— cmdShow
A X
\ E_it } 4] 4 ﬁdnl b INI
\ / N\ \
cmdAdd cmdExit cmdDelete dtaHome

Properties:

Form frmHome:
BorderStyle = 1 - Fixed Single
Caption = Home Inventory

CommandButton cmdExit:
Caption = E&xit

ADO Data Control dtaHome:
Caption = Book Titles
ConnectionString = Homelnv.udl (in whatever folder you saved it in -
select, don't type)
RecordSource = SELECT * FROM MyStuff
Visible = False

CommandButton cmdShow:
Caption = Show &Report

CommandButton cmdPrevious:
Caption = &Previous ltem

8-44 Learn Visual Basic 6.0

CommandButton cmdNext:
Caption = &Next Item

CommandButton cmdDelete:
Caption = &Delete Item

CommandButton cmdAdd:
Caption = &Add Item

TextBox txtLocation:
DataField = Location
DataSource = dtaHome
FontName = MS Sans Serif
FontSize =9.75
MaxLength = 40

TextBox txtValue:
DataField = New Value
DataSource = dtaHome
FontName = MS Sans Serif
FontSize =9.75

TextBox txtDate:
DataField = Date Purchased
DataSource = dtaHome
FontName = MS Sans Serif
FontSize =9.75
MaxLength = 20

TextBox txtSerial:
DataField = Serial Number
DataSource = dtaHome
FontName = MS Sans Serif
FontSize =9.75
MaxLength = 20

TextBox txtltem:
DataField = Item
DataSource = dtaHome
FontName = MS Sans Serif
FontSize =9.75
MaxLength =40

Database Access and M anagement

8-45

Label Label5:
Caption = Location
FontName = Times New Roman
FontSize = 12

Label Label4:
Caption = New Value
FontName = Times New Roman
FontSize = 12

Label Label3:
Caption = Purchase Date
FontName = Times New Roman
FontSize = 12

Label Label2:
Caption = Serial Number
FontName = Times New Roman
FontSize = 12

Label Labell:
Caption = Item
FontName = Times New Roman
FontSize = 12

Code:

General Declarations:

Option Explicit

cmdAdd Click Event:

Private Sub cndAdd_C i ck()
"Add new itemto dat abase
dt aHone. Recor dset . AddNew
txtltem Set Focus

End Sub

8-46 Learn Visual Basic 6.0

cmdDelete Click Event:

Private Sub cndDel ete i ck()
"Del ete item from dat abase
Di m Rval ue As I nteger
Rval ue = MsgBox("Are you sure you want to delete this
iten?", vbQuestion + vbYesNo, "Delete Itent)
| f Rvalue = vbNo Then Exit Sub
dt aHone. Recordset . Del et e
dt aHonme. Recor dset . MoveNext
| f dt aHome. Recordset. EOF Then
| f dt aHone. Recor dset. BOF Then
MsgBox "You must add an item", vbOKOnly +
vbl nformati on, "Enpty Dat abase”
Call cndAdd_dick
El se
dt aHome. Recor dset . MoveFi r st
End |f
End If
txtltem Set Focus
End Sub

cmdExit Click Event:

Private Sub cndExit_dick()
End
End Sub

cmdNext Click Event:

Private Sub cnmidNext O ick()

"Move to next item- if at end-of-file, backup one item
dt aHonme. Recor dset . MoveNext

| f dt aHone. Recordset. EOF Then

dt aHome. Recor dset . MovePr evi ous

t xtltem Set Focus

End Sub

Database Accessand Management 8-47

cmdPrevious Click Event:

Private Sub cndPrevious _Cick()

'Move to previous item- if at beginning-of-file, go down
one item

dt aHone. Recor dset . MovePr evi ous

| f dt aHone. Recordset. BOF Then dt aHone. Recor dset . MoveNext
txtltem Set Focus

End Sub

cmdShow Click Event:

Private Sub cndShow C i ck()
r pt Honmel nv. Show
End Sub

8-48 Learn Visual Basic 6.0

This page intentionally not left blank. ||

9-1

Learn Visual Basic 6.0

9. Dynamic Link Libraries and the Windows API

Review and Preview

In our last class, we saw how using the data control and bound data tools allowed
us to develop a simple database management system. Most of the work done by
that DBMS, though, was done by the underlying Jet database engine, not Visual
Basic. In this class, we learn how to interact with another underlying set of code
by programming the Windows applications interface (API) using dynamic link
libraries (DLL). Alphabet soup!

Dynamic Link Libraries (DLL)

All Windows applications at their most basic level (even ones written using Visual
Basic) interact with the computer environment by using calls to dynamic link
libraries (DLL). DLL'’s are libraries of routines, usually written in C, C++, or
Pascal, that you can link to and use at run-time.

Each DLL usually performs a specific function. By using DLL routines with Visual
Basic, you are able to extend your application’s capabilities by making use of the
many hundreds of functions that make up the Windows Application Programming
Interface (Windows API). These functions are used by virtually every application
to perform functions like displaying windows, file manipulation, printer control,
menus and dialog boxes, multimedia, string manipulation, graphics, and
managing memory.

The advantage to using DLL’s is that you can use available routines without
having to duplicate the code in Basic. In many cases, there isn’'t even a way to do
a function in Basic and calling a DLL routine is the only way to accomplish the
task. Or, if there is an equivalent function in Visual Basic, using the corresponding
DLL routine may be faster, more efficient, or more adaptable. Reference material
on DLL calls and the API run thousands o f pages - we'll only scratch the surface
here. A big challenge is just trying to figure out what DLL procedures exist, what
they do, and how to call them.

9-2 Learn Visual Basic 6.0

There is a price to pay for access to this vast array of code. Once you leave the
protective surroundings of the Visual Basic environment, as you must to call a
DLL, you get to taunt and tease the dreaded general protection fault (GPF)
monster, which can bring your entire computer system to a screeching halt! So,
be careful. And, if you don't have to use DLL'’s, don't.

Accessing the Windows API With DLL

Using a DLL procedure from Visual Basic is hot much different from calling a
general basic function or procedure. Just make sure you pass it the correct
number and correct type of arguments. Say DLLFcn is a DLL function and

DLLProc is a DLL procedure. Proper syntax to invoke these is, respectively
(ignoring arguments for now):

ReturnValue = DLLFcn()
Call DLLProc()

Before you call a DLL procedure, it must be declared in your Visual Basic
program using the Declare statement. Declare statements go in the general
declarations area of form and code modules. The Declare statement informs
your program about the name of the procedure, and the number and type of
arguments it takes. This is nearly identical to function prototyping in the C
language. For a DLL function (DLLFcn), the syntax is:

Declare Function DLLFcn Lib DLLhname [(argument list)] As type

where DLLname is a string specifying the name of the DLL file that contains the
procedure and type is the returned value type.

For a procedure (DLLProc), use:

Declare Sub DLLProc Lib DLLhame [(argument list)]
In code modules, you need to preface the Declare statements with the keywords
Public or Private to indicate the procedure scope. In form modules, preface the
Declare statement with Private, the default (and only possible) scope in a form

module.

Nearly all arguments to DLL procedures are passed by value (use the ByVal
keyword), so the argument list has the syntax:

ByVal argnamel As type, ByVal argname2 As type, ...

Dynamic Link Libraries and the Windows API 9-3

Again, it is very important, when calling DLL procedures, that the argument lists
be correct, both regarding number and type. If the list is not correct, very bad
things can happen.

And, it is critical that the Declare statement be exactly correct or very bad things
can happen. Fortunately, there is a program included with Visual Basic called the
API Text Viewer, which provides a complete list of Declare statements for all API
procedures. The viewer is available from the Start Menu folder for Visual Basic
6.0 (choose Visual Basic 6.0 Tools folder, then API Text Viewer). Most of the
Declare statements are found in a file named win32api.txt (load this from the File
menu).

Wh API Viewer - C:\Program Files'Microsoft Visual Studio'... [S[=]E3
File Edit View Help
API Twpe:

iDecIares > i

Type the Firsk Few letters of the word wou are looking For;

Available Thems:

.

GetTimeFormat
GetTimeZoneInformation ~Declare Scope
GetTokenInformation il e Pk
GetTokenInformation S
et ToptWindow ¥ Private
GetlpdateRect
GetlpdateRgn _'_I
Selected Tkems;
Private Declare Function GetTickCount Lib "kernel32" Alias :_I HEmavE
"zetTickCount" () As Long

Clear

Copy

[-

Always use this program to establish Declare statements for your DLL calls. The
procedure is simple. Scroll through the listed items and highlight the desired
routine. Choose the scope (Public or Private). Click Add to move it to the
Selected Items area. Once all items are selected, click Copy. This puts the
desired Declare statements in the Windows clipboard area. Then move to the
General Declarations area of your application and choose Paste from the Edit
menu. The Declare statements will magically appear. The API Text Viewer can
also be used to obtain any constants your DLL routine may need.

9-4 Learn Visual Basic 6.0

To further confuse things, unlike Visual Basic routine names, DLL calls are case-
sensitive, we must pay attention to proper letter case when accessing the API.

Lastly, always, always, always save your Visual Basic application before
testing any DLL calls. More good code has gone down the tubes with GPF's -
they are very difficult to recover from. Sometimes, the trusty on-off switch is the
only recovery mechanism.

Timing with DLL Calls

Many times you need some method of timing within an application. You may want
to know how long a certain routine (needed for real-time simulations) takes to
execute or want to implement some sort of delay in your code. The DLL function
GetTickCount is very useful for such tasks.

The DLL function GetTickCountis a measure of the number of milliseconds that
have elapsed since Windows was started on your machine. GetTickCount is 85
percent faster than the Visual Basic Timer or Now functions. The GetTickCount
function has no arguments. The returned value is along integer. The usage
syntax is:

Dim TickValue as Long

TickValue = GetTickCount()

Let's look at a couple of applications of this function.

Dynamic Link Libraries and the Windows API 9-5

Quick Example 1: Using GetTickCount to Build a Stopwatch

Remember way back in Class 1, where we built a little stop watch. We’ll modify that
example here using GetTickCount to do our timing.

1.

2.

Load Example 1-3 from long, long ago.

Use the API Text Viewer to obtain the Declare statement for the GetTickCount
function. Choose Private scope. Copy and paste it into the applications
General Declarations area (new code is italicized).

Option Explicit

Dim StartTime As Vari ant

Di m EndTi ne As Vari ant

D m El apsedTi ne As Vari ant

Private Declare Function GetTi ckCount Lib "kernel 32" ()
As Long

Modify the cmdStart_Click procedure as highlighted:

Private Sub cnmdStart _dick()

"Establish and print starting tine

StartTime = GetTickCount() / 1000

I bl Start. Caption = Format (StartTi me, "#########0. 000")
| bl End. Caption = ""

| bl El apsed. Caption = ""

End Sub

Modify the cmdEnd_Click procedure as highlighted:

Private Sub cndEnd Cick()

"Find the ending tine, conpute the el apsed tine
"Put both values in | abel boxes

EndTi ne = Get Ti ckCount () / 1000

El apsedTine = EndTinme - StartTine

| bl End. Capti on = Format (EndTi e, "#########0. 000")
| bl El apsed. Capti on = For mat (El apsedTi ne,

" #H#H#H#H#0. 000™)

End Sub

Run the application. Note we now have timing with millisecond (as opposed to
one second) accuracy.

9-6 Learn Visual Basic 6.0

Quick Example 2: Using GetTickCount to Implement a Delay

Many times, you want some delay in a program. We can use GetTickCount to form a
user routine to implement such a delay. We'll write a quick example that delays two
seconds between beeps.

1. Starta new project. Puta command button on the form. Copy and paste the
proper Declare statement.

2. Use this for the Command1_Click event:

Private Sub Commandl Cli ck()
Beep

Cal | Del ay(2#)

Beep

End Sub

3. Add the routine to implement the delay. The routine | use is:

Private Sub Del ay(Del aySeconds As Singl e)

DmT1 As Long

Tl = Get Ti ckCount ()

Do While GetTickCount() - Tl < CLng(Del aySeconds * 1000)
Loop

End Sub

To use this routine, note you simply call it with the desired delay (in seconds) as
the argument. This example delays two seconds. One drawback to this routine is
that the application cannot be interrupted and no other events can be processed
while in the Do loop. So, keep delays to small values.

4. Run the example. Click on the command button. Note the delay between beeps.

Dynamic Link Libraries and the Windows API 9-7

Drawing Ellipses

There are several DLL routines that support graphic methods (similar to the Line
and Circle methods studied in Class 7). The DLL function Ellipse allows us to
draw an ellipse bounded by a pre-defined rectangular region.

The Declare statement for the Ellipse function is:

Private Declare Function Ellipse Lib "gdi32" Alias "Ellipse” (ByVal hdc As Long,
ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As
Long

Note there are five arguments: hdc is the hDC handle for the region (Form or
Picture Box) being drawn to, (X1, Y1) define the upper left hand corner of the
rectangular region surrounding the ellipse and (X2,Y2) define the lower right hand
corner. The region drawn to must have its ScaleMode property set to Pixels (all
DLL drawing routine use pixels for coordinates).

Any ellipse drawn with this routine is drawn using the currently selected
DrawWidth and ForeColor properties and filled according to FillColor and

FillStyle .

Quick Example 3 - Drawing Ellipses

1.

2.

Start a new application. Set the form’s ScaleMode property to Pixels.

Use the API Text Viewer to obtain the Declare statement for the Ellipse function
and copy it into the General Declarations area:

Option Explicit

Private Declare Function Ellipse Lib "gdi 32" (ByVal hdc
As Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As
Long, ByVal Y2 As Long) As Long

Attach the following code to the Form_Resize event:

Private Sub Form Resi ze()

Dim Rt nvVal ue As Long

Forml.C s

Rtnval ue = Ellipse(Fornl. hdc, 0.1 * ScaleWdth, 0.1 *
Scal eHei ght, 0.9 * ScaleWdth, 0.9 * Scal eHei ght)

End Sub

9-8 Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows API 9-9

4. Run the application. Resize the form and see how the drawn ellipse takes on new
shapes. Change the form’s DrawWidth, ForeColor, FillColor, and FillStyle

properties to obtain different styles of ellipses.

Drawing Lines

Another DLL graphic function is Polyline. Itis used to connect a series of
connected line segments. This is useful for plotting information or just free hand
drawing. Polyline uses the DrawWidth and DrawStyle properties. This function
is similar to the Line method studied in Class 7, however the last point drawn to
(CurrentX and CurrentY) is not retained by this DLL function.

The Declare statement for Polyline is:

Private Declare Function Polyline Lib "gdi32" Alias "Polyline" (ByVal hdc As
Long, IpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or
Picture Box-again, make sure ScaleMode is Pixels) being drawn to, IpPoint is
the first point in an array of points defining the endpoints of the line segments - it is
of a special user-defined type POINTAPI (we will talk about this next), and
nCount is the number of points defining the line segments.

As mentioned, Polyline employs a special user-defined variable (a data structure)
of type POINTAPI. This definition is made in the general declarations area and
looks like:

Private Type POINTAPI
X As Long
Y As Long

End Type

Any variable defined to be of type POINTAPI will have two coordinates, an X value
and a 'Y value. As an example, say we define variable A to be of type POINTAPI
using:

Dim A As POINTAPI

A will have an X value referred to using the dot notation A.X and a Y value referred
to as A.Y. Such notation makes using the Polyline function simpler. We will use
this variable type to define the array of line segment endpoints.

9-10 Learn Visual Basic 6.0

So, to draw a sequence of line segments in a picture box, first decide on the (X,
Y) coordinates of each segment endpoint. Then, decide on line color and line
pattern and set the corresponding properties for the picture box. Then, using
Polyline to draw the segments is simple. And, as usual, the process is best
illustrated using an example.

Quick Example 4 - Drawing Lines

1. Startanew application. Add a command button. Setthe form’s ScaleMode
property to Pixels:

& Forml Mi=1E3

2. Setup the General Declarations area to include the user-defined variable

(POINTAPI) and the Declare statement for Polyline. Also define a variable for
the line endpoints:

Option Explicit

Private Type PO NTAPI

X As Long

Y As Long

End Type

Private Declare Function Polyline Lib "gdi 32" (ByVal hdc
As Long, | pPoint As PO NTAPI , ByVal nCount As Long) As
Long

Di m V(20) As PO NTAPI
Dim I ndex As | nteger

Dynamic Link Libraries and the Windows APl 9-11

3. Establish the Form_MouseDown event (saves the points):

Private Sub Form MouseDown(Button As Integer, Shift As
Integer, X As Single, Y As Single)

If Index = 0 Then Forml. d s

I ndex = Index + 1

V(I ndex). X = X

V(I ndex).Y =Y

End Sub

4. Establish the Command1_Click event (draws the segments):

Private Sub Commandl d i ck()

Dim Rt nVal ue As I nteger

Forml.C s

Rt nval ue = Pol yline(Fornl. hdc, V(1), Index)
Index =0

End Sub

5. Run the application. Click on the form at different points, then click the command
button to connect the ‘clicked’ points. Try different colors and line styles.

Drawing Polygons

We could try to use the Polyline function to draw closed regions, or polygons. One
drawback to this method is that drawing filled regions is not possible. The DLL
function Polygon allows us to draw any closed region defined by a set of (X, y)
coordinate pairs.

Let’s look at the Declare statement for Polygon (from the API Text Viewer):

Private Declare Function Polygon Lib "gdi32" Alias "Polygon” (ByVal hdc As
Long, IpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or
Picture Box) being drawn to, IpPoint is the first point in an array of points defining
the vertices of the polygon - it is of type POINTAPI, and nCount is the number of
points defining the enclosed region.

So, to draw a polygon in a picture box, first decide on the (X, Y) coordinates of
each vertex in the polygon. Then, decide on line color, line pattern, fill color and fill
pattern and set the corresponding properties for the picture box. Then, using
Polygon to draw the shape is simple.

9-12 Learn Visual Basic 6.0

Dynamic Link Libraries and the Windows APl 9-13

Quick Example 5 - Drawing Polygons

1. Start a new application and establish a form with the following controls: a picture
box (ScaleMode set to Pixels), a control array of five option buttons, and a
command button:

& Forml =1 &3

2. Setup the General Declarations area to include the user-defined variable
(POINTAPI) and the Declare statement for Polygon:

Option Explicit

Private Type PO NTAPI

X As Long

Y As Long

End Type

Private Declare Function Polygon Lib "gdi 32" (ByVal hdc
As Long, |pPoint As PO NTAPI ,ByVal nCount As Long) As
Long

3. Establish the Command1_Click event:

Private Sub Commandl Cli ck()

Dm1 As Integer

For I =0 To 4

If Optionl(l).Value = True Then
Exit For

End |f

Next |

Picturel.ds

Call Draw _Shape(Picturel, 1)

9-14 Learn Visual Basic 6.0

End Sub

Dynamic Link Librariesand the Windows APl 9-15

4. Set up a general procedure to draw a particular shape number (PNum) in a
general control (PBox). This procedure can draw one of five shapes (0-Square,
1-Rectangle, 2-Triangle, 3-Hexagon, 4-Octagon). For each shape, it establishes
some margin area (DeltaX and DeltaY) and then defines the vertices of the
shape using the V array (a POINTAPItype variable).

