

Name of the Faculty : Dr Sinthu Janita
Designation : Professor & Head
Department : Computer Science
Contact Number : 9894484436
Programme : MSc Computer Science
Batch : 2016-2017 Onwards
Semester : IV
Course : Big Data Analytics
Course Code :P16CSE5A
Unit : V

Topics Covered : Data Serialization And Working
With Common Serialization
Formats, Data Serialization

Formats

DATA SERIALIZATION AND WORKING
WITH COMMON SERIALIZATION

FORMATS

R.MADHUMATHI

DATA SERIALIZATION

Data serialization is the process of converting data
objects present in complex data structures into a byte
stream for storage,transfer and distribution purposes
on physical devices.

Once the serialized data is transmitted the reverse
process of creating objects from the byte sequence
called deserialization.

Eg:

HOW IT WORKS?

• Computer data is generally organized in data
structures such as arrays, tables, trees, classes.
When data structures need to be stored or
transmitted to another location, such as
across a network, they are serialized.

• Serialization becomes complex for nested data

structures and object references.

Simple Array

Arr_name=[45,55,60,30]

Arr_name[0]

Memory(RAM)

0 45

1 55

2 60

3 30

SERIALIZED FORMAT

{45,55,60,30}

COMPLICATED STRUCTURE

Name: John
Phone no: 97877

12345
74638

DOB: D: 9
 M: 4
 Y: 1994

IN ONE LINE

SERIALIZED FORMAT

{“Name”: “ John”,
“Phone no”: [97877,

12345,
74638]

“DOB”: {“ D”: 9,
“ M”: 4,
“ Y” : 1994}}

JSON

{“Name”: “John”,“Phone no”: [97877,12345,74638”],“DOB”: {“ D”: 9,“ M”: 4,“ Y” : 1994}}

Name

Phone no

DOB

John

97877

12345

74638

D

M

Y

9

4

1994

JSON
JAVA SCRIPT
OBJECTNOTATION

{“Name”: “ John”,
“Phone no”: [97877,

12345,
74638]

“DOB”: {“ D”: 9,
“ M”: 4,
“ Y” : 1994}}

, SEPARATOR
[] LIST OF ELEMENTS
{} KEY-VALUE PAIR

YAML
YAML Ain't Markup
Language

Name: John
Phone no:

97877
12345
74638

DOB:
D: 9,
M: 4,
Y : 1994

SPACING DENOTES THE
LEVEL OF NESTING

XML
EXTENSIBLE MARKUP
LANGUAGE

<Name> John</Name>
<Phone no>97877</Phone no>
<Phone no>12345</Phone no>
<Phone no>74638</Phone no>
<DOB>

<D> 9</D>
<M>4</M>
<Y>1994</Y>

</DOB>

BOTH ARE MARKUP LANGUAGES

APPLICATIONS OF DATA SERIALIZATION
• Serialization allows a program to save the state of an object and

recreate it when needed.

• Persisting data onto files – happens mostly in language-neutral
formats such as CSV or XML. However, most languages allow
objects to be serialized directly into binary using APIs

• Storing data into Databases – when program objects are
converted into byte streams and then stored into DBs, such as
in Java JDBC.

• Transferring data through the network – such as web
applications and mobile apps passing on objects from client to
server and vice versa.

• Sharing data in a Distributed Object Model – When programs
written in different languages need to share object data over a
distributed network .However, SOAP, REST and other web
services have replaced these applications now.

POTENTIAL RISK DUE TO SERIALIZATION

• It may allow a malicious party with access to the serialization
byte stream to read private data, create objects with illegal or
dangerous state, or obtain references to the private fields of