Private Sub Draw Shape(PBox As Control, PNum As | nteger)
DmV(1l To 8) As PO NTAPI, Rtn As Long

Dim DeltaX As Integer, DeltaY As I|Integer

Sel ect Case PNum

Case O
' Squar e
DeltaX = 0.05 * PBox. Scal eW dt h
DeltaY = 0.05 * PBox. Scal eHei ght
V(1).X = DeltaX: V(1).Y = DeltaY
V(2).X = PBox. Scal eWdth - DeltaX: V(2).Y = V(1).Y
V(3).X = V(2). X V(3).Y = PBox. Scal eHei ght - DeltaY
V(4).X = V(1). X V(4).Y = V(3).Y
Rt n = Pol ygon(PBox. hdc, V(1), 4)
Case 1
" Rect angl e
DeltaX = 0.3 * PBox. Scal eWdth
DeltaY = 0.05 * PBox. Scal eHei ght
V(1).X = DeltaX: V(1).Y = DeltaY
V(2).X = PBox.Scalewdth - DeltaX: V(2).Y = V(1).Y
V(3).X = V(2). X V(3).Y = PBox. Scal eHei ght - DeltaY
V(4).X = V(1). X V(4).Y = V(3).Y
Rt n = Pol ygon(PBox. hdc, V(1), 4)
Case 2
"Triangle
DeltaX = 0.05 * PBox. Scal eWdth
DeltaY = 0.05 * PBox. Scal eHei ght
V(1).X = DeltaX: V(1).Y = PBox. Scal eHei ght - DeltaY
V(2).X = 0.5 * PBox. ScaleWdth: V(2).Y = DeltaY

V(3).X = PBox. Scal eWdth - DeltaX: V(3).Y = V(1).Y
Rt n = Pol ygon(PBox. hdc, V(1), 3)

Case 3

' Hexagon
DeltaX = 0.05 * PBox. Scal eW dt h
DeltaY = 0.05 * PBox. Scal eHei ght
V(1). X = DeltaX: V(1).Y = 0.5 * PBox. Scal eHei ght
V(2).X = 0.25 * PBox. Scal ewWdth: V(2).Y = DeltaY
V(3).X = 0.75 * PBox.ScaleWdth: V(3).Y = V(2).Y

9-16 Learn Visual Basic 6.0

V(4).X = PBox. Scal eWdth - DeltaX: V(4).Y = V(1).Y
V(5).X = V(3). X V(5).Y = PBox. Scal eHei ght - DeltaY
V(6).X = V(2).X V(6).Y = V(5).Y

Rt n = Pol ygon(PBox. hdc, V(1), 6)

Dynamic Link Libraries and the Windows APl 9-17

Case 4

' Cct agon
Del taX = 0.05 * PBox. Scal eW dt h
DeltaY = 0.05 * PBox. Scal eHei ght
V(1). X = DeltaX: V(1).Y = 0.3 * PBox. Scal eHei ght
V(2).X = 0.3 * PBox. Scal eWdth: V(2).Y = DeltaY
V(3).X = 0.7 * PBox. ScaleWdth: V(3).Y = V(2).Y
V(4).X = PBox. Scal eWdth - DeltaX: V(4).Y = V(1).Y
V(5).X = V(4).X: V(5).Y = 0.7 * PBox. Scal eHei ght
V(6). X = V(3). X V(6).Y = PBox. Scal eHei ght - DeltaY
V(7). X = V(2). X V(7).Y =V(6).Y
V(8).X = V(1). X V(8).Y =V(5).Y
Rt n = Pol ygon(PBox. hdc, V(1), 8)

End Sel ect

End Sub

. Run the application. Select a shape and click the command button to draw it.
Play with the picture box properties to obtain different colors and fill patterns.

. To see the importance of proper variable declarations when using DLL's and the
API, make the two components (X and Y) in the POINTAPI variable of type Integer
rather than Long. Rerun the program and see the strange results.

9-18 Learn Visual Basic 6.0

Sounds with DLL Calls - Other Beeps

As seen in the above example and by perusing the Visual Basic literature, only
one sound is available in Visual Basic - Beep. Not real exciting. By using
available DLL'’s, we can add all kinds of sounds to our applications.

A DLL routine like the Visual Basic Beep function is MessageBeep. Italso
beeps the speaker but, with a sound card, you can hear different kinds of beeps.
Message Beep has a single argument, that being an long integer that describes
the type of beep you want. MessageBeep returns along integer. The usage
syntax is:

Dim BeepType As Long, RtnValue as Long

RtnValue = MessageBeep(BeepType)

BeepType has five possible values. Sounds are related to the four possible
icons available in the Message Box (these sounds are set from the Windows 95
control panel). The DLL constants available are:

MB_ICONSTORP - Play sound associated with the critical icon
MB_ICONEXCLAMATION - Play sound associated with the exclamation icon
MB_ICONINFORMATION - Play sound associated with the information icon
MB_ICONQUESTION - Play sound associated with the question icon
MB_OK - Play sound associated with no icon

Dynamic Link Libraries and the Windows APl 9-19

Quick Example 6 - Adding Beeps to Message Box Displays

We can use MessageBeep to add beeps to our display of message boxes.
1. Starta new application. Add a text box and a command button.

2. Copy and paste the Declare statement for the MessageBeep function to the
General Declarations area. Also, copy and paste the following seven constants
(we need seven since some of the ones we use are equated to other constants):

Private Declare Function MessageBeep Lib "user32" (ByVal
wType As Long) As Long

Private Const MB_| CONASTERI SK = &H40&

Private Const MB_| CONEXCLAVATI ON = &H30&

Private Const MB | CONHAND = &H10&

Private Const MB_| CONI NFORVATI ON = MB_| CONASTERI SK
Private Const MB_| CONSTOP = MB_| CONHAND

Private Const MB_| CONQUESTI ON = &H20&

Private Const MB OK = &HO&

3. In the above constant definitions, you will have to change the word Public (which
comes from the text viewer) with the word Private.

4. Use this code to the Commandl_Click event.

Private Sub Commandl Cli ck()
Di m BeepType As Long, RtnValue As Long
Sel ect Case Val (Text 1. Text)

Case O

BeepType = MB_ (K
Case 1

BeepType = MB_| CONI NFORVATI ON
Case 2

BeepType = MB_| CONEXCLANATI ON
Case 3

BeepType = MB_| CONQUESTI ON
Case 4

BeepType = MB_I| CONSTOP
End Sel ect

Rt nvVal ue = MessageBeep(BeepType)
MsgBox "This is a test", BeepType, "Beep Test"
End Sub

9-20 Learn Visual Basic 6.0

5. Run the application. Enter values from 0 to 4 in the text box and click the
command button. See if you get different beep sounds.

Dynamic Link Libraries and the Windows APl 9-21

More Elaborate Sounds

Beeps are nice, but many times you want to play more elaborate sounds. Most
sounds you hear played in Windows applications are saved in WAV files (files
with WAV extensions). These are the files formed when you record using one of
the many sound recorder programs available.

WALV files are easily played using DLL functions. There is more than one way to
play such a file. We’'ll use the sndPlaySound function. This is along function
that requires two arguments, a string argument with the name of the WAV file and
a long argument indicating how to play the sound. The usage syntax is:

Dim WavFile As String, SndType as Long, RtnValue as Long

RtnValue = sndPlaysound(WavFile, SndType)
SndType has many possible values. We'll just look at two:

SND_SYNC - Sound is played to completion, then execution continues
SND_ASYNC - Execution continues as sound is played

Quick Example 7 - Playing WAV Files

1. Start a new application. Add a command button and a common dialog box.
Copy and paste the sndPlaySound Declare statement from the API Text Viewer
program into your application. Also copy the SND_SYNC and SND_ASYNC
constants. When done copying and making necessary scope modifications, you
should have:

Private Declare Function sndPlaySound Lib "winmmdl["
Alias "sndPl aySoundA" (ByVal | pszSoundNane As String,
ByVal uFlags As Long) As Long
Private Const SND ASYNC = &H1
Private Const SND SYNC = &HO

9-22 Learn Visual Basic 6.0

2. Add this code to the Command1_Click procedure:

Private Sub Commandl d i ck()

Dim Rt nVal As |nteger

"Get nane of .wav file to play

CommonDi al ogl. Filter = "Sound Files|*.wav"

ComonDi al ogl. ShowOpen

Rt nval = sndPl aySound(CormonDi al ogl. fil ename, SND_SYNC)
End Sub

3. Run the application. Find a WAV file and listen to the lovely results.

Playing Sounds Quickly

Using the sndPlaySound function in the previous example requires first opening a
file, then playing the sound. If you want quick sounds, say in games, the loading

procedure could slow you down quite a bit. What would be nice would be to have
a sound file ‘saved’ in some format that could be played quickly. We can do that!

What we will do is open the sound file (say in the Form_Load procedure) and
write the file to a string variable. Then, we just use this string variable in place of
the file name in the sndPlaySound argument list. We also need to ‘Or’ the
SndType argument with the constant SND_MEMORY (this tells sndPlaySound
we are playing a sound from memory as opposed to a WAV file). This technique
is borrowed from “Black Art of Visual Basic Game Programming,” by Mark Pruett,
published by The Waite Group in 1995. Sounds played using this technique must
be short sounds (less than 5 seconds) or mysterious results could happen.

Dynamic Link Libraries and the Windows APl 9-23

Quick Example 8 - Playing Sounds Quickly
We'll write some code to play a quick ‘bonk’ sound.
1. Start a new application. Add a command button.

2. Copy and paste the sndPlaySound Declare statement and the two needed

constants (see Quick Example 4). Declare a variable (BongSound) for the sound
file. Add SND_MEMORY to the constants dechrations. The two added
statements are:

Di m BongSound As String
Private Const SND MEMORY = &H4

3. Add the following general function, StoreSound, that will copy a WAV file into a
string variable:

Private Function StoreSound(ByVal FileNanme) As String
Load a sound file into a string vari abl e.

Taken from

' Mar k Pruett

' Bl ack Art of Visual Basic Gane Progranmm ng

' The Waite Group, 1995

Dim Buffer As String
DimF As |nteger
Di m SoundBuffer As String
On Error GoTo Noi seGet Error
Buf fer = Space$(1024)
SoundBuffer = ""
F = FreeFile
Open Fil eNanme For Binary As F
Do While Not EOF(F)
CGet #F, , Buffer
SoundBuf fer = SoundBuffer & Buffer
Loop
Close F
St oreSound = Tri m(SoundBuf f er)
Exit Function
Noi seGet _Error:
SoundBuffer = ""
Exit Function
End Functi on

9-24 Learn Visual Basic 6.0

Dynamic Link Librariesand the Windows APl 9-25

. Write the following Form_Load procedure:

Private Sub Form Load()
BongSound = St or eSound("bong. wav")
End Sub

. Use this as the Command1_Click procedure:

Private Sub Commandl Cli ck()
Cal I sndPl aySound(BongSound, SND _SYNC Or SND_NMEMORY)
End Sub

. Make sure the sound (BONK.WAYV) is in the same directory as your application.

Run the application. Each time you click the command button, you should hear a
bonk!

Fun With Graphics

One of the biggest uses of the API is for graphics, whether it be background
scrolling, sprite animation, or many other special effects. A very versatile API
function is BitBIt, which stands for Bit Block Transfer. Itis used to copy a
section of one bitmap from one place (the source) to another (the destination).

Let’s look at the Declaration statement for BitBlt (from the API Text Viewer):

PrivateDeclare Function BitBlIt Lib "gdi32" Alias "BitBIt"
(ByVal hDestDC As Long,
ByVal x As Long,
ByValy As Long,
ByVal nWidth As Long,
ByVal nHeight As Long,
ByVal hSrcDC As Long,
ByVal xSrc As Long,
ByVal ySrc As Long,
ByVal dwRop As Long) As
Long

Lots of stuff here, but fairly straightforward. hDestDC is the device context
handle, or hDC of the destination bitmap. The coordinate pair (X, Y) specifies the
upper left corner in the destination bitmap to copy the source. The parameters
nWidth and nHeight are, respectively, the width and height of the copied bitmap.
hSrcDC is the device context handle for the source bitmap and (Xsrc, Ysrc)is
the upper left corner of the region of the source bitmap being copied. Finally,
dwRop is a constant that defines how the bitmap is to be copied. We will do a

9-26 Learn Visual Basic 6.0

direct copy or set dwRop equal to the constant SRCCOPY. The BitBIt function
expects all geometric units to be pixels.

Dynamic Link Libraries and the Windows APl 9-27

BitBIt returns an long integer value -- we won't be concerned with its use right now.
So, the syntax for using BitBlt is:

Dim RtnValue As Long
RtnValue = BitBlt(DesthDC, X, Y, Width, Height,
Src.hDC, Xsrc, Ysrc, SRCCOPY)
This function call takes the Src bitmap, located at (Xsrc, Ysrc), with width Width
and height Height, and copies it directly to the Dest bitmap at (X, Y).
Quick Example 9 -Bouncing Ball With Sound!

We'll build an application with a ball bouncing from the top to the bottom as an
illustration of the use of BitBlt.

1. Starta new application. Add two picture boxes, a shape (inside the smaller
picture box), a timer control, and a command button.:

. Forml

Picturel —— Commandl

—— Timerl

L~ Shapel

9-28 Learn Visual Basic 6.0

2. For Picturel (the destination), set the ScaleMode property to Pixel. For Shapel,
set the FillStyle property to Solid, the Shape property to Circle, and choose a
FillColor. For Picture2 (the ball), set the ScaleMode property to Pixel and the
BorderStyle property toNone. For Timerl, set the Enabled property to False
and the Interval property t0100.

3. Copy and paste constants for the BitBlt Declare statement and constants. Also
copy and paste the necessary sndPlaySound statements and declare some
variables. The general declarations area is thus:

Option Explicit

Di m BongSound As String

DmBallY As Long, BallDr As Integer

Private Declare Function sndPlaySound Lib "winmmdl["
Ali as "sndPl aySoundA" (ByVal | pszSoundNanme As String,
ByVal uFlags As Long) As Long

Private Const SND ASYNC = &H1

Private Const SND SYNC = &HO

Private Const SND MEMORY = &H4

Private Declare Function BitBlt Lib "gdi 32" (ByVal
hDest DC As Long, ByVal x As Long, Byval y As Long, ByVal
nWdth As Long, ByVal nHeight As Long, ByVal hSrcDC As
Long, ByVval xSrc As Long, ByVval ySrc As Long, ByVal
dwRop As Long) As Long

Private Const SRCCOPY = &HCC0020

4. Add a Form_Load procedure:

Private Sub Form Load()
BallY = 0
BalIDir =1
BongSound =
End Sub

St or eSound(" bong. wav")

5. Write a Command1_Click event procedure to toggle the timer:

Private Sub Commandl _Cli ck()
Ti mer 1. Enabl ed = Not (Ti ner 1. Enabl ed)
End Sub

Dynamic Link Libraries and the Windows APl 9-29

6. The Timerl_Timer event controls the bouncing ball position:

Private Sub Tinmerl Tinmer()

Static BallY As Long

Dim Rt nVal ue As Long

Picturel.ds

BallY = BallY + BallIDir * Picturel. Scal eHei ght / 50
If BallY < 0 Then

BallY =0

Bal IDir =1

Call sndPl aySound(BongSound, SND_ASYNC Or SND_MEMORY)
El self BallY + Picture2. Scal eHei ght >

Pi cturel. Scal eHei ght Then

BallY = Picturel. Scal eHei ght - Picture2. Scal eHei ght
Bal IDr = -1

Cal | sndPl aySound(BongSound, SND_ASYNC Or SND_MEMORY)
End If

Rtnval ue = BitBlIt(Picturel. hDC, CLng(0.5 *
(Picturel. Scal eWdth - Picture2. Scal eWwdth)),

Bal | Y, CLng(Picture2. Scal eWwdth),

CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(0),
CLng(0), SRCCOPRY)

End Sub

7. We also need to make sure we include the StoreSound procedure from the last
example so we can hear the bong when the ball bounces.

8. Once everything is together, run it and follow the bouncing ball!

Flicker Free Animation

You may notice in the bouncing ball example that there is a bit of flicker as it
bounces. Much smoother animation can be achieved with just a couple of
changes.

The idea behind so-called flicker free animation is to always work with two picture
boxes for the animation (each with the same properties, but one is visible and one
is not). The non-visible picture box is our working area where everything is
positioned where it needs to be at each time point in the animation sequence.
Once everything is properly positioned, we then copy (using BitBIt) the entire non-
visible picture box into the visible picture box. The results are quite nice.

9-30 Learn Visual Basic 6.0

Quick Example 10 - Flicker Free Animation
We modify the previous example to make it flicker free.

1. Change the Index property of Picturel to O (zero). This makes it a control array

which we can make a copy of. Once this copy is made. Picture1(0) will be our
visible area and Picture1(1) will be our non-visible, working area.

2. Add these statements to the Form_Load procedure to create Picturel(1):

Load Picturel(1)
Picturel(1l).Aut oRedraw = True

3. Make the italicized changes to the Timer1l_Timer event. The ball is now drawn to
Picture1(1). Once drawn, the last statement in the procedure copies Picturel(1)
to Picture1(0).

Private Sub Tinmerl Tinmer()
Static BallY As Long
Dim Rt nval ue As Long
Picturel(l).ds
BallY = BallY + BalIDir * Picturel(l). Scal eHeight / 50
If BallY < O Then

BallY = 0

BalIDir =1

Cal | sndPl aySound(BongSound, SND ASYNC Or SND_MEMORY)
El self BallY + Picture2. Scal eHei ght >
Picturel(l). Scal eHei ght Then

Ball Y = Picturel(1l). Scal eHei ght - Picture2. Scal eHei ght

BalIDir = -1

Cal | sndPl aySound(BongSound, SND_ASYNC Or SND MEMORY)
End |f
Rtnvalue = BitBIt(Picturel(1l).hDC, CLng(0.5 *
(Picturel(l).ScalewWdth - Picture2.Scal eWwdth)),

Bal 'Y, CLng(Picture2. Scal eWdth),

CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(0),
CLng(0), SRCCOPRY)
Rtnvalue = BitBlIt(Picturel(0).hDC, CLng(0), CLng(O0),
CLng(Picturel(1). Scal eWwdth),
CLng(Picturel(1l). Scal eHeight), Picturel(l).hDC, CLng(0),
CLng(0), SRCCOPRY)
End Sub

Dynamic Link Libraries and the Windows APl 9-31

4. Run the application and you should notice the smoother ball motion.

9-32 Learn Visual Basic 6.0

Quick Example 11 - Horizontally Scrolling Background

Most action arcade games employ scrolling backgrounds. What they really use is
one long background picture that wraps around itself. We can use the BitBIt API
function to generate such a background. Here’s the idea. Say we have one long
bitmap of some background (here, an underseascape created in a paint program
and saved as a bitmap file):

At each program cycle, we copy a bitmap of the size shown to a destination location.
As X increases, the background appears to scroll. Note as X reaches the end of this
source bitmap, we need to copy a little of both ends to the destination bitmap.

1. Start a new application. Add a horizontal scroll bar, two picture boxes, and a
timer control. Your form should resemble:

w Forml

Picturel

Timerl

Picture2

Dynamic Link Libraries and the Windows APl 9-33

2. For Picturel (the destination), set the ScaleMode property to Pixel. For
Picture2, set ScaleMode to Pixel, AutoSize and AutoRedraw to True, and
Picture to Undrseal.bmp (provided on class disk). Set PicturelHeight
property to the same as Picture2. Set Timerl Interval property to50. Set the
Hscrolll Max property to 20 and LargeChange property to 2. After setting
properties, resize the form so Picture2 does not appear.

3. Copy and paste the BitBIt Declare statement from the API text viewer. Also, copy
the SRCCOPY constant:

4. Attach the following code to the Timer1l_Timer event:

Private Sub Tinmerl Tinmer()

Static x As Long

Dm AWdth As Long

Dim RC As Long

"Find next |ocation on Picture2

X = x + HScroll 1. Val ue

If x > Picture2. Scal eWdth Then x = 0

"When x is near right edge, we need to copy

"two segnments of Picture2 into Picturel

If x > (Picture2. ScaleWdth - Picturel. Scal eWdth) Then
AW dth = Picture2. ScaleWdth - x

RC = BitBIt(Picturel. hDC, CLng(0), CLng(0), AW dth,

CLng(Pi cture2. Scal eHei ght), Picture2. hDC, x, CLng(0),

SRCCOPY)

RC = BitBlt(Picturel. hDC, AWdth, CLng(0),

CLng(Picturel. Scal eWdth - AWdt h),

CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(0),

CLng(0), SRCCOPY)

El se

RC = BitBlt(Picturel. hDC, CLng(0), CLng(O0),

CLng(Picturel. Scal ewdth), CLng(Picture2. Scal eHei ght),

Pi cture2. hDC, x, CLng(0), SRCCOPY)

End If

End Sub

5. Run the application. The scroll bar is used to control the speed of the scrolling
(the amount X increases each time a timer event occurs).

9-34 Learn Visual Basic 6.0

A Bit of Multimedia

The computer of the 90's is the multimedia computer (graphics, sounds, video).
Windows provides a set of rich multimedia functions we can use in our Visual
Basic applications. Of course, to have access to this power, we use the API.
We'll briefly look at using the API to play video files with the AVI (audio-visual
interlaced) extension.

In order to play AVI files, your computer needs to have software such as Video for
Windows (from Microsoft) or QuickTime for Windows (from Apple) loaded on your
machine. When a video is played from Visual Basic, a new window is opened
with the title of the video file shown. When the video is complete, the window is
automatically closed.

The DLL function mciExecute is used to play video files (note it will also play
WAV files). The syntax for using this function is:

Dim RtnValue as Long

RtnValue = mciExecute (Command)

where Command is a string argument consisting of the keyword ‘Play’
concatenated with the complete pathname to the desired file.

Quick Example 12 - Multimedia Sound and Video

1. Start a new application. Add a command button and a common dialog box.
Copy and paste the mciExecute Declare statement from the API Text Viewer
program into your application. It should read:

Pri vate Decl are Functi on nti Execute Lib "winmmdlIl"
(Byval | pstrCommand As String) As Long

2. Add this code to the Command1_Click procedure:

Private Sub Commandl d i ck()
Dim Rt nVal As Long
"Get nane of .avi file to play

CommonDi al ogl. Filter = "Video Files|*.avi"
ComonDi al ogl. ShowOpen
Rt nval = nti Execute("play " + CommonDi al ogl.fil enane)

End Sub

Dynamic Link Librariesand the Windows APl 9-35

3. Run the application. Find a AVI file and see and hear the lovely results.

9-36 Learn Visual Basic 6.0

Exercise 9

The Original Video Game - Pong!

In the early 1970's, Nolan Bushnell began the video game revolution with Atari’'s Pong
game --a very simple Ping-Pong kind of game. Try to replicate this game using
Visual Basic. In the game, a ball bounces from one end of a court to another,
bouncing off side walls. Players try to deflect the ball at each end using a controllable
paddle. Use sounds where appropriate (look at my solution for some useful DLL'’s for
sound).

My solution freely borrows code and techniques from several reference sources. The
primary source is a book on game programming, by Mark Pruett, entitled “Black Art
of Visual Basic Game Programming,” published by The Waite Group in 1995. In my
simple game, the left paddle is controlled with the A and Z keys on the keyboard,
while the right paddle is controlled with the K and M keys.

My Solution:

Form:

cmdPause ~ CMAEXit Label3 IbIScore2

IblScorel cmdNew

Labell

picBlank \

e L
picPaddle \

O
f

picBall

DicFieId/

Dynamic Link Libraries and the Windows APl 9-37

Properties:

Form frmPong:

BackColor = &HOOFFCOCO0& (Light blue)
Caption = The Original Video Game - Pong!

Timer timGame:
Enabled = False
Interval = 25 (may need different values for different machines)

PictureBox picPaddle:
Appearance = Flat
AutoRedraw = True
AutoSize = True
Picture = paddle.omp
ScaleMode = Pixel
Visible = False

CommandButton cmdPause:
Caption = &Pause
Enabled = 0 'False

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdNew
Caption = &New Game
Default = True

PictureBox picField :
BackColor = &HOO80FFFF& (Light yellow)
BorderStyle = None
FontName = MS Sans Serif
FontSize =24
ForeColor = &HO00000FF& (Red)
ScaleMode = Pixel

PictureBox picBlank:
Appearance = Flat
AutoRedraw = True
BackColor = &HOO080FFFF& (Light yellow)
BorderStyle = None
FillStyle = Solid
Visible = False

9-38 Learn Visual Basic 6.0

PictureBox picBall:
Appearance = Flat
AutoRedraw = True
AutoSize = True
BorderStyle = None
Picture = ball.omp
ScaleMode = Pixel
Visible = False

Shape Shapel:

BackColor = &H00404040& (Black)
BackStyle = Opaque

Label IblScore2:
Alignment = Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = Fixed Single
Caption=0
FontName = MS Sans Serif
FontBold = True
FontSize = 18

Label Label3:
BackColor = &HOOFFCOCO0& (Light blue)
Caption = Player 2
FontName = MS Sans Serif
FontSize = 13.5

Label IbIScorel:
Alignment = Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = Fixed Single
Caption=0
FontName = MS Sans Serif
FontBold = True
FontSize = 18

Label Labell:
BackColor = &HOOFFCOCO0& (Light blue)
Caption = Player 1
FontName = MS Sans Serif
FontSize = 13.5

Dynamic Link Libraries and the Windows APl 9-39

Code:

General Declarations:

Option Explicit
"Sound file strings
Di m wavPaddl eHit As String
DimwavWall As String
D m wavM ssed As String
"A user-defined variable to position bitnaps
Private Type tBitMp
Left As Long
Top As Long
Ri ght As Long
Bottom As Long
Wdth As Long
Hei ght As Long
End Type
"Ball information
Dim bnmpBal | As tBit Map
Dim XStart As Long, YStart As Long
Di m XSpeed As Long, YSpeed As Long
D m SpeedUnit As Long
Dim XDir As Long, YDir As Long
' Paddl e i nformation
Di m bnpPaddl el As tBitMap, bnpPaddl e2 As tBitMap
Dim YStart Paddl el As Long, YStartPaddl e2 As Long
Di m XPaddl el As Long, XPaddle2 As Long
Di m Paddl el ncrenent As Long

Dim Scorel As Integer, Score2 As I|nteger

Di m Paused As Bool ean

"Nunber of points to win

Const WN = 10

" Nunber of bounces before speed increases

Const BOUNCE = 10

Di m NunmBounce As | nteger

" APl Functions and constants

Private Declare Function BitBIt Lib "gdi 32" (ByVal hDestDC
As Long, ByVal x As Long, ByVal y As Long, ByVal nWdth As
Long, ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal
xSrc As Long, ByVal ySrc As Long, ByVal dwRop As Long) As
Long

9-40 Learn Visual Basic 6.0

Const SRCCOPY = &HCC0020 ' (DWORD) dest = source
Private Declare Function sndPlaySound Lib "winmmdl["
Al i as "sndPl aySoundA" (ByVal | pszSoundNane As String,
ByVal uFlags As Long) As Long

Private Declare Function sndStopSound Lib "w nmmdl["
Alias "sndPl aySoundA" (ByVval |pszNull As String, ByVal
uFl ags As Long) As Long

Const SND _ASYNC = &H1

Const SND_SYNC = &HO

Const SND_MEMORY = &H4

Const SND LOOP = &H8

Const SND_NOSTOP = &H10

' Wndows APl rectangle function

Private Declare Function IntersectRect Lib "user32"

(I pDest Rect As tBitMap, | pSrclRect As tBitMp, |pSrc2Rect
As tBitMap) As Long

NoiseGet General Function:

Function Noi seCet (ByVal FileNane) As String

Load a sound file into a string vari abl e.

' Taken from

' Mar k Pruett

' Bl ack Art of Visual Basic Gane Progranm ng
' The Waite G oup, 1995

Dim buffer As String
Dmf As Integer
Di m SoundBuffer As String
On Error GoTo Noi seGet Error
buf fer = Space$(1024)
SoundBuffer = ""
f = FreeFile
Open Fil eNane For Binary As f
Do While Not EOF(f)
Get #f, , buffer " Load in 1K chunks
SoundBuf fer = SoundBuffer & buffer
Loop
Close f

Dynamic Link Libraries and the Windows APl 9-41

Noi seCGet = Tri n(SoundBuf f er)
Exit Function
Noi seGet _Error

SoundBuffer = ""

Exit Function
End Function

9-42 Learn Visual Basic 6.0

NoisePlay General Procedure:

Sub Noi sePl ay(SoundBuffer As String, ByVal PlayMde As
| nt eger)

Pl ays a sound previously |oaded into nenory with

function

Noi seGet ().

Taken from
Mar k Pruett
Bl ack Art of Visual Basic Gane Programmi ng
The Waite G oup, 1995

Dimretcode As |Integer

I f SoundBuffer = "" Then Exit Sub
Stop any sound that may currently be playing.
retcode = sndSt opSound(0, SND ASYNC)
Pl ayMbde shoul d be SND_SYNC or SND_ASYNC
ret code = sndPl aySound(ByVal SoundBuffer, PlayMode O

SND MEMORY)
End Sub

Bitmap_Move General Procedure:

Private Sub Bitmap_Move(ABit Map As tBitMap, ByVal NewlLeft
As | nteger, ByVal Newlop As Integer, SourcePicture As
Pi ct ur eBox)

Move bitmap from one |ocation to the next
Modi fied from
Mar k Pruett
Bl ack Art of Visual Basic Gane Programmi ng
The Waite G oup, 1995

Dim Rt nVal ue As I nteger

First erase at old | ocation

Rtnval ue = BitBlt(picField. hDC, ABitMap. Left, ABitMp. Top,
ABi t Map. Wdt h, ABitMap. Hei ght, picBl ank. hDC, 0, O,
SRCCOPY)

' Then, establish and redraw at new | ocati on

ABi t Map. Left = NewlLeft

ABi t Map. Top = NewTop

Dynamic Link Libraries and the Windows APl 9-43

Rtnval ue = BitBlIt(picField. hDC, ABitMp. Left, ABitMp. Top,
ABi t Map. W dt h, ABi t Map. Hei ght, SourcePi cture. hDC, 0, O,
SRCCOPY)

End Sub

9-44 Learn Visual Basic 6.0

ResetPaddles General Procedure:

Private Sub Reset Paddl es()

' Reposi ti on paddl es

bnpPaddl el. Top = YStart Paddl el
bnpPaddl e2. Top = YSt art Paddl e2

Cal | Bitmap_Move(bnmpPaddl el, bnpPaddl el. Left,
bnpPaddl el. Top, picPaddl e)

Cal | Bitmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top, pi cPaddl e)

End Sub

Update_Score General Procedure:

Private Sub Update_ Score(Pl ayer As Integer)
Dim Wnner As Integer, RtnValue As I|nteger
Wnner =0
"Update scores and see if gane over
ti nGane. Enabl ed = Fal se
Call Noi sePl ay(wavM ssed, SND_SYNC)
Sel ect Case Pl ayer
Case 1
Score2 = Score2 + 1
| bl Score2. Capti on = Format (Score2, "#0")
| bl Score2. Refresh
If Score2 = WN Then Wnner = 2
Case 2
Scorel = Scorel + 1
| bl Scorel. Capti on = Format (Scorel, "#0")
| bl Scorel. Refresh
If Scorel = WN Then Wnner =1
End Sel ect
If Wnner = 0 Then
Call ResetBall
ti nGane. Enabl ed = True
El se
cnmdNew. Enabl ed = Fal se
cndPause. Enabl ed = Fal se
cndExi t. Enabl ed = Fal se
Rt nval ue = sndPl aySound(App. Path + "\ cheering. wav",
SND_SYNC)
picField.Current X = 0.5 * (picField. ScaleWdth -
pi cFi el d. Text Wdt h("Ganme Over"))

Dynamic Link Librariesand the Windows APl 9-45

picField.CurrentY = 0.5 * picField. Scal eHei ght -
pi cFi el d. Text Hei ght (" Ganme Over")

picField.Print "Game Over"

cndNew. Enabl ed = True

cnmdExi t. Enabl ed = True
End If
End Sub

9-46 Learn Visual Basic 6.0

ResetBall General Procedure:

Sub ResetBal | ()

' Set random directions

XDir =2 * Int(2 * Rud) - 1
YDir =2 * Int(2 * Rud) - 1
bnpBal | . Left = XStart
bnpBal | . Top = YStart

End Sub

cmdExit_Click Event:

Private Sub cndExit _dick()

" End gane
End
End Sub

cmdNew Click Event:

Private Sub cndNew C i ck()
' New ganme code
' Reset scores

| bl Scorel. Caption = "0"
| bl Score2. Caption = "0"
Scorel = 0

Score2 =0

' Reset bal

SpeedUnit =1

XSpeed = 5 * SpeedUnit
YSpeed = XSpeed

Call ResetBall

' Reset paddl es
picField. Cs
Paddl el ncrement = 5
NunBounce = 0

Cal| Reset Paddl es
cndPause. Enabl ed = True
ti mGane. Enabl ed = True
pi cFi el d. Set Focus

End Sub

Dynamic Link Libraries and the Windows APl 9-47

Collided General Function:

Private Function Collided(A As tBitMap, B As tBitMap) As
| nt eger

' Check if the two rectangles (bitmaps) intersect,

' using the IntersectRect API call.

' Taken from

' Mar k Pruett

' Black Art of Visual Basic Gane Progranm ng

' The Waite G oup, 1995

" Although we won't use it, we need a result
" rectangle to pass to the APl routine.
Dim Resul t Rect As tBitMp

" Calculate the right and bottons of rectangles needed
by the APl call.

A Right = A Left + AWdth - 1

A.Bottom= A Top + A Height - 1

B.Right = B.Left + BWdth - 1
B.Bottom = B. Top + B.Height - 1
" IntersectRect will only return O (false) if the
" two rectangles do NOT intersect.
Collided = Intersect Rect (ResultRect, A B)
End Function

cmdPause Click Event:

Private Sub cndPause Cl i ck()
| f Not (Paused) Then
ti mGanme. Enabl ed = Fal se
cndNew. Enabl ed = Fal se
Paused = True
cndPause. Caption = " &UnPause”
El se
ti mGane. Enabl ed = True
cmdNew. Enabl ed = True
Paused = Fal se
cndPause. Capti on = " &Pause”

9-48 Learn Visual Basic 6.0

End If
pi cFi el d. Set Focus
End Sub

Dynamic Link Libraries and the Windows APl 9-49

Form Load Event:

Private Sub Form Load()

Random ze Ti mer

"Place fromat mddle of screen

frmPong. Left = 0.5 * (Screen. Wdth - frnPong. Wdth)
frmPong. Top = 0.5 * (Screen. Hei ght - frmPong. Hei ght)
'Load sound files into strings fromfast access
wavPaddl eHit = Noi seGet (App. Path + "\ paddl e. wav")
wavM ssed = Noi seGet (App. Path + "\ m ssed. wav")
wavVWal | = Noi seGet (App. Path + "\wal |l hit.wav")
"Initialize ball and paddle | ocations

XStart = 0.5 * (picField. Scalewdth - picBall.Scal eW dt h)
YStart = 0.5 * (picField. Scal eHei ght -

pi cBal | . Scal eHei ght)

XPaddl el = 5

XPaddl e2 = picField. ScaleWdth - picPaddle. ScaleWdth - 5
YStartPaddl el = 0.5 * (picField. Scal eHei ght -

pi cPaddl e. Scal eHei ght)

YSt art Paddl e2 = YStart Paddl el

' Cet ball dinensions

bnpBal | . Left = XStart

bnpBal | . Top = YStart

bnpBal | . Wdth = picBall. Scal eWdth

brnpBal | . Hei ght = picBal | . Scal eHei ght

' Get paddl e di nensi ons

bnpPaddl el. Left = XPaddl el

bnpPaddl el. Top = YStart Paddl el

bnpPaddl el. Wdt h = pi cPaddl e. Scal eW dt h
bnmpPaddl el. Hei ght = pi cPaddl e. Scal eHei ght
bnpPaddl e2. Left = XPaddl e2

bnpPaddl e2. Top = YSt art Paddl e2

bnpPaddl e2. Wdt h = pi cPaddl e. Scal eW dt h
bnpPaddl e2. Hei ght = pi cPaddl e. Scal eHei ght

"CGet ready to play

Paused = Fal se

f r mMPong. Show

Cal | Reset Paddl es

End Sub

9-50 Learn Visual Basic 6.0

picField KeyDown Event:

Private Sub picFi el d_KeyDown(KeyCode As I nteger,
| nt eger)
Sel ect Case KeyCode
"Player 1 Mdtion
Case vbKeyA
I f (bnpPaddl el. Top - Paddl el ncrenent) > 0 Then
Cal | Bi tmap_Move(bnpPaddl el, bnpPaddl el. Left,
bnpPaddl el. Top - Paddl el ncrenent, picPaddle)
End If
Case vbKeyZ
| f (bnpPaddl el. Top + bnpPaddl el. Hei ght +
Paddl el ncrenment) < picField. Scal eHei ght Then
Call Bitmap_Move(bnpPaddl el, bnpPaddl el. Left,
bnmpPaddl el. Top + Paddl el ncrenent, picPaddl e)
End I f
"Player 2 Mbtion
Case vbKeyK
I f (bnpPaddl e2. Top - Paddl el ncrenent) > 0 Then
Cal | Bi tmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top - Paddl el ncrenent, picPaddl e)
End If
Case vbKeyM
| f (bnpPaddl e2. Top + bnpPaddl e2. Hei ght +
Paddl el ncrenment) < picFi el d. Scal eHei ght Then
Cal | Bi t map_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top + Paddl el ncrenent, picPaddl e)
End | f
End Sel ect
End Sub

timGame Timer Event:

Private Sub ti mGame_Ti nmer ()

"Main routine

Dim XInc As Integer, Ylnc As I|nteger

Dim Collisionl As Integer, Collision2 As Integer,
Collision As I|nteger

Static Previous As |nteger

"If paused, do nothing

| f Paused Then Exit Sub

‘Determine ball notion increnents

Shift As

Dynamic Link Libraries and the Windows APl 9-51

Xl nc XDir * XSpeed
Yl nc YDir * YSpeed
"Ball hits top wall
If (brpBall.Top + YInc) < 0 Then
YDir =-YDir
YInc = YDir * YSpeed
Cal | Noi sePl ay(wavWal |, SND_ASYNC)
End If
"Ball hits bottom wall
| f (bnpBall.Top + bnpBall.Height + Ylnc) >
pi cFi el d. Scal eHei ght Then
YDir = -YDir
YInc = YDir * YSpeed
Cal | Noi sePl ay(wav\Wal I, SND_ASYNC)
End If
"Bal | goes past left wall - Player 2 scores
I f (bnpBall.Left) > picField. Scal eWdth Then
Cal | Update_Score(2)
End If
‘Bal |l goes past right wall - Player 1 scores
I f (bnpBall.Left + bnpBall.Wdth) < 0 Then
Cal | Update_Score(1)
End |f
"Check if either paddle and ball collided

Collisionl = Collided(bnpBall, bnpPaddl el)
Collision2 = Col lided(bnpBal I, bnpPaddl e2)
' Move bal

Call Bitmap_Move(bnpBall, bnpBall.Left + Xinc, bnpBall. Top
+ Yinc, picBall)
"If paddle hit, redraw paddle
I f Collisionl Then
Cal | Bi tmap_Move(bnpPaddl el, bnpPaddl el. Left,
bnpPaddl el. Top, picPaddl e)
Collision = Col li sionl
El self Collision2 Then
Cal | Bi tmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top, pi cPaddl e)
Collision = Col lision2
End If
"If we hit a paddle, change ball direction
If Collision And (Not Previous) Then
NunmBounce = NunBounce + 1
I f NunBounce = BOUNCE Then

9-52 Learn Visual Basic 6.0

NunmBounce = 0
XSpeed = XSpeed + SpeedUnit
YSpeed = YSpeed + SpeedUnit
End If
XDir = -XDir
Cal | Noi sePl ay(wavPaddl eHi t, SND_ASYNC)
End I f
Previ ous = Col i sion
End Sub

10-1

Learn Visual Basic 6.0

10. Other Visual Basic Topics

Review and Preview

In this last class, we look at a lot of relatively unrelated topics - a Visual Basic
playground. We'll cover lots of things, each with enough detail to allow you, as a
now-experienced Visual Basic programmer, to learn more about the topics that
interest you.

Custom Controls

A custom controlis an extension to the standard Visual Basic toolbox. You use
custom controls just as you would any other control. In fact, you've used (or at
least seen) custom controls before. The common dialog box, the DBList box,
the DBCombo box, and the DBGrid tool, are all examples of custom controls.
Custom controls can be used to add some really cool features to your
applications.

Custom controls are also referred to as ActiveX controls. ActiveX is a technology
newly introduced by Microsoft to describe what used to be known as OLE
Automation. Prior to Visual Basic 5.0, the only way to create your own controls
was to use C or C++. Now, with ActiveX technology, you can create your own
controls knowing only Visual Basic! Of course, this would be a course by itself
(and is).

To use a custom control, you must load it into the toolbox. To do this, choose
Components from the Visual Basic Project menu. The Components (custom
controls) dialog box is displayed.

10-2 Learn Visual Basic 6.0

Components | X]

Cantrals I Designersl Inzertable I:Il:uiectsl

[] Desaware Animated Bukkan Contral
[] olphin Systems dsSocket TCRYIP Contral
[FarPaint Spreadsheet Cantral

[MCTwnds Contral

[] Mediaview 1.41 Caonkral

[[] Message Blaster by Waretwithal, Inc,

[] MicraHelp Gauge Contral

[] MicroHelp Kev State Contral

[] MicraHelp Mh3dList Contral

[Microsoft Activer Layvout 1.0

[] Microsaft Chart Contral |

[] Micrasaft Comm Contral 5.0 - | EtasE.
41 i ' [Selected Ikems Only

—Zrystal Report Conkrol 4.6
Location: CHAMINMTISwstemIZVWCRYSTLIZ Ok

| (] 4 l Cancel | S |

To add a control, select the check box next to the desired selection. When done,
choose OK and the selected controls will now appear in the toolbox.

Each custom control has its own set of properties, events, and methods. The
best reference for each control is the Microsoft Visual Basic Component Tools
Guide manual that comes with Visual Basic 6.0. And, each tool also features on-
line help.

Here, we'll look at several custom controls and brief examples of their usage. And,
we'll give some of the more important and unique properties, events, and
methods for each. The main purpose here is to expose you to a few of these
controls. You are encouraged to delve into the toolbox and look at all the tools
and find ones you can use in your applications.

Other Visual Basic Topics 10-3

Masked Edit Control

3

The masked edit control is used to prompt users for data input using a mask
pattern. The mask allows you to specify exactly the desired input format. With a
mask, the control acts like a standard text box. This control is loaded by selecting
the Microsoft Masked Edit Control from the Components dialog box.

Possible uses for this control include:

a To prompt for a date, a time, number, or currency value.

a To prompt for something that follows a pattern, like a phone
number or social security number.

a To format the display and printing of mask input data.

Masked Edit Properties:

Mask

Text

Masked Edit Events:

Change
Validation Error

Determines the type of information that is input
into the control. It uses characters to define the
type of input (see on-line help for complete
descriptions).

Contains data entered into the control (including
all prompt characters of the input mask).

Event called when the data in the control changes.
Event called when the data being entered by the
user does not match the input mask.

10-4 Learn Visual Basic 6.0

Masked Edit Example:

We'll use the masked edit control to obtain a phone number. Place a masked
edit control on a form. Set the masked edit controls Mask property equal to:

(FHHEH) ettt A

Set the Font Size property to12. My form now looks like this:

. Forml Mi=1E3

Run the example and notice how simple it is to fill in the phone number. Break the
application and examine the Text property of the control in the Immediate Window.

Chart Control

L,

The chart control is an amazing tool. In fact, it's like a complete program in
itself. It allows you to design all types of graphs interactively on your form. Then,
at run-time, draw graphs, print them, copy them, and change their styles. The
control is loaded by selecting Microsoft Chart Control from the Components
dialog box.

Possible uses for this control include:

a Todisplay data in one of many 2D or 3D charts.
a To load data into a grid from an array.

Chart Control Properties:

ChartType Establishes the type of chart to display.

RandomfFill Used to fill chart with random values (good for
chcking out chart at designtime). Data is
normally loaded from a data grid object
associated with the chart control (consult on-line
help).

Other Visual Basic Topics 10-5

Obviously, there are many more properties used with the chart control. We
only look at these two to illustrate what can be done with this powerful
control.

Chart Control Examples:

Start a new application. Add a chart control to the form. A default bar graph will
appear:

&. Forml Mi=1E3

10-6 Learn Visual Basic 6.0

or obtain a fancy 3D chart by using a ChartType of 8:

&. Forml Mi=1E3

These few quick examples should give you an appreciation for the power and
ease of use of the chart control.

Multimedia Control
&

The multimedia control allows you to manage Media Control Interface (MCI)
devices. These devices include: sound boards, MIDI sequencers, CD-ROM
drives, audio players, videodisc players, and videotape recorders and players.
This control is loaded by selecting the Microsoft Multimedia Control from the
Components dialog box.

The primary use for this control is:
a To manage the recording and playback of MCI devices. This
includes the ability to play CD’s, record WAV files, and playback
WAV files.

When placed on a form, the multimedia control resembles the buttons you typically
see on aVCR:

F=IENEANE I E e =

You should recognize buttons such as Play, Rewind, Pause, etc.

Other Visual Basic Topics 10-7

Programming the Multimedia Control:

The multimedia control uses a set of high-level, device-independent commands,
known as MCI (media control interface) commands, to control various multimedia
devices. Our example will show you what these commands look like. You are
encouraged to further investigate the control (via on-line help) for further functions.

Multimedia Control Example:

We'll use the multimedia control to build a simple audio CD player. Puta
multimedia control on a form. Place the following code in the Form_Load Event:

Private Sub Form Load()

"Set initial properties

Forml. MMControl 1. Notify = Fal se

Forml. MMControl 1. WAit = True

FormL. MMCont r ol 1. Shareabl e = Fal se
FormL. MMCont r ol 1. Devi ceType = " CDAudi 0"
" Open the device

For mL. MMCont rol 1. Conmand = " Open”

End Sub

This code initializes the device at run time. If an audio CD is loaded into the CD
drive, the appropriate buttons on the Multimedia control are enabled:

This button enabling is an automatic process - no coding is necessary. Try
playing a CD with this example and see how the button status changes.

10-8 Learn Visual Basic 6.0

Rich Textbox Control

]
el

Therich textbox control allows the user to enter and edit text, providing more
advanced formatting features than the conventional textbox control. You can use
different fonts for different text sections. You can even control indents, hanging
indents, and bulleted paragraphs. This control is loaded by selecting the
Microsoft Rich Textbox Control from the Components dialog box.

Possible uses for this control include:

a Read and view large text files.
a Implement a full-featured text editor into any applications.

Rich Textbox Properties, Events, and Methods:

Most of the properties, events, and methods associated with the conventional
textbox are available with the rich text box. A major difference between the two
controls is that with the rich textbox, multiple font sizes, styles, and colors are
supported. Some unique properties of the rich textbox are:

FileName Can be used to load the contents of a .txt or .rtf file
into the control.

SelFontName Set the font name for the selected text.

SelFontSize Set the font size for the selected text.

SelFontColor Set the font color for the selected text.

Some unique methods of the rich textbox are:

LoadFile Open a file and load the contents into the control.
SaveFile Save the control contents into a file.
Rich Textbox Example:

Put a rich textbox control on a form. Put a combo box on the form (we will use this
to display the fonts available for use). Use the following code in the Form_Load
event:

Private Sub Form Load()

Dm1l As Integer

For I = 0 To Screen. Font Count - 1
Conbol. Addl t em Screen. Fonts(1)

Next |

Other Visual Basic Topics 10-9

End Sub

10-10 Learn Visual Basic 6.0

Use the following code in the Combol_ Click event:

Private Sub Conbol dick()
Ri chText Box1. Sel Font Name = Conbol. Text
End Sub

Run the application. Type some text. Highlight text you want to change the font
on. Go to the combo box and select the font. Notice that different areas within the
text box can have different fonts:

. Forml Mi=1 E3

This will just illustrate how you can
display different fonts in a rich text box
control

Times Eoman

Arial

Courler

Slider Control

The slider control is similar to a scroll bar yet allows the ability to select a range
of values, as well as a single value. This control is part of a group of controls
loaded by selecting the Microsoft Windows Common Controls from the
Components dialog box.

Possible uses for this control include:
a To set the value of a point on a graph.

a To select a range of numbers to be passed into an array.
a Toresize aform, field, or other graphics object.

Other Visual Basic Topics 10-11

Slider Control Properties:

Value Current slider value.

Min, Max Establish upper and lower slider limits.

TickFrequency Determines how many ticks appear on slider.

TickStyle Determines how and where ticks appear.

SmallChange Amount slider value changes when user presses
left or right arrow keys.

LargeChange Amount slider value changes when user clicks the
slider or presses PgUp or PgDn arrow keys.

SelectRange Enable selecting a range of values.

SelStart Starting selected value.

SelLength Length of select range of values.

Slider Control Example:

We'll build a slider that lets us select a range of number somewhere between the
extreme values of 0 to 100. Put two label boxes and a slider on a form:

& Forml =1 E3

Labell Label2

b —

Set the slider control SmallChange to 1, LargeChange to 10, Min to 0, Max to
100, TickFrequency to 10, and SelectRange to True. Use the following in the
Sliderl _MouseDown event:

Private Sub Sliderl MouseDown(Button As Integer, Shift
As Integer, x As Single, y As Single)
If Shift = 1 Then
Sliderl.Sel Start = Sliderl. Val ue
Label 1. Capti on = Sliderl. Val ue
Sliderl. Sel Length = 0
Label 2. Caption = ""
End |f
End Sub

10-12 Learn Visual Basic 6.0

and this code in the Sliderl_MouseUp event:

Private Sub Sliderl MouuseUp(Button As Integer, Shift As
Integer, x As Single, y As Single)
On Error Resune Next
If Shift = 1 Then
Sliderl. Sel Length = Sliderl.Value - Sliderl. Sel Start
Label 2. Caption = Sliderl. Val ue

El se

Sliderl. Sel Length = 0
End If
End Sub

Run the application. Establish a starting value for the selected range by moving
the slider to a desired point. Then, click the slider thumb while holding down the
Shift key and move it to the desired upper value.

Other Visual Basic Topics 10-13

Tabbed Dialog Control

[

The tabbed dialog control provides an easy way to present several dialogs or
screens of information on a single form using the same interface seen in many
commercial Windows applications. This control is loaded by selecting the
Sheridan Tabbed Dialog Control from the Components dialog box.

The tabbed dialog control provides a group of tabs, each of which acts as a
container (works just like a frame or separate form) for other controls. Only one
tab can be active at a time. Using this control is easy. Just build each tab
container as separate applications: add controls, set properties, and write code
like you do for any application. Navigation from one container to the next is
simple: just click on the corresponding tab.

Tabbed Dialog Control Example:

Start an application and put a tabbed dialog control on the form:

&. Forml Mi=1E3

TabG | Tabl | Tab2

Design each tab with some controls, then run the application. Note how each tab
in the folder has its own working space.

10-14 Learn Visual Basic 6.0

UpDown Control

1=

The updown control is a pair of arrow buttons that the user can click to
increment or decrement a value. It works with abuddy control which uses the
updown control’s value property. This control is part of a group of controls loaded
by selecting the Microsoft Windows Common Controls from the Components
dialog box.

UpDown Control Properties:

Value Current control value.

Min, Max Establish upper and lower control limits.

Increment Amount control value changes each time an arrow
is clicked.

Orientation Determines whether arrows lie horizontally or
vertically.

UpDown Control Events:

Change Invoked when value property changes.
UpClick Invoked when up arrow is clicked.
DownClick Invoked when down arrow is clicked.

UpDown Control Example:

We'll build an example that lets us establish a number between 1 and 25. Add a
updown control and a label box to a form. Set the updown control's Min property
to 1 and Max property to 25. The form should resemble:

& For... !HE

Labell :]

Use this simple code in the UpDown1_Change event, then give it a try:

Private Sub UpDownl Change()
Label 1. Capti on = UpDownl. Val ue
End Sub

Other Visual Basic Topics 10-15

Toolbar Control
=3

Almost all Windows applications these days use toolbars. A toolbar provides
quick access to the most frequently used menu commands in an application. The
toolbar control is a mini-application in itself. It provides everything you need to
design and implement a toolbar into your application. This control is part of a
group of controls loaded by selecting the Microsoft Windows Common
Controls from the Components dialog box.

Possible uses for this control include:

a Provide a consistent interface between applications with matching
toolbars.

a Place commonly used functions in an easily-accessed space.

a Provide an intuitive, graphical interface for your application.

To create a basic toolbar, you need to follow a sequence of steps. You
add buttons to a Button collection - each button can have optional text
and/or an image, supplied by an associated ImageList control (another
custom control). Buttons can have tooltips. In more advanced
applications, you can even allow your user to customize the toolbar to
their liking!

After setting up the toolbar, you need to write code for the ButtonClick
event. The index of the clicked button is passed as an argument to this
event. Since toolbar buttons provide quick access to already coded menu
options, the code in this event is usually just a call to the respective menu
item’s Click procedure.

Toolbar Control Example

We'll look at the simplest use of the toolbar control - building a fixed
format toolbar (pictures only) at design time. We'll create a toolbar with
five buttons: one to create anew file, one to open afile, one to save a
file, one to print a file, and one for help. Place a toolbar and imagelist
control on a form. Right click on the imagelist control to set the pictures to
be used. Using the Images tab, assign the following five images: Image
1 - NEW.BMP, Image 2- OPEN.BMP, Image 3 - SAVE.BMP, Image 4 -
PRINT.BMP, and Image 5 - HELP.BMP

10-16 Learn Visual Basic 6.0

When done, the image control should look like this:

Property Pages

General |mages I Color I

— Current Image

Indes: IE Eew I

Tag I

Images;

DEE&?

L

Bemove Picture | Irmage Count: !5

0. I Cancel I Al

Help

Click OK to close this box. Now, right mouse click on the toolbar control.
The Property Pages dialog box will appear. Using the General tab,
select the imagelist control just formed. Now, choose the Buttons tab to

define each button:

Property Pages

General Buttons I F'iu:turel

Indes: I1 __LI Inzert Button i Bemove Buttan |

LCaption: I| Description; I

v Wizible v Enabled [T MixedState

Eey: I Walue: IEI-tI:urLlnpressed L!
Style: IEI-tI:urDefauIt j “width: [Flacehalder] [[—I‘f-[l_‘
Tao: l
ToolTipT ext; l
Image: l[l

0. I Cancel Al

Help

Other Visual Basic Topics 10-17

A new button is added to the toolbar by clicking Insert Button. Ata
minimum, for each button, specify the ToolTipText property, and the
Image number. Values | used are:

Index ToolTipText Image
New File 1
Open File 2
Save File 3
Print File 4
-None- 0
Help me! 5

OO WNBE

Note button 5 is a placeholder (set Style property totbrPlaceholder) that puts

some space between the first four buttons and the Help button. When done, my
form looked like this:

. Forml Hi=1E3

sll==E=1EA

Save and run the application. Note the button’s just click - we didn’t write any
code (as mentioned earlier, the code is usually just a call to an existing menu
item’s click event). Check out how the tool tips work.

Quick Note on Tooltips:
Many of the Visual Basic controls support tooltips to inform the user of what a

particular control. Simply set individual control's ToolTipText property to a non-
blank text string to enable this capability.

10-18 Learn Visual Basic 6.0

Using the Windows Clipboard
The Clipboard object has no properties or events, but it has several methods that
allow you to transfer data to and from the Windows clipboard. Some methods
transfer text, some transfer graphics.
A method that works with both text and graphics is the Clear method:

Clipboard.Clear Clear the clipboard contents.

To move text information to and from the clipboard, use the SetText and GetText
methods:

Clipboard.SetText Places text in clipboard.
Clipboard.GetText Returns text stored in clipboard.

These methods are most often used to implement cutting, copying, and pasting
operations.

To move graphics to and from the clipboard, use the SetData and GetData
methods:

Clipboard.SetData Places a picture in clipboard.
Clipboard.GetData Returns a picture stored in clipboard.

When using the clipboard methods, you need to know what type of data you are
transferring (text or graphics). The GetFormat method allows that:

Clipboard.GetFormat(datatype) Returns True if the clipboard contents are
of the type specified by datatype.

Possible datatypes are:

Type Value Symbolic Constant
DDE conversation info HBFOO vbCFLink

Rich text format HBFO1 vVvbCFRTF

Text 1 VbCFText

Bitmap 2 vbCFBitmap
Metafile 3 vbCFMetafile
Device-independent bitmap 8 vbCFDIB

Color palette 9 vbCFPalette

Other Visual Basic Topics 10-19

Printing with Visual Basic

Any serious Visual Basic application will need to use the printer to provide the
user with a hard copy of any work done or results (text or graphics) obtained.
Printing is one of the more complex programming tasks within Visual Basic.

Visual Basic uses two primary approaches to printing text and graphics:

P You can produce the output you want on a form and then print the entire
form using the PrintForm method.

P You can send text and graphics to the Printer object and then print
them using the NewPage and EndDoc methods.

We'll look at how to use each approach, examining advantages and
disadvantages of both. All of these techniques use the system default printer.
You can also select a printer in Visual Basic, but we won't look at that here.

The PrintForm method sends a pixel-by-pixel image of the specified form to the
printer. To print, you first display the form as desired and via code invoke the
command: PrintForm. This command will print the entire form, using its selected
dimensions, even if part of the form is not visible on the screen. If a form contains
graphics, they will be printed only if the form’s AutoRedraw property is True.

The PrintForm method is by far the easiest way to print from an application. But,
graphics results may be disappointing because they are reproduced in the
resolution of the screen, not the printer. And small forms are still small when
printed.

PrintForm Example:

Start a new application. Put an image box on the form. Size it and set the
Stretch property toTrue. Set the Picture property to some picture (metafiles are
best, you choose). Add a label box. Put some formatted text in the box. My form
looks like this:

Mi=1 E3
Here is

some text!

10-20 Learn Visual Basic 6.0

Add this code to the Form_Click event:

Private Sub Form d i ck()
Print Form
End Sub

Run the application. Click on the form (not the image or label) and things should
print. Not too hard, huh?

Using the Printer object to print in Visual Basic is more complicated, but usually

provides superior results. But, to get these better results requires a bit (and, at
times, more than a bit) of coding.

The Printer object is a drawing space that supports many methods, like Print,
PSet, CurrentX, CurrentY, Line, PaintPicture (used to print contents of Picture
boxes), and Circle, to create text and graphics. You use these methods just like
you would on a form. When you finish placing information on the Printer object,
use the EndDoc method to send the output to the printer. The NewPage method
allows printing multi-page documents.

The Printer object also has several properties that control print quality, page size,
number of copies, scaling, page numbers, and more. Consult Visual Basic on-
line help for further information.

The usual approach to using the Printer object is to consider each printed page to
be a form with its own coordinate system. Use this coordinate system and the
above listed methods to place text and graphics on the page. When complete,
use the EndDoc method (or NewPage method if there are more pages). At that
point, the page will print. The main difficulty in using the Printer object is planning
where everything goes. | usually use the Scale method to define an 8.5” by 11”
sheet of standard paper in 0.01” increments:

Printer.Scale (0, 0) - (850, 1100)

| then place everything on the page relative to these coordinates. The example
illustrates the use of a few of these techniques. Consult other Visual Basic
documentation for advanced printing techniques.

Other Visual Basic Topics 10-21

Printer Object Example:

In this example, we’'ll first define a standard sheet of paper. Then, we’'ll use the
Line method to draw a box, the Circle method to draw a circle, and the Print
method to ‘draw’ some text. Start a new application. We don’t need any controls
on the form - all the printing is done in the Form_Click procedure.

Private Sub Form dick()

Printer. Scale (0, 0)-(850, 1100)
Printer.Line (100, 100)-(400, 300), , B
Printer.Crcle (425, 550), 300
Printer.Current X = 100

Printer. Current Y= 800

Printer.Print "This is sone text."
Printer. EndDoc

End Sub

A few words on each line in this code.
First, we establish the printing area to
be 850 units wide by 1100 units long.
This allows us to place items on a
standard page within 0.01 inches.
Next, we draw a box, starting 1 inch
from the left and 1 inch from the top,
that is 3 inches wide and 2 inches
high. Then, a circle, centered at mid-
page, with radius of 3 inches is
drawn. Finally, a line of text is printed
near the bottom of the page. The
EndDoc method does the printing for
us. The printed page is shown to the
right.

Run the application. Click the form to start the printing. Relate the code to the
finished drawing.

The best way to learn how to print in Visual Basic is to do lots of it. You'll develop
your own approaches and techniques as you gain familiarity. Use FormPrint for
simple jobs. For detailed, custom printing, you'll need to use the Printer object.

10-22 Learn Visual Basic 6.0

Multiple Form Visual Basic Applications

All applications developed in this class use a single form. In reality, most Visual
Basic applications use multiple forms. The Aboutwindow associated with
most applications is a common example of using a second form in an application.
We need to learn how to manage multiple forms in our projects.

To add a form to an application, click the New Form button on the toolbar or
select Form under the Insert menu. Each form is designed using exactly the
same procedure we always use: draw the controls, assign properties, and write
code. Display of the different forms is handled by code you write. You need to
decide when and how you want particular forms to be displayed. The user always
interacts with the ‘active’ form.

The first decision you need to make is to determine which form will be your
startup form. This is the form that appears when your application first begins.
The startup form is designated using the Project Properties window, activated
using the Visual Basic Project menu:

'Startup Form

Projectl - Project Properties

General ! take | Eu:umpilel Eu:umpu:unentl

Project Type: Skartup Chjeck:

St andard EAE |Form1]
Project Name:
IF‘ru:ujeu:tl
Project Help
Help File Mame:; Context ID:
| [C—

Project Descripkion;

= Unathended Exeritiang

W Upgrade Activey Cantrols 0 Thitead per Objecs

I Reqlite license ey £ Tirea Fool |.' 5; thireams

(] I Cancel I Help

Other Visual Basic Topics 10-23

As mentioned, the startup form automatically loads when your application is run.
When you want another form to appear, you write code to load and display it.
Similarly, when you want a form to disappear, you write code to unload or hide it.
This form management is performed using various keywords:

Keyword Task

Load Loads a form into memory, but does not display it.

Show vbModeless Loads (if not already loaded) and displays a modeless
form (default Show form style).

Show vbModal Loads (if not already loaded) and displays a modal
form.

Hide Sets the form’s Visible property to False. Form
remains in memory.

Unload Hides a form and removes it from memory.

A modeless form can be left to go to other forms. Amodal form must be closed
before going to other forms. The startup form is modeless.

Examples

Load Form1l ‘ Loads Form1 into memory, but does not display it
Form1.Show ‘ Loads (if needed) and shows Form1 as modeless
Form1.Show vbModal ‘ Loads (if needed) and shows Form1 as modal.
Form1.Hide * Sets Form1's Visible property to False

Hide ‘ Hides the current form

Unload Forml * Unloads Forml1 from memory and hides it.

Hiding a form allows it to be recalled quickly, if needed. Hiding a form retains any
data attached to it, including property values, print output, and dynamically created
controls. You can still refer to properties of a hidden form. Unload a form if it is
not needed any longer, or if memory space is limited.

If you want to speed up display of forms and memory is not a problem, it is a good
idea to Load all forms when your application first starts. That way, they are in
memory and available for fast recall.

10-24 Learn Visual Basic 6.0

Multiple Form Example:

Start a new application. Put two command buttons on the form (Form1). Set
one’s Caption to Display Form2 and the other’s Caption to Display Form3.
The form will look like this:

. Forml

Dizplay Farm3 |

Attach this code to the two command buttons Click events.

Private Sub Commandl _Cli ck()
For n2. Show vbMbdel ess
End Sub

Private Sub Command2 d i ck()
For n8. Show vbMbdal
End Sub

Add a second form to the application (Form2). This form will be modeless.
Place a command button on the form. Setits Caption to Hide Form.

Atta ch this code to the button’s Click event.

Private Sub Commandl d i ck()
Forn2. Hi de

For mlL. Show

End Sub

Other Visual Basic Topics 10-25

Add a third form to the application (Form3). This form will be modal. Place a
command button on the form. Set its Caption to Hide Form.

. Form3

Attach this code to the button’'s Click event.

Private Sub Commandl Cli ck()
For n8. Hi de

For mL. Show

End Sub

Make sure Forml is the startup form (check the Project Properties window
under the Project menu). Run the application. Note the difference between

modal (Form3) and modeless (Form2) forms.

10-26 Learn Visual Basic 6.0

Visual Basic Multiple Document Interface (MDI)

In the previous section, we looked at using multiple forms in a Visual Basic
application. Visual Basic actually provides a system for maintaining multiple-form
applications, known as the Multiple Document Interface (MDI). MDI allows you
to maintain multiple forms within a single container form. Examples of MDI
applications are Word, Excel, and the Windows Explorer program.

An MDI application allows the user to display many forms at the same time. The
container window is called the parent form, while the individual forms within the
parent are the child forms. Both parent and child forms are modeless, meaning
you can leave one window to move to another. An application can have only one
parent form. Creating an MDI application is a two-step process. You first create
the MDI form (choose Add MDI Form from Project menu) and define its menu
structure. Next, you design each of the application’s child forms (set MDIChild
property to True).

Design-Time Features of MDI Child Forms:

At design time, child forms are not restricted to the area inside the parent form.
You can add controls, set properties, write code, and design the features of child
forms anywhere on the desktop.

You can determine whether a form is a child by examining its MDIChild property,
or by examining the project window. The project window uses special icons to
distinguish standard forms, MDI child forms, and MDI parent forms:

4 Project - Projectl Bi=lEl
== '

=I-E5# Project1 (Project1)
Standard form —4__ =-&3 Forms

5 Forml (Forml)
bt oW 0111 (Formez)

Child form

Parent form —]

Run-Time Features of MDI Child Forms:

At run-time, the parent and child forms take on special characteristics and
abilities. Some of these are:

1. Atrun-time all child forms are displayed within the parent form’s internal
area. The user can move and size child forms like any other form, but
they must stay in this internal area.

Other Visual Basic Topics 10-27

. When a child is minimized, its icon appears on the MDI parent form
instead of the user’s desktop. When the parent form is minimized, the
entire application is represented by a single icon. When restored, all
forms are redisplayed as they were.

. When a child form is maximized, its caption is combined with the
parent form’s caption and displayed in the parent title bar.

. By setting the AutoShowChildren property, you can display child
forms automatically when forms are loaded (True), or load child forms
as hidden (False).

. The active child form’s menus (if any) are displayed on the parent
form’s menu bar, not the child form.

. New child forms can be created at run-time using a special fo rm of the
Dim statement and the Show statement (the example illustrates this

process).

. The parent form’s ActiveForm property indicates which child form is
currently active. The ActiveControl property indicates which control on
the active child form has focus.

. The Arrange command can be used to determine how the child forms
and their icons (if closed) are displayed. The syntax is:

Arrange style

where style can take on these values:

Style Symbolic Constant Effect

0 vbCascade Cascade all nonminimized MDI
child forms.

1 vbTileHorizontal Horizontally tile all nonminimized
MDI child forms.

2 vbTileVertical Vertically tile all nonminimized MDI
child forms.

3 vbArrangelcons Arrange icons for minimized MDI

child forms.

10-28 Learn Visual Basic 6.0

Multiple-Document Application (MDI) Example:

We'll create an MDI application which uses a simple, text box-based, editor as the
child application. There are a lot of steps, even for a simple example. Start a new
application. Create a parent form by selecting MDI Form from the Insert menu.
At this point, the project will contain an MDI parent form (MDIForm1) and a
standard form (Form1) which we will use as a child form. Make MDIForm1 the

startup form. We work with the parent form first:

1. Set the following properties:

Caption MDI Example
Name frmParent
WindowState 2-Maximized

2. Set up the following menu structure:

Caption Name

&File mnuFile

&New mnuFileNew
&Arrange mnuArrange
&Cascade mnuArrangeltem
&Horizontal Tile mnuArrangeltem
&Vertical Tile mnuArrangeltem

&Arrange Icons mnuArrangeltem

3. Attach this code to the mnuFileNew_Click procedure. This code

Indented

No

Yes

No

Yes Index=0
Yes Index=1
Yes Index=2
Yes Index=3

creates new child forms (named frmChild - developed next).

Private Sub mmuFil eNew C i ck()

Di m NewDoc As New frnChild
NewDoc. Show
End Sub

4. Attach this code to the mnuArrangeltem_Click procedure. This
establishes how child forms are displayed.

Private Sub muArrangeltem Cick(lndex As

I nt eger)
Arrange | ndex
End Sub

Other Visual Basic Topics 10-29

Now, we'll work with FormZ1 which will hold the child application:

5. Draw a text box on the form. Set the following properties for the form
and the text box:

Form1:
Caption Child Form
MDIChild True
Name frmChild
Visible False
Textl:
Left 0
MultiLine True
ScrollBars 2-Vertical
Text [Blank]
Top 0

My form resembles this:

M Child Form [_ [O]x]

"

6. Attach this code to the Form_Resize procedure. This insures that
whenever a child window is resized, the text box fills up the entire
window.

Private Sub Form Resi ze()
Text 1. Hei ght = Scal eHei ght
Text1l. Wdth = Scal eWdth
End Sub

Run the application. Create new forms by selecting New from the File
menu. Try resizing forms, maximizing forms (notice how the parent form
title bar changes), minimizing forms, closing forms. Try all the Arrange
menu options.

10-30 Learn Visual Basic 6.0

Creating a Help File

During this course, we’ve made extensive use of the Visual Basic on-line help
system. In fact, one of the major advances in software in the past few years has
been improvements in such interactive help. Adding a help file to your Visual

Basic application will give it real polish, as well as making it easier to use.

Your help file will contain text and graphics information needed to be able to run
your application. The help file will be displayed by the built-in Windows help utility
that you use with every Windows application, hence all functions available with that
utility are available with your help system. For example, each file can contain one
or more topics that your user can select by clicking a hot spot, using a keyword
search, or browsing through text. And, it's easy for your user to print any or all
help topics.

Creating a complete help file is a major task and sometimes takes as much time
as creating the application itself! Because of this, we will only skim over the steps
involved, generate a simple example, and provide guidance for further reference.

There are five major steps involved in building your own help file:

1. Create your application and develop an outline of help system
topics.

Create the Help Text File (or Topic File) in RTF format.

Create the Help Project File (HPJ).

Compile the Help File using the Help Compiler and Project File.
Attach the Help File to your Visual Basic application.

akwn

Step 1 is application-dependent. We'll look briefly at the last four steps here.
More complete details, including formatting and file structure requirements, are
available in many Visual Basic references..

Creating a Help Text File:

To create a Help Text File, you need to use a word processor capable of saving
documents in rich-text format (RTF). Word and WordPerfect do admirable jobs.
You must also be familiar with text formatting procedures such as underlining,
double-underlining, typing hidden text, and using footnotes. This formatting is
used to delineate different parts of the help file. You should make sure all
formatting options are visible when creating the Help Text File.

Other Visual Basic Topics 10-31

The Help Text File is basically a cryptically encoded list of hypertext jumps (jump
phrases) and context strings. These are items that allow navigation through the
topics in your help file. Some general rules of Help Text Files:

Topics are separated by hard page breaks.

Each topic must have a unique context string.

Each topic can have a title.

A topic can have many keywords attached to it to enable quick

access utilizing a search facility.

* Topics can have build-tag indicators and can be assigned a browse
seqguence.

* Jumps can be to another secondary window or to another file.

* X * F

Once completed, your Help Text File must be saved as an RTF file.
Help Text File Example:

We'll create a very simple help text file with three topics. | used Word 6.0 in this
example. Create a document with the following structure and footnotes:

& Microsoft Word - SIMPLE.DOC

@Eile Edit Miews Insert Fomat Toolz Table Window Help il
NEEEREBEREE R R E] EEE
[Nommal =] [Arial _|| |14 JHB IIUI.:

’“Slmple Help Table of ContentSﬂ

1

Help-topicsy

B MHJ.D_T.QE?JQ.’!.ﬂ
2y

sy

Page Break

#kHelp-Topic-11

Thisisthetext for help-topic- number one

Page Break
#*Help-Topic-27
?his-is-the-tex’[-for- help-topic- number-two v
Page Break
#HHelp-Topic-37 <
EEE LlJ

[Page 1 Sec 1 14 [AE 1" Ln1 Coll | 342PM [FEC |

10-32 Learn Visual Basic 6.0

Some things to note: Topicl and Topic3 (hypertext jumps) are double-
underlined to indicate clickable jumps to topics. Topic2is single-underlined to
indicate a jump to a pop-up topic. The words HID_TOPIC1, HID_TOPIC2, and
HID_TOPIC3 (context strings) are formatted as hidden text. Note page breaks
separate each section. Do not put a page break at the end of the file.

Also, note the use of footnotes. The # footnote is used to specify a Help context
ID, the $ provides Topic Titles for searching, and K yields search keywords. The
footnotes for this example are:

4 Microsoft Word - SIMPLE.DOC

‘@Eile Edit Miews Insert Fomat Tools Table Window Help

DI=R) Sla]v] [+ [SlE)) (o~ [o -] (2] ==

[Footnote Text =] [Asial o [B]z]u] ==
@"'2'3"‘j|

*$Simple-Help-Table-of-Contentsy =
IAII Footnotes jJ Qlosel ﬂ

A.HID_COMTENTST

$ SIMPLE-Help-ContentsT
AHID_TORIC1Y

£ SIMPLE-Help-Tapic-11
E-SIMPLE-Topics
AHID_TORIC2Y

£ SIMPLE-Help-Topic-2q
K-SIMPLE-TopicsT
AHID_TORIC3Y

£ SIMPLE-Help-Topic-31

KSIMPLE-Topics -
=E[=]«] | 3|

| Page 1 Sec 1 1/4 [st Lh Col 1 [zoPM [REC |

When done, save this file as SIMPLE.RTF (Rich Text Format).
Creating the Help Project File:

The Help Project File contains the information required by the Help Compiler to
create the Help file. The file is created using any text editor and must be saved as
unformatted text (ASCII). The file extension is HPJ.

The Help Project File can contain up to nine sections, each of which supplies
information about the source file to compile. Sections names are placed within
square brackets []. Semicolons are used to indicate a comment. Sections can

be in any order. The sections are:

[OPTIONS] Specifies options for build (optional).

[FILES] Specifies Help Text Files (RTF) (required).
[BUILDTAGS] Specifies any build tags (optional).

[CONFIG] Author defined menus, macros, etc. (optional)

Other Visual Basic Topics 10-33

[BITMAPS] Specifies any bitmaps needed for build.

[ALIAS] Can be used to specify context strings to topics (optional).

[MAP] Associates context strings with numbers. Used with context-
sensitive help (optional).

[WINDOWS] Defines primary and secondary windows (required only if
secondary windows used).

[BAGGAGE] Lists files to be included in HLP file.

Help Project File Example:
For our simple example, the Help Project File is equally simple:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
[FILES]

SIMPLE.RTF

This file specifies the context ID of the Table of Contents screen and the name of
the RTF file that contains the help text. Save this file as SIMPLE.HPJ (in Text, or

ASCII format).
Compiling the Help File:

This is the easiest step. The help compiler is located in thec:\Program
Files\DevStudio\vb\hc directory and is the program hc.exe. Your file is
compiled within the DOS window. Once in that window, move to the directory
containing your HPJ file and type:

c\Program Files\DevStudio\vb\hc\hc filename.HPJ

where filename is your Help Project File. This process generates a binary help
resource file and may take a long time to complete. Any errors are probably due
to problems in the RTF file(s). The created file has the same name as your Help
Project File with an HLP extension.

Help File Example:
To compile the example, at a DOS prompt, type:
c:\Program Files\DevStudio\vb\hc\hc SIMPLE.HPJ

The help file SIMPLE.HLP will be created (if no errors occur) and saved in the
same directory as your HPJ file.

10-34 Learn Visual Basic 6.0

Attaching the Help File:

The final step is to attach the compiled help file to your application. As a first
step, open the Project Properties window under the Project menu. Under Help
File, select the name of your HLP file by clicking the ellipsis (...). This ties the help
file to the application, enabling the user to press F1 for help.

You can also add a Help item somewhere in your menu structure that invokes help
via its Click event. If you do this, you must write code to invoke the help file. The
code involves a call to the Windows API function, WinHelp. But, after last class,
we’re not daunted by such functions, are we? First, we need the function
declaration (from the API Text Viewer):

Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal hwnd
As Long, ByVal IpHelpFile As String, ByVal wCommand As Long,
ByVal dwData As Long) As Long

We also need a constant (also from the API Text Viewer):
Const HELP_INDEX = &H3 " Display index

This constant will declare the Help files index page upon invocation of WinHelp.
There are other constants that can be used with WinHelp - this is just a simple
example. The Declare statement and constant definitions usually go in the
general declarations area of a code module and made Public. If you only have
one form in your application, then put these statements in the general declarations
area of your form (and declare them Private). Once everything is in-place, to
invoke the Help file from code, use the function call:

Dim R As Long

R = WinHelp(startupform.hwWnd, filename . HLP, HELP_INDEX, CLng(0))

where startupform is the name of your application main form and filename is the
help file name, including path information.

Other Visual Basic Topics 10-35

Help File Example:

We can now try our example help file in a Visual Basic application. We’ll only use
the F1 option here. Start a new application. Bring up the Project Properties
window via the Project menu. Select the correct Help File by clicking the ellipsis
and finding your newly created file. Click OK. Now, run your application (I know
there’s nothing in the application, but that's all right). Once, it's running press F1.
This Help screen should appear:

<% SIMPLE Application Help M= 3
File Edit Bookmark Option: Help
Enntentsl Search | Bk | FErrint |

Simple Help Table of Contents

Help topics

Move the mouse cursor to Topic1 and notice the cursor changes to a hand. Click
there and the corresponding Topic 1 screen appears:

<% SIMPLE Application Help M= 3
File Edit Bookmark Option: Help
Euntentsl Search | Back | Frrirt |

Help Topic 1

This is the text for help topic number ane.

The HID_TOPIC1 text in the Table of Contents screen links to the corresponding
context ID (the # footnote) in the topic page. This link is a jump. The link to Topic
2 is a pop-up jump, try it and you'll see.

10-36 Learn Visual Basic 6.0

Go back to the Table of Contents screen and click the Search button. A dialog
box displaying the help file’s list of keywords appears. In our example, the three
topics all have the same keyword (the K footnotes), SIMPLE Topics. When you
double-click on this keyword, you see all the associated topic titles (the $
footnotes):

Topics Found EE |

Click a topiz, then click Display.

: elp Topic 1
SIMPLE Help Topic 2
SIMPLE Help Topic 3

Dhigplay I Cancel

You can now select your topic of choice.
More Help File Topics:

Atter all this work, you will still only have a simple help file, nothing that rivals those
seen in most applications. To improve your help system, you need to add some
more stuff. Information on these advanced help topics is found in many Visual

Basic references.

A big feature of help systems is context-sensitive help. With this, you place the
cursor on or in something your interested in knowing about and press F1. A Help
topic, if one exists, shows up. The application is smart enough to know what you
want help with. Graphics always spiff up a help system. Help systems use a
special type of graphics called hypergraphics. Lastly, Help macros add
functionality to your help system. There are over 50 macro routines built into the
DLL WinHelp application.

If, after seeing the rather daunting tasks involved in creating a help system, you
don’t want to tackle the job, take heart. There are several third party software
packages that assist in help system authoring and development. Look at
computer magazine advertisements (especially the Visual Basic Programmer’s
Journal) for potential leads.

Other Visual Basic Topics 10-37

Class Summary

That's all | know about Visual Basic. You should now have a good breadth of
knowledge concerning the Visual Basic environment and language. This breadth
should serve as a springboard into learning more as you develop your own

applications. Feel free to contact me, if you think | can answer any questions you
might have.

Where do you go from here? With Visual Basic 6.0, you can extend your
knowledge to write Web-based applications, develop massive database front-
ends using Visual Basic’s powerful database tools and techniques, and even
develop your own ActiveX (custom) controls. Other classes cover such topics.
And, the last example:

Final Application E

@ Do wou really want bo exit?

10-38 Learn Visual Basic 6.0

Exercise 10

The Ultimate Application

Design an application in Visual Basic that everyone on the planet wants to buy. Draw
objects, assign properties, attach code. Thoroughly debug and test your application.
Create a distribution disk. Find a distributor or distribute it yourself through your
newly created company. Become fabulously wealthy. Remember those who made it
all possible by rewarding them with jobs and stock options.

My Solution:

Still working on it ...

Other Visual Basic Topics 10-39

This page intentionally not left blank. ||

Learn Visual Basic 6.0

Appendix I. Visual Basic Symbolic Constants

Contents
AlIGNMENT CONSTANTS ..o re s -4
AlIGN PIOPEITY ...ttt -4
F [T 0 4= 1 B 1] 0 T= 4 Y2 -4
Border Property CONSIANTS.........ccvciiieee et -4
BorderStyle Property (FOIM) ... -4
BorderStyle Property (Shape and LiNe)........cccevveveeresinereese e -4
Clipboard Object CONSIANES...........cccceiiiiiiceerie e -5
(©70] (0] g 00 1S3 = 1 7SR -5
(0] (o] £ SR I-5
SYSIEM COIOIS ...ttt se et et e e e e eneereerenns I-5
(@0] 1101l ©0] 015171 o1 1S3OS -6
(©70] 101 00] =70) q @0 1 1 (o] SRR -6
TS0 T0) e @0 i o) S -6
Yo (0] 1] S T= T @ o o] (o S -6
SNAPE CONIIOL.....eeiiirieete bbb -7
(D= 1r= W 010 010l O0] 0 1S] =1 g1 £ -7
Error EVENE CONSLANTS.......ccciiiiiieiieiecie et nne e -7
EditMode Property CONSIANTS..........c.ciireererieeseee e -7
Options Property CONSLANTSccccuierereriresereeseeesesesseseseseseesaeeesesseesessessessesses -7
Validate Event ACtION CONSEANEScc.coceeiiiicecece e -8
Beginning-of-File CONSLaNTS...........cccciiiiiice e -8
ENd -Of-File CONSLANISc.oieeececereees e -8
Recordset-Type CONSLANLS..........cccovvereeierirerieieeese e I8
(D2 (S @0 153 = T | £ PR (28]
firstdayofweek Argument VAIUES ..o 19
firstweekofyear Argument ValUES............ccccevveieeceensiseceessese et sesns 9

RETUIM I VAIUES ...ttt e e e e et e e e e e et e e e eaaneeeaessaansnnaeeseesanannes 9

[-2 Learn Visual Basic 6.0

DBGIid CONrol CONSTANIS........cciuierieirieisiee st sae s -9
AlIGNMENT CONSEANTS ..o e reeneas 19
BOrderStyle CONSIANTSccoeirieiririereiseese e l-10
DataMode CONSLANTS ..ot l-10
DividerStyle CONSIANESccccveiieeeeece e l-10
ROWDIVIAErStyle CONSLANTS........cocererirereeere e nneas l-10
SCrOll Bar CONSIANTScieeeeeiesieseieeee et sse e esesreneenens l-20

DDE CONSLANTS.......c.ceiiiierieeieeeste st e s ssesnesse s e e neessesse e e e eeneesesneneas 11
liNKerr (LINKEITOr EVENL)ccoiiiececesie ettt 11
LinkMode Property (Forms and ControlS)c.cccoeerrenninncnseneseneeseeee 11

Dir, GetAttr, and SEtALr CONSIANTScccvriririrereere e 11

Drag-and-Drop CONSLANTS..........ccoiiieiiiiciesie e 12
DragOVer EVENL ..o 12
D= To 1Y/ [=11 T0To I (@Xo g1 1 0] S I 12
D= o |\Y (oo [l o o] 0= RS 12

Drawing CONSEANTSc.coueirieirieierieiesi ettt 12
DraWMOUOE PrOPEITY.....cciuiirieerieerieieses sttt st 12
DrawStyle PrOPEIYcccuiiieieieieee ettt st st st a e nesre e l-13

FOIM CONSLANTS ...ttt e e b e e e b e s neenreennas 13
SNOW Parameters.........ccoviieeieese et 13
Arrange Method for MDI FOIMSccceiiiiieceeese e sae e e 13
WINAOWSTALE PIOPEITYccviceeeeeeeecececete ettt 13

GraphiCS CONSIANTS.......ccciueerieireeirieise et b e s e l-14
1R Y Lo (0] 01T /R l-14
Yotz 11V [0 (Sl (0] o1=T g YOS l-14

(€11T0 M O] a1 0]l O] 1151 7= g | KIS l-14
ColAlignment, FixedAlignment Propertiesccceerrerrennenseneseseseseeeneee 14
1R Y L= (0] 01T /P l-14

HEIP CONSIANTS ...ttt st e a e nesaeneas l-15

KeY COUE CONSIANTSceieiuirieiirieiesesie ettt se e sne s l-15
[V O Lo =S l-15
KEYA TRIoUGN KEYZ ...t s l-16
KeyO Through KEYO ...ttt 17
Keys on the NUMEeric KEYPaAUd...........ccocevueeeerereieeeee e 17
FUNCHON KBYS ...ttt s l-18

Menu Accelerator CONSLANTS.........cuvereereririerieese e see e seseeennens I-18

Menu CONtrol CONSEANTSccucvueeeereriereeeee e aesseneenens 22
PopupMenu Method AlIGNMENL..........ccceiiieiceeeee e [-22

PopupMenu Mouse Button ReCOgNIIONccccecueeeeiieiece e [-22

Visual Basic Symbolic Constants -3

MiISCEllaNEOUS CONSIANTS.......ccvevirerieririeirieesie ettt neas l-22
ZOrder MENOU. ..ot st 22
QueryUnload MENOM ... 22
Shift Parameter MASKS ..o [-22
Button Parameter MasKS...........ccvirrinnienniseesieesis s l-23
APPIICAtioN STAM MOTE ..o l-23
LoadResPicture Method............cccviiiereierese e l-23
ChECK VAIUE.......cceieee ettt l-23

MOUSE POINEr CONSLANTScoviiiiieeeirie ettt l-24

MSOBOX CONSLANTScovevieeieiriisest et n e nesn e eneas I-25
MSQOBOX AIQUIMENTSoiuiiiiieiiiesiee ettt sbe b be et sreense e b nes I-25
MSQGBOX RELUIM VAIUEScoviiiciiceeese sttt s l-25

OLE Container Control CONSLANTS........ccceceeirererieireseseseeesseseeseesese e seesesessessesenss l-25
(O]I Y/ oL o 0] 0= 4 S RSPPRR 25
OLETYPEAIIOWED PrOPEITYceeveeeeeeeie ettt l-26
UpdateOptioNS PrOPEITY........cururiiririeirieesieesiee et l-26
AULOACTVALE PrOPEITYc.eiviiiieirieeriee st l-26
TP \Y (oo [o o] 0= g YOS l-26
DISPIAYTYPE PrOPEIMY......cciiieeiteceeesie ettt eneene e 27
Updated EVENt CONSIANTS.........coiriiirieiieerie et l-27
Special VerD ValUES ...t e 27
Verb Flag Bit MASKS ...ttt l-28
VBTranslateColor/OLETranslateColor Constants...........ccoceeeeveevenenesesnsennennes l-28

Picture ODbJECt CONSLANTS........ccccieeeeeeereeeeee et e e se s seenes l-28

Printer ObJECt CONSLANTS.........ccccoiiiiiseeeere et reneneas l-29
PHNtEr COlOr MOE......cceieieeeeeeee e s l-29
DUPIEX PIINTING ...ttt l-29
Printer OMENTALIONcvieeeirieirecrie ettt l-29
PNt QUANILY ...t e b e e e e reneas l-29
PaPEIBIN PrOPEIMY.....cccuiiiieirieisie ettt l-29
e 101 S P I ed (0] 0 1= 1 /RSN l-30

RASIEINOP CONSTANTS.....ccviiiiiie et r e be s e esesae e 31

SNEI CONSTANTSot se e e se e nsenenees l-32

SEICONV CONSLANTS ... nn e I-33

Variant TYPe CONSIANTScceieiieiecie st eennennas I-33

VaITYPE CONSLANTS.c.eiuiiiieeeeeres e I-34

-4 Learn Visual Basic 6.0

Alignment Constants

Align Property

Constant Value
vbAlignNone 0
vbAlignTop 1
vbAlignBottom 2
vbAlignLeft 3
vbAlignRight 4
Alignment Property

Constant Value
vbLeftJustify 0
vbRightJustify 1
vbCenter 2

Border Property Constants

BorderStyle Property (Form)

Constant Value
vbBSNone 0
vbFixedSingle 1
vbSizable 2
vbFixedDouble 3

BorderStyle Property (Shape and Line)

Constant Value
vbTransparent
vbBSSolid
vbBSDash
vbBSDot
vbBSDashDot
vbBSDashDotDot
vbBSiInsideSolid

OO0 WNEFLO

Description

Size and location set at design
time or in code.

Picture box at top of form.
Picture box at bottom of form.
Picture box at left of form.
Picture box at right of form.

Description
Left align.
Right align.
Center.

Description

No border.

Fixed single.

Sizable (forms only)
Fixed double (forms only)

Description
Transparent.
Solid.

Dash.

Dot.
Dash-dot.
Dash-dot-dot.
Inside solid.

Visual Basic Symbolic Constants -5

Clipboard Object Constants

Constant
vbCFLink
VbCFRTF
vbCFText
vbCFBitmap
vbCFMetafile
vbCFDIB
vbCFPalette

Color Constants

Colors
Constant
vbBlack
vbRed
vbGreen
vbYellow
vbBlue
vbMagenta
vbCyan
vbWhite

System Colors
Constant
vbScrollBars
vbDesktop
vbActiveTitleBar

vblnactiveTitleBar

vbMenuBar
vbWindowBackground
vbWindowFrame
vbMenuText
vbWindowText
vbTitleBarText

vbActiveBorder
vblnactiveBorder

vbApplicationWorkspace

Value

OxBFO00
OxBFO01

OO0 WwWNBE

Value
0x0

OxFF
OxFFO00
OxXFFFF
O0xFF0000
OxFFOOFF
OxFFFFOO
OXFFFFFF

Value

0x80000000
0x80000001
0x80000002

0x80000003

0x80000004
0x80000005
0x80000006
0x80000007
0x80000008
0x80000009

0x8000000A
0x8000000B
0x8000000C

Description

DDE conversation information.
Rich Text Format (.RTF file)
Text (.TXT file)

Bitmap (.BMP file)

Metafile (WMF file)
Device-independent bitmap.
Color palette.

Description
Black.

Red.

Green.
Yellow.

Blue.
Magenta.
Cyan.
White.

Description

Scroll bar color.

Desktop color.

Color of the title bar for the
active window.

Color of the title bar for the
inactive window.

Menu background color.
Window background color.
Window frame color.

Color of text on menus.

Color of text in windows.

Color of text in caption, size box,
and scroll arrow.

Border color of active window.
Border color of inactive window.
Background color of multiple-
document interface (MDI)

-6 Learn Visual Basic 6.0

System Colors (continued)

Constant
vbHighlight

vbHighlightText
vbButtonFace
vbButtonShadow
vbGrayText
vbButtonText
vblnactiveCaptionText
vb3DHighlight
vb3DDKShadow
vb3DLight

vbinfoText
vbinfoBackground

Control Constants

ComboBox Control
Constant
vbComboDropdown
vbComboSimple

vbComboDropdownList

ListBox Control
Constant
vbMultiSelectNone
vbMultiSelectSimple
vbMultiSelectExtended

ScrollBar Control
Constant
vbSBNone
vbHorizontal
vbVertical

vbBoth

Value
0x8000000D

0x8000000E
0x8000000F
0x80000010
0x80000011
0x80000012
0x80000013
0x80000014
0x80000015
0x80000016

0x80000017
0x80000018

Value

Value

W NEFLO

Description

Background color of items
selected in a control.

Text color of items selected in a
control.

Color of shading on the face of
command buttons.

Color of shading on the edge of
command buttons.

Grayed (disabled)

Text color on push buttons.
Color of text in an inactive
caption.

Highlight color for 3D display
elements.

Darkest shadow color for 3D
display elements.

Second lightest of the 3D colors
after vb3DHighlight.

Color of text in ToolTips.
Background color of ToolTips.

Description
Dropdown Combo.
Simple Combo.
Dropdown List.

Description
None.
Simple.
Extended.

Description
None.
Horizontal.
Vertical.
Both.

Visual Basic Symbolic Constants [-7

Shape Control

Constant
vbShapeRectangle
vbShapeSquare
vbShapeOval
vbShapeCircle
vbShapeRoundedRectangle
vbShapeRoundedSquare

Data Control Constants

Error Event Constants
Constant
vbDataErrContinue
vbDataErrDisplay

EditMode Property Constants
Constant
vbDataEditNone

vbDataEditMode

vbDataEditAdd

Options Property Constants
Constant
vbDataDenyWrite

vbDataDenyRead
vbDataReadOnly

vbDataAppendOnly

vbDatalnconsistent

vbDataConsistent

vbDataSQLPassThrough

Value

O brrwWNEFLO

16

32

64

Description
Rectangle.

Square.

Oval.

Circle.

Rounded rectangle.
Rounded square.

Description
Continue.
(Default)

Description

No editing operation in
progress.

Edit method invoked; current
record in copy buffer.
AddNew method invoked;
current record hasn't been
saved.

Description

Other users can't change
records in recordset.

Other users can't read records in
recordset.

No user can change records in
recordset.

New records can be added to
the recordset, but existing
records can't be read.

Updates can apply to all fields of
the recordset.

Updates apply only to those
fields that will not affect other
records in the recordset.

Sends an SQL statement to an
ODBC database.

-8 Learn Visual Basic 6.0

Validate Event Action Constants

Constant
vbDataActionCancel

vbDataActionMoveFirst
vbDataActionMovePrevious
vbDataActionMoveNext
vbDataActionMovelLast
vbDataActionAddNew
vbDataActionUpdate

vbDataActionDelete
vbDataActionFind
vbDataActionBookmark
vbDataActionClose
vbDataActionUnload

Beginning-of-File Constants
Constant

vbMoveFirst

vbBOF

End-of-File Constants
Constant

vbMovelLast

VvbEOF

vbAddNew

Recordset-Type Constants
Constant

VbRSTypeTable
VbRSTypeDynaset
VbRSTypeSnapShot

Value
0

OO WN -

M 2O oo~
O

Description

Cancel the operation when the
Sub exits.

MoveFirst method.
MovePrevious method.
MoveNext method.

MoveLast method.

AddNew method.

Update operation (not
UpdateRecord)

Delete method.

Find method.

The Bookmark property is set.
Close method.

The form is being unloaded.

Description
Move to first record.
Move to beginning of file.

Description

Move to last record.

Move to end of file.

Add new record to end of file.

Description

Table-type recordset.
Dynaset-type recordset.
Snapshot-type recordset.

Visual Basic Symbolic Constants -9

Date Constants

firstdayofweek Argument Values

Constant
vbUseSystem
vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday
vbSaturday

Value

~N~NoobhwNEO

firstweekofyear Argument Values

Constant
vbUseSystem

vbFirstJanl

vbFirstFourDays

vbFirstFullwWeek

Return Values
Constant
vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday
vbSaturday

DBGrid Control Constants

Alignment Constants

Constant
dbgLeft
dbgRight
dbgCenter

Value
0

Value

~No ok WN P

Value

Description

Use NLS API setting.
Sunday

Monday

Tuesday
Wednesday
Thursday

Friday

Saturday

Description

Use application setting if one
exists; otherwise use NLS API
setting.

Start with week in which January
1 occurs (default)

Start with the first week that has
at least four days in the new
year.

Start with the first full week of the
year.

Description
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Description
Left.

Right.
Center.

[-10 Learn Visual Basic 6.0

dbgGeneral 3 General.

Visual Basic Symbolic Constants

-11

BorderStyle Constants
Constant

dbgNone
dbgFixedSingle

DataMode Constants
Constant

dbgBound
dbgUnbound

DividerStyle Constants
Constant
dbgNoDividers
dbgBlackLine
dbgDarkGrayLine
dbgRaised

dbglnset
dbgUseForeColor

RowDividerStyle Constants
Constant

dbgNoDividers

dbgBlackLine
dbgDarkGrayLine

dbgRaised

dbglnset

dbgUseForeColor

Scroll Bar Constants
Constant

dbgNone
dbgHorizontal
dbgVertical

dbgBoth
dbgAutomatic

Description
None.
FixedSingle.

Description
Bound.
Unbound.

Description
NoDividers.
BlackLine.
DarkGrayLine.
Raised.

Inset.
UseForeColor.

Description
NoDividers.
BlackLine.
DarkGrayLine.
Raised.

Inset.
UseForeColor.

Description
None.
Horizontal.
Vertical.
Both.
Automatic.

[-12 Learn Visual Basic 6.0

DDE Constants

linkerr (LinkError Event)

Constant Value Description

vbWrongFormat 1 Another application requested
data in wrong format.

vbDDESourceClosed 6 Destination application
attempted to continue after
source closed.

vbTooManyLinks 7 All source links are in use.

vbDataTransferFailed 8 Failure to update data in
destination.

LinkMode Property (Forms and Controls)

Constant Value Description

vbLinkNone 0 None.

vbLinkSource 1 Source (forms only)

vbLinkAutomatic 1 Automatic (controls only)

vbLinkManual 2 Manual (controls only)

vbLinkNotify 3 Notify (controls only)

Dir, GetAttr, and SetAttr Constants

Constant Value Description

vbNormal 0 Normal (default for Dir and
SetAttr)

vbReadOnly 1 Read-only.

vbHidden 2 Hidden.

vbSystem 4 System file.

vbVolume 8 Volume label.

vbDirectory 16 Directory.

vbArchive 32 File has changed since last

backup.

Visual Basic Symbolic Constants [-13

Drag-and-Drop Constants

DragOver Event
Constant
vbEnter

vbLeave

vbOver

Drag Method (Controls)
Constant

vbCancel

vbBeginDrag

vbEndDrag

DragMode Property
Constant

vbManual
vbAutomatic

Drawing Constants

DrawMode Property
Constant
vbBlackness
vbNotMergePen
vbMaskNotPen
vbNotCopyPen
vbMaskPenNot
vbinvert
vbXorPen
vbNotMaskPen
vbMaskPen
vbNotXorPen
vbNop

vbMergeNotPen
vbCopyPen
vbMergePenNot
vbMergePen
vbWhiteness

Value

PR OOO~NOORWNREL
= O Q
c
D

e e
OURAWN

Description

Source control dragged into
target.

Source control dragged out of
target.

Source control dragged from
one position in target to another.

Description
Cancel drag operation.
Begin dragging control.
Drop control.

Description
Manual.
Automatic.

Description
Black.

Not Merge pen.
Mask Not pen.
Not Copy pen.
Mask pen Not.
Invert.

Xor pen.

Not Mask pen.
Mask pen.

Not Xor pen.
No operation; output remains
unchanged.
Merge Not pen.
Copy pen.
Merge pen Not.
Merge pen.
White.

[-14 Learn Visual Basic 6.0

DrawsStyle Property
Constant

vbSolid

vbDash

vbDot

vbDashDot
vbDashDotDot
vblnvisible
vbinsideSolid

Form Constants

Show Parameters
Constant

vbModal
vbModeless

Arrange Method for MDI Forms
Constant
vbCascade

vbTileHorizontal
vbTileVertical

vbArrangelcons

WindowState Property
Constant

vbNormal

vbMinimized
vbMaximized

Value

O WNE,O

Description
Solid.

Dash.

Dot.
Dash-dot.
Dash-dot-dot.
Invisible.
Inside solid.

Description

Modal form.
Modeless form.

Description

Cascade all nonminimized MDI
child forms.

Horizontally tile all nonminimized
MDI child forms.

Vertically tile all nonminimized
MDI child forms.

Arrange icons for minimized MDI
child forms.

Description
Normal.
Minimized.
Maximized.

Visual Basic Symbolic Constants

1-15

Graphics Constants

FillStyle Property
Constant

vbFSSolid
vbFSTransparent
vbHorizontalLine
vbVerticalLine
vbUpwardDiagonal
vbDownwardDiagonal
vbCross
vbDiagonalCross

ScaleMode Property
Constant

vbUser

vbTwips

vbPoints

vbPixels

vbCharacters
vbinches
vbMillimeters
vbCentimeters

Grid Control Constants

ColAlignment, FixedAlignment Properties

Constant
grdAlignCenter
grdAlignLeft
grdAlignRight

FillStyle Property
Constant
grdSingle

grdRepeat

< NoOURAWNROCL
QL L
[[
) o®

~N~No o h~,wWNELO

Value

Description

Solid.

Transparent.
Horizontal line.
Vertical line.
Upward diagonal.
Downward diagonal.
Cross.

Diagonal cross.

Description
User.

Twips.
Points.
Pixels.
Characters.
Inches.
Millimeters.
Centimeters.

Description

Center data in column.
Left-align data in column.
Right-align data in column.

Description

Changing Text property setting

affects only active cell.

Changing Text property setting

affects all selected cells.

[-16 Learn Visual Basic 6.0

Help Constants

Constant
cdiHelpContext

cdIHelpQuit

cdiHelpIindex
cdiHelpContents
cdiHelpHelpOnHelp
cdiHelpSetindex
cdiHelpSetContents
cdiHelpContextPopup
cdIHelpForceFile
cdlHelpKey
cdiHelpCommandHelp

cdlHelpPartialkey

Key Code Constants

Key Codes
Constant
vbKeyLButton
vbKeyRButton
vbKeyCancel
vbKeyMButton
vbKeyBack
vbKeyTab
vbKeyClear
vbKeyReturn
vbKeyShift
vbKeyControl
vbKeyMenu

Value
Ox1

0ox2

0x3

0x3

Ox4

0x5

0x5

0x8

0x9

0x101

0x102

0x105

Value
Ox1
0x2
0x3
0x4
0x8
0x9
oxC
OxD
0x10
0x11
0x12

Description

Displays Help for a particular
topic.

Notifies the Help application that
the specified Help file is no
longer in use.

Displays the index of the
specified Help file.

Displays the contents topic in the
current Help file.

Displays Help for using the Help
application itself.

Sets the current index for multi-
index Help.

Designates a specific topic as
the contents topic.

Displays a topic identified by a
context number.

Creates a Help file that displays
text in only one font.

Displays Help for a particular
keyword.

Displays Help for a particuar
command.

Calls the search engine in
Windows Help.

Description

Left mouse button.
Right mouse button.
CANCEL key.
Middle mouse button.
BACKSPACE key.
TAB key.

CLEAR key.
ENTER key.

SHIFT key.

CTRL key.

MENU key.

Visual Basic Symbolic Constants

-17

Key Codes (continued)

Description
PAUSE key.

CAPS LOCK key.
ESC key.
SPACEBAR key.
PAGE UP key.
PAGE DOWN key.
END key.

HOME key.

LEFT ARROW key.
UP ARROW key.
RIGHT ARROW key.
DOWN ARROW key.
SELECT key.
PRINT SCREEN key.
EXECUTE key.
SNAPSHOT key.
INS key.

DEL key.

HELP key.

NUM LOCK key.

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: ‘A’ Through 'Z'

Constant Value
vbKeyPause 0x13
vbKeyCapital 0x14
vbKeyEscape 0x1B
vbKeySpace 0x20
vbKeyPageUp 0x21
vbKeyPageDown 0x22
vbKeyEnd 0x23
vbKeyHome 0x24
vbKeyLeft 0x25
vbKeyUp 0x26
vbKeyRight 0x27
vbKeyDown 0x28
vbKeySelect 0x29
vbKeyPrint Ox2A
vbKeyExecute 0x2B
vbKeySnapshot 0x2C
vbKeylnsert 0x2D
vbKeyDelete Ox2E
vbKeyHelp Ox2F
vbKeyNumlock 0x90
Constant Value
vbKeyA 65
vbKeyB 66
vbKeyC 67
vbKeyD 68
vbKeyE 69
vbKeyF 70
vbKeyG 71
vbKeyH 72
vbKeyl 73
vbKeyJ 74
vbKeyK 75
vbKeyL 76
vbKeyM 77
vbKeyN 78
vbKeyO 79
vbKeyP 80
vbKeyQ 81
vbKeyR 82
vbKeyS 83
vbKeyT 84

Description
A key.
B key.
C key.
D key.
E key.
F key.
G key.
H key.
| key.
J key.
K key.
L key.
M key.
N key.
O key.
P key.
Q key.
R key.
S key.
T key.

[-18 Learn Visual Basic 6.0

KeyA Through KeyZ (continued)

Constant Value Description
vbKeyU 85 U key.

vbKeyV 86 V key.

vbKeyW 87 W key.

vbKeyX 88 X key.

vbKeyY 89 Y key.

vbKeyZ 90 Z key.

KeyO Through Key9 Are the Same as Their ASCII Equivalents: '0' Through '9'
Constant Value Description
vbKey0 48 0 key.

vbKeyl 49 1 key.

vbKey2 50 2 key.

vbKey3 51 3 key.

vbKey4 52 4 key.

vbKey5 53 5 key.

vbKey6 54 6 key.

vbKey7 55 7 key.

vbKey8 56 8 key.

vbKey9 57 9 key.

Keys on the Numeric Keypad

Constant Value Description
vbKeyNumpadO 0x60 0 key.
vbKeyNumpadl 0x61 1 key.
vbKeyNumpad?2 0x62 2 key.
vbKeyNumpad3 0x63 3 key.
vbKeyNumpad4 0x64 4 key.
vbKeyNumpad5 0x65 5 key.
vbKeyNumpad6 0x66 6 key.
vbKeyNumpad7 0x67 7 key.
vbKeyNumpad8 0x68 8 key.
vbKeyNumpad9 0x69 9 key.
vbKeyMultiply Ox6A MULTIPLICATION SIGN (*)
vbKeyAdd 0x6B PLUS SIGN (+)
vbKeySeparator 0x6C ENTER key.
vbKeySubtract 0x6D MINUS SIGN (-)
vbKeyDecimal Ox6E DECIMAL POINT (.

vbKeyDivide OX6F DIVISION SIGN (/)

Visual Basic Symbolic Constants [-19

Function Keys

Constant Value Description
vbKeyF1 0x70 F1 key.
vbKeyF2 0x71 F2 key.
vbKeyF3 0x72 F3 key.
vbKeyF4 0x73 F4 key.
vbKeyF5 0x74 F5 key.
vbKeyF6 0X75 F6 key.
vbKeyF7 0x76 F7 key.
vbKeyF8 ox77 F8 key.
vbKeyF9 0x78 F9 key.
vbKeyF10 0x79 F10 key.
vbKeyF11 OX7A F11 key.
vbKeyF12 0x7B F12 key.
vbKeyF13 0x7C F13 key.
vbKeyF14 0x7D F14 key.
vbKeyF15 OX7E F15 key.
vbKeyF16 OX7F F16 key.

Menu Accelerator Constants

Constant Value Description
vbMenuAccelCtrlA 1 User-defined shortcut
keystrokes.
vbMenuAccelCtriB 2 User-defined shortcut
keystrokes.
vbMenuAccelCtriC 3 User-defined shortcut
keystrokes.
vbMenuAccelCtriD 4 User-defined shortcut
keystrokes.
vbMenuAccelCtrlE 5 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF 6 User-defined shortcut
keystrokes.
vbMenuAccelCtrlG 7 User-defined shortcut
keystrokes.
vbMenuAccelCtrIH 8 User-defined shortcut
keystrokes.
vbMenuAccelCitrll 9 User-defined shortcut
keystrokes.
vbMenuAccelCitrlJ 10 User-defined shortcut
keystrokes.
vbMenuAccelCtrIK 11 User-defined shortcut

keystrokes.

[-20 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)

Constant
vbMenuAccelCtriL

vbMenuAccelCtrlM
vbMenuAccelCtriN
vbMenuAccelCtrlO
vbMenuAccelCtrlP
vbMenuAccelCtrlQ
vbMenuAccelCtrIR
vbMenuAccelCtrlS
vbMenuAccelCtrT
vbMenuAccelCtrlU
vbMenuAccelCtrlvV
vbMenuAccelCtrlW
vbMenuAccelCtrIX
vbMenuAccelCtrlY
vbMenuAccelCtrlZ
vbMenuAccelF1
vbMenuAccelF2
vbMenuAccelF3
vbMenuAccelF4
vbMenuAccelF5

vbMenuAccelF6

Value
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Description
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.

Visual Basic Symbolic Constants [-21

vbMenuAccelF7 33 User-defined shortcut
keystrokes.

[-22 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)

Constant
vbMenuAccelF8

vbMenuAccelF9

vbMenuAccelF11

vbMenuAccelF12

vbMenuAccelCtrIF1

vbMenuAccelCtrlF2

vbMenuAccelCtrlF3

vbMenuAccelCtrlIF4

vbMenuAccelCtrlF5

vbMenuAccelCtrlF6

vbMenuAccelCtrlF7

vbMenuAccelCtrlF8

vbMenuAccelCtrlF9

vbMenuAccelCtrlIF11

vbMenuAccelCtrIF12

vbMenuAccelShiftF1

vbMenuAccelShiftF2

vbMenuAccelShiftF3

vbMenuAccelShiftF4

vbMenuAccelShiftF5

vbMenuAccelShiftF6

Value
34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

Description
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.
User-defined shortcut
keystrokes.

Visual Basic Symbolic Constants [-23

vbMenuAccelShiftF7 55 User-defined shortcut
keystrokes.

[-24 Learn Visual Basic 6.0

Menu Accelerator Constants (continued)

Constant Value Description
vbMenuAccelShiftF8 56 User-defined shortcut
keystrokes.
vbMenuAccelShiftF9 57 User-defined shortcut
keystrokes.
vbMenuAccelShiftF11 58 User-defined shortcut
keystrokes.
vbMenuAccelShiftF12 59 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF1 60 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF2 61 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF3 62 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF4 63 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF5 64 ser-defined shortcut keystrokes.
vbMenuAccelShiftCtrlF6 65 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF7 66 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF8 67 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF9 68 ser-defined shortcut keystrokes.
vbMenuAccelShiftCtrlF11 69 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF12 70 User-defined shortcut
keystrokes.
vbMenuAccelCitrlins 71 User-defined shortcut
keystrokes.
vbMenuAccelShiftins 72 User-defined shortcut
keystrokes.
vbMenuAccelDel 73 User-defined shortcut
keystrokes.
vbMenuAccelShiftDel 74 User-defined shortcut
keystrokes.
vbMenuAccelAltBksp 75 User-defined shortcut

keystrokes.

Visual Basic Symbolic Constants 1-25

Menu Control Constants

PopupMenu Method Alignment
Constant
vbPopupMenuLeftAlign
vbPopupMenuCenterAlign
vbPopupMenuRightAlign

PopupMenu Mouse Button Recognition

Constant
vbPopupMenuLeftButton

vbPopupMenuRightButton
left mouse buttons.

Miscellaneous Constants

ZOrder Method
Constant

vbBringToFront
vbSendToBack

QueryUnload Method
Constant
vbAppWindows

vbFormMDIForm
vbFormCode

vbFormControlMenu

vbAppTaskManager

Shift Parameter Masks
Constant

vbShiftMask
vbCtrIMask

vbAltMask

Value
0
4
8

Value
0

2

Description

Pop-up menu left-aligned.
Pop-up menu centered.
Pop-up menu right-aligned.

Description
Pop-up menu recognizes left
mouse button only.

Pop-up menu recognizes right and

Description
Bring to front.
Send to back.

Description

Current Windows session
ending.

MDI child form is closing
because the MDI form is closing.
Unload method invoked from
code.

User has chosen Close
command from the Control-menu
box on a form.

Windows Task Manager is
closing the application.

Description

SHIFT key bit mask.
CTRL key bit mask.
ALT key bit mask.

[-26 Learn Visual Basic 6.0

Button Parameter Masks
Constant

vbLeftButton
vbRightButton
vbMiddleButton

Application Start Mode
Constant
vbSModeStandalone
vbSModeAutomation

LoadResPicture Method
Constant

vbResBitmap

vbReslcon

vbResCursor

Check Value
Constant
vbUnchecked
vbChecked
vbGrayed

Value

Description

Left mouse button.
Right mouse button.
Middle mouse button.

Description

Stand-alone application.
OLE automation server.

Description
Bitmap resource.
Icon resource.
Cursor resource.

Description
Unchecked.
Checked.
Grayed.

Visual Basic Symbolic Constants [-27

Mouse Pointer Constants

Constant
vbDefault
vbArrow
vbCrosshair
vblbeam
vblconPointer
vbSizePointer
vbSizeNESW
vbSizeNS
vbSizeNWSE
vbSize WE
vbUpArrow
vbHourglass
vbNoDrop
vbArrowHourglass

vbArrowQuestion

vbSizeAll

vbCustom

<
D
c
(¢

oooo~NOUTA~,WNELO

14

15

99

Description

Default.

Arrow.

Cross.

| beam.

Icon.

Size.

Size NE, SW.

Size N, S.

Size NW, SE.

Size W, E.

Up arrow.

Hourglass.

No drop.

Arrow and hourglass. (Only
available in 32-bit Visual Basic
4.0.)

Arrow and question mark. (Only
available in 32-bit Visual Basic
4.0.)

Size all. (Only available in 32-bit
Visual Basic 4.0.)

Custom icon specified by the
Mouselcon property.

[-28 Learn Visual Basic 6.0

MsgBox Constants

MsgBox Arguments
Constant
vbOKOnly
vbOKCancel
vbAbortRetrylgnore
vbYe sNoCancel
vbYesNo
vbRetryCancel
vbCritical
vbQuestion
vbExclamation
vbinformation
vbDefaultButton1
vbDefaultButton2
vbDefaultButton3
vbApplicationModal

vbSystemModal

MsgBox Return Values
Constant

VbOK

vbCancel

vbAbort

vbRetry

vbignore

vbYes

vbNo

OLE Container Control Constants

OLEType Property
Constant
vbOLELinked
vbOLEEmbedded

vbOLENone

Value

~N~No ok, wWwNE

Value
0

1

3

Description

OK button only (default)

OK and Cancel buttons.

Abort, Retry, and Ignore buttons.
Yes, No, and Cancel buttons.
Yes and No buttons.

Retry and Cancel buttons.
Critical message.

Warning query.

Warning message.

Information message.

First button is default (default)
Second button is default.

Third button is default.
Application modal message box
(default)

System modal message box.

Description

OK button pressed.
Cancel button pressed.
Abort button pressed.
Retry button pressed.
Ignore button pressed.
Yes button pressed.
No button pressed.

Description

OLE container control contains a
linked object.

OLE container control contains
an embedded object.

OLE container control doesn't
contain an object.

Visual Basic Symbolic Constants [-29

OLETypeAllowed Property
Constant
vbOLEEither

UpdateOptions Property
Constant
vbOLEAutomatic

VbOLEFrozen

vbOLEManual

AutoActivate Property
Constant
vbOLEActivateManual

vbOLEActivateGetFocus

vbOLEActivateDoubleclick

vbOLEActivateAuto

SizeMode Property
Constant
vbOLESizeClip
vbOLESizeStretch

VbOLESizeAutoSize

vbOLESizeZoom

Value

Value

Value

Description

OLE container control can
contain either a linked or an
embedded object.

Description

Object is updated each time the
linked data changes.

Object is updated whenever the
user saves the linked document
from within the application in
which it was created.

Object is updated only when the
Action property is set to 6
(Update)

Description

OLE object isn't automatically
activated.

Object is activated when the
OLE container control gets the
focus.

Object is activated when the
OLE container control is double-
clicked.

Obiject is activated based on the
object's default method of
activation.

Description

Object's image is clipped by the
OLE container control's borders.
Object's image is sized to fill the
OLE container control.

OLE container control is
automatically resized to display
the entire object.

Object's image is stretched but
in proportion.

[-30 Learn Visual Basic 6.0

DisplayType Property
Constant
vbOLEDisplayContent

vbOLEDisplaylcon

Updated Event Constants

Constant

vbOLEChanged
VbOLESaved

vbOLECIosed

vbOLERenamed

Special Verb Values
Constant
vbOLEPrimary
vbOLEShow
vbOLEOpen

vbOLEHIde

vbOLEInPlaceUlActivate

vbOLEInPlaceActivate

vbOLEDiscardUndoState

Value

Description

Object's data is displayed in the
OLE container control.

Object's icon is displayed in the
OLE container control.

Description

Object's data has changed.
Object's data has been saved by
the application that created the
object.

Application file containing the
linked object's data has been
closed.

Application file containing the
linked object's data has been
renamed.

Description

Default action for the object.
Activates the object for editing.
Opens the object in a separate
application window.

For embedded objects, hides
the application that created the
object.

All Ul's associated with the
object are visible and ready for
use.

Object is ready for the user to
click inside it and start working
with it.

For discarding all record of
changes that the object's
application can undo.

Visual Basic Symbolic Constants

-31

Verb Flag Bit Masks
Constant
vbOLEFlagEnabled
vbOLEFlagGrayed
vbOLEFlagDisabled
vbOLEFlagChecked
vbOLEFlagSeparator
vbOLEMiscFlagMemStorage

vbOLEMiscFlagDisablelnPlace

Value
0x0
Ox1
0x2
0x8
0x800
Ox1

0ox2

Description

Enabled menu item.

Grayed menu item.

Disabled menu item.

Checked menu item.
Separator bar in menu item list.
Causes control to use memory
to store the object while it's
loaded.

Forces OLE container control to
activate objects in a separate
window.

VBTranslateColor/OLETranslateColor Constants

Constant
vblnactiveCaptionText

vb3DHighlight
vb3DFace
vbMsgBox

vbMsgBoxText

vb3DShadow

vb3DDKShadow
vb3DLight

Picture Object Constants

Constant
vbPicTypeBitmap
vbPicTypeMetafile
vbPicTypelcon

Value
0x80000013

0x80000014

0x8000000F

0x80000017

0x80000018

0x80000010

0x80000015
0x80000016

Value

Description

Color of text in an inactive
caption.

Highlight color for 3-D display
elements.

Dark shadow color for 3-D
display elements.

Background color for message
boxes and system dialog boxes.
Color of text displayed in
message boxes and system
dialog boxes.

Color of automatic window
shadows.

Darkest shadow.

Second lightest of the 3-D colors
(after vb3DHighlight)

Description

Bitmap type of Picture object.
Metafile type of Picture object.
Icon type of Picture object.

[-32 Learn Visual Basic 6.0

Printer Object Constants

Printer Color Mode
Constant
vbPRCMMonochrome
vbPRCMColor

Duplex Printing
Constant
vbPRDPSimplex
vbPRDPHorizontal
vbPRDPVertical

Printer Orientation
Constant
vbPRORPortrait

vbPRORLandscape

Print Quality
Constant
vbPRPQDraft
vbPRPQLow
vbPRPQMedium
vbPRPQHigh

PaperBin Property
Constant
vbPRBNUpper
vbPRBNLower
vbPRBNMiddle
vbPRBNManual

vbPRBNEnNvelope
vbPRBNEnvManual

vbPRBNAuto
vbPRBNTractor

Value

A OWNPE

ol

Description
Monochrome outpult.
Color output.

Description

Single-sided printing.
Double-sided horizontal printing.
Double-sided vertical printing.

Description

Documents print with the top at
the narrow side of the paper.
Documents print with the top at
the wide side of the paper.

Description

Draft print quality.
Low print quality.
Medium print quality.
High print quality.

Description

Use paper from the upper bin.
Use paper from the lower bin.
Use paper from the middle bin.
Wait for manual insertion of each
sheet of paper.

Use envelopes from the
envelope feeder.

Use envelopes from the
envelope feeder, but wait for
manual insertion.

(Default)

Use paper fed from the tractor
feeder.

Visual Basic Symbolic Constants [-33

PaperBin Property (continued)

Constant

vbPRBNSmallFmt
vbPRBNLargeFmt

vbPRBNLargeCapacity

vbPRBNCassette

PaperSize Property

Constant
vbPRPSLetter

vbPRPSLetterSmall

vbPRPSTabloid
vbPRPSLedger
vbPRPSLegal

vbPRPSStatement

vbPRPSExecutive
VvbPRPSA3
VvbPRPSA4
vbPRPSA4Small
VvbPRPSAS
vbPRPSB4
vbPRPSB5
vbPRPSFolio
vbPRPSQuarto
vbPRPS10x14
VbPRPS11x17
vbPRPSNote
vbPRPSENV9
vbPRPSENV10
VbPRPSENv11
vbPRPSENv12
vbPRPSENv14
vbPRPSCSheet
vbPRPSDSheet
VbPRPSESheet
VbPRPSENvVDL
VbPRPSENVC3
vbPRPSENnvC4
vbPRPSENvC5
VvbPRPSENvC6
VbPRPSENvC65

Value

10

14

<
Q
c
D

O©Ooo~NOoO Ok, WN B

Description

Use paper from the small paper
feeder.

Use paper from the large paper
bin.

Use paper from the large
capacity feeder.

Use paper from the attached
cassette cartridge.

Description

Letter, 8 1/2 x 11 in.
+A611Letter Small, 8 1/2 x 11 in.
Tabloid, 11 x 17 in.

Ledger, 17 x 11 in.

Legal, 8 1/2x 14 in.
Statement, 51/2x 8 1/2 in.
Executive, 7 1/2 x 10 1/2 in.
A3, 297 x 420 mm.

A4, 210 x 297 mm.

A4 Small, 210 x 297 mm.

A5, 148 x 210 mm.

B4, 250 x 354 mm.

B5, 182 x 257 mm.

Folio, 8 1/2x 13 in.

Quarto, 215 x 275 mm.

10x 14 in.

11x17in.

Note, 8 1/2 x 11 in.

Envelope #9, 37/8 x 8 7/8 in.
Envelope #10,4 1/8 x 9 1/2 in.
Envelope #11, 4 1/2 x 10 3/8 in.
Envelope #12,4 1/2 x 11 in.
Envelope #14,5x 11 1/2in.

C size sheet.

D size sheet.

E size sheet.

Envelope DL, 110 x 220 mm.
Envelope C3, 324 x 458 mm.
Envelope C4, 229 x 324 mm.
Envelope C5, 162 x 229 mm.
Envelope C6, 114 x 162 mm.
Envelope C65, 114 x 229 mm.

[-34 Learn Visual Basic 6.0

PaperSize Property (continued)

Constant
vbPRPSENvB4
vbPRPSENVB5
vbPRPSENvB6
VOPRPSEnvltaly
vbPRPSEnvMonarch

vbPRPSENvPersonal
vbPRPSFanfoldUS

vbPRPSFanfoldStdGerman
vbPRPSFanfoldLglGerman

vbPRPSUser

RasterOp Constants

Constant
vbDstInvert
vbMergeCopy

vbMergePaint

vbNotSrcCopy

vbNotSrcErase

vbPatCopy

vbPatlnvert

vbPatPaint

vbSrcAnd

Value
33
34
35
36
37

38
39

40

41

256

Value
0x00550009
0Ox00CO000CA

0x00BB0226

0x00330008

0x001100A6

O0xO0F00021L

0x005A0049L

OxOOFBOAO9L

0x008800C6

Description

Envelope B4, 250 x 353 mm.
Envelope B5, 176 x 250 mm.
Envelope B6, 176 x 125 mm.
Envelope, 110 x 230 mm.
Envelope Monarch, 3 7/8 x 7 1/2
in.

Envelope, 35/8 x 6 1/2 in.

U.S. Standard Fanfold, 14 7/8 x
11in.

German Standard Fanfold, 8 1/2
x 12 in.

German Legal Fanfold, 8 1/2 x
13in.

User-defined.

Description

Inverts the destination bitmap.
Combines the pattern and the
source bitmap.

Combines the inverted source
bitmap with the destination
bitmap by using Or.

Copies the inverted source
bitmap to the destination.
Inverts the result of combining
the destination and source
bitmaps by using Or.

Copies the pattern to the
destination bitmap.

Combines the destination
bitmap with the pattern by using
Xor.

Combines the inverted source
bitmap with the pattern by using
Or. Combines the result of this
operation with the destination
bitmap by using Or.

Combines pixels of the
destination and source bitmaps
by using And.

Visual Basic Symbolic Constants 1-35

RasterOp Constants (continued)

Constant
vbSrcCopy

vbSrcErase

vbSrcinvert

vbSrcPaint

Shell Constants

Constant
vbHide

vbNormalFocus

vbMinimizedFocus
vbMaximizedFocus

vbNormalNoFocus

vbMinimizedNoFocus

Value

0x00CC0020

0x00440328

0x00660046

OxOOEE0086

Value

Description

Copies the source bitmap to the
destination bitmap.

Inverts the destination bitmap
and combines the result with the
source bitmap by using And.
Combines pixels of the
destination and source bitmaps
by using Xor.

Combines pixels of the
destination and source bitmaps
by using Or.

Description

Window is hidden and focus is
passed to the hidden window.
Window has focus and is
restored to its original size and
position.

Window is displayed as an icon
with focus.

Window is maximized with
focus.

Window is restored to its most
recent size and position. The
currently active window remains
active.

Window is displayed as an icon.
The currently active window
remains active.

[-36 Learn Visual Basic 6.0

StrConv Constants

Constant Value Description

vbUpperCase 1 Uppercases the string.

vbLowerCase 2 Lowercases the string.

vbProperCase 3 Uppercases first letter of every
word in string.

vbWide* 4* Converts narrow (single-
byte)(double-byte)

vbNarrow* 8* Converts wide (double-
byte)(single-byte)

vbKatakana** 16** Converts Hiragana characters in
string to Katakana characters.

vbHiragana** 32** Converts Katakana characters in
string to Hiragana characters.

vbUnicode*** B4x+* Converts the string to Unicode
using the default code page of
the system.

vbFromUnicode*** 128*** Converts the string from Unicode
to the default code page of the
system.

*Applies to Far East locales
**Applies to Japan only.
***Specifying this bit on 16-bit systems causes a run-time error

Variant Type Constants

Constant Value Description

vbVEmpty 0 Empty (uninitialized)

vbVNull 1 Null (no valid data)

vbVInteger 2 Integer data type.

vbVLong 3 Long integer data type.

vbVSingle 4 Single-precision floating-point
data type.

vbVDouble 5 Double-precision floating-point
data type.

vbVCurrency 6 Currency (scaled integer)

vbVDate 7 Date data type.

vbVString 8 String data type.

Visual Basic Symbolic Constants [-37

VarType Constants

Constant
VbEmpty
vboNull
vbinteger
vbLong
vbSingle

vbDouble

vbCurrency
vbDate
vbString
vbObject
VvbError
vbBoolean
vbVariant

vbDataObject
vbByte
vbArray

gl

Description

Uninitialized (default)
Contains no valid data.
Integer.

Long integer.

Single-precision floating-point
number.

Double-precision floating-point
number.

Currency.

Date.

String.

OLE Automation object.

Error.

Boolean.

Variant (used only for arrays of
Variants)

Non-OLE Automation object.
Byte

Array.

11-1

Learn Visual Basic 6.0

Appendix Il. Common Dialog Box Constants

CommonDialog Control Constants

File Open/Save Dialog Box Flags

Constant
cdlOFNReadOnly

cdlOFNOverwritePrompt

cdlOFNHideReadOnly
cdlIOFNNoChangeDir

cdIOFNHelpButton
cdlOFNNoValidate
cdIOFNAllowMultiselect

cdlIOFNExtensionDifferent

cdlIOFNPathMustEXxist
cdIOFNFileMustExist

cdlOFNCreatePrompt

Value
Ox1

0ox2

Ox4
0x8

0x10

0x100

0x200

0x400

0x800

0x1000

0x2000

Description

Checks Read-Only check box for
Open and Save As dialog boxes.
Causes the Save As dialog box to
generate a message box if the
selected file already exists.

Hides the Read-Only check box.
Sets the current directory to what it
was when the dialog box was
invoked.

Causes the dialog box to display the
Help button.

Allows invalid characters in the
returned filename.

Allows the File Name list box to
have multiple selections.

The extension of the returned
filename is different from the
extension set by the DefaultExt
property.

User can enter only valid path
names.

User can enter only names of
existing files.

Sets the dialog box to ask if the user
wants to create a file that doesn't
currently exist.

-2

Learn Visual Basic 6.0

File Open/Save Dialog Box Flags (continued)

Constant
cdlIOFNShareAware

cdlIOFNNoReadOnlyReturn

cdlIOFNExplorer

cdlOFNNoDereferenceLinks

cdlIOFNLongNames

Color Dialog Box Flags
Constant
cdICCRGBInit

cdICCFullOpen

cdICCPreventFullOpen
cdICCHelpButton

Fonts Dialog Box Flags
Constant
cdICFScreenFonts

cdICFPrinterFonts
cdICFBoth

cdICFHelpButton
cdICFEffects

cdICFApply

cdICFANSIOnly

Value
0x4000

0x8000

0x0008000

0x00100000

0x00200000

Value
Ox1

0ox2

Ox4

0x8

Value
Ox1

0x2

0x3

Ox4
0x100

0x200

0x400

Description

Sharing violation errors will be
ignored.

The returned file doesn't have the
Read-Only attribute set and won't be
in a write-protected directory.

Use the Explorer-like Open A File
dialog box template. (Windows 95
only.)

Do not dereference shortcuts (shell
links) default, choosing a shortcut
causes it to be dereferenced by the
shell. (Windows 95 only.)

Use Long filenames. (Windows 95

only.)

Description

Sets initial color value for the dialog
box.

Entire dialog box is displayed,
including the Define Custom Colors
section.

Disables the Define Custom Colors
section of the dialog box.

Dialog box displays a Help button.

Description

Dialog box lists only screen fonts
supported by the system.

Dialog box lists only fonts supported
by the printer.

Dialog box lists available screen
and printer fonts.

Dialog box displays a Help button.
Dialog box enables strikeout,
underline, and color effects.

Dialog box enables the Apply
button.

Dialog box allows only a selection of
fonts that use the Windows
character set.

Common Dialog Box Constants 11-3

cdICFNoVectorFonts 0x800 Dialog box should not allow vector-
font selections.

[1-4 Learn Visual Basic 6.0

Fonts Dialog Box Flags (continued)

Constant
cdICFNoSimulations

cdICFLimitSize

cdICFFixedPitchOnly

cdICFWYSIWYG

cdICFForceFontEXxist

cdICFScalableOnly
cdICFTTOnly
cdICFNoFaceSel
cdICFNoStyleSel
cdICFNoSizeSel

Printer Dialog Box Flags
Constant
cdIPDAIlIPages

cdiPDCollate
cdIPDDisablePrintToFile
cdIPDHidePrintToFile
cdlIPDNoPageNums
cdlPDNoSelection
cdlPDNoWarning
cdiPDPageNums

cdIPDPrintSetup

Value
0x1000

0x2000

0x4000

0x8000

0x10000

0x20000
0x40000
0x80000

0x100000
0x200000

Value

0ox0

0x10

0x80000

0x100000

0x8

0Ox4

0x80

0ox2

0x40

Description

Dialog box should not allow graphic
device interface (GDI)

Dialog box should select only font
sizes within the range specified by
the Min and Max properties.

Dialog box should select only fixed-
pitch fonts.

Dialog box should allow only the
selection of fonts available to both
the screen and printer.

An error dialog box is displayed if a
user selects a font or style that
doesn't exist.

Dialog box should allow only the
selection of scalable fonts.

Dialog box should allow only the
selection of TrueType fonts.

No font name selected.

No font style selected.

No font size selected.

Description

Returns or sets state of All Pages
option button.

Returns or sets state of Collate
check box.

Disables the Print To File check
box.

The Print To File check box isn't
displayed.

Returns or sets the state of the
Pages option button.

Disables the Selection option
button.

Prevents a warning message when
there is no default printer.

Returns or sets the state of the
Pages option button.

Displays the Print Setup dialog box
rather than the Print dialog box.

Common Dialog Box Constants 11-5

Printer Dialog Box Flags (continued)

Constant Value Description

cdIPDPrintToFile 0x20 Returns or sets the state of the Print
To File check box.

cdIPDReturnDC 0x100 Returns a device context for the

printer selection value returned in
the hDC property of the dialog box.
cdIPDReturnDefault 0x400 Returns default printer name.
cdlPDReturnIC 0x200 Returns an information context for
the printer selection value returned
in the hDC property of the dialog

box.
cdIPDSelection Ox1 Returns or sets the state of the
Selection option button.
cdIPDHelpButton 0x800 Dialog box displays the Help button.
cdiPDUseDevModeCopies 0x40000 Sets support for multiple copies

action; depends upon whether or not
printer supports multiple copies.

[1-6 Learn Visual Basic 6.0

CommonDialog Error Constants

Constant
cdlAlloc

cdiCancel
cdiDialogFailure

cdIFindResFailure

cdiHelp
cdlInitialization

cdlLoadResFailure
cdlLockResFailure
cdiIMemAllocFailure
cdIMemLockFailure

cdINoFonts
cdiBufferTooSmall

cdlinvalidFileName
cdlSubclassFailure

cdICreatelCFailure

cdiIDndmMismatch

cdlGetDevModeFail
cdlinitFailure

cdlLoadDrvFailure

Value
&H7FF0&

&H7FF3&
&HB8000&

&H7FF9&

&H7FEF&
&H7FFD&

&H7FF8&

&H7FF7&

&H7FF6&

&H7FF5&

&H5FFE&
&HAFFC&

&HAFFD&
&HAFFE&

&HO6FF5&

&HG6FF6&

&H6FFA&

&H6FF9&

&H6FFB&

Description

Couldn't allocate memory for
FileName or Filter property.

Cancel was selected.

The function failed to load the dialog
box.

The function failed to load a
specified resource.

Call to Windows Help failed.

The function failed during
initialization.

The function failed to load a
specified string.

The function failed to lock a
specified resource.

The function was unable to allocate
memory for internal data structures.
The function was unable to lock the
memory associated with a handle.
No fonts exist.

The buffer at which the member
IpstrFile points is too small.
Filename is invalid.

An attempt to subclass a list box
failed due to insufficient memory.
The PrintDlg function failed when it
attempted to create an information
context.

Data in the DevMode and
DevNames data structures describe
two different printers.

The printer device driver failed to
initialize a DevMode data structure.
The PrintDlg function failed during
initialization.

The PrintDIg function failed to load
the specified printer's device driver.

Common Dialog Box Constants 11-7

CommonDialog Error Constants (continued)

Constant
cdINoDefaultPrn
cdINoDevices
cdlParseFailure
cdIPrinterCodes
cdIPrinterNotFound

cdIRetDefFailure

cdiSetupFailure

Value

&H6FF7&

&HG6FF8&

&HO6FFD&

&HO6FFF&

&H6FF4&

&H6FFC&

&H6FFE&

Description

A default printer doesn't exist.

No printer device drivers were
found.

The CommonDialog function failed
to parse the strings in the [devices]
section of WINL.INI.

The PDReturnDefault flag was set,
but either the hDevMode or
hDevNames field was nonzero.
The [devices] section of WIN.INI
doesn't contain an entry for the
requested printer.

The PDReturnDefault flag was set,
but either the hDevMode or
hDevNames field was nonzero.
Failed to load required resources.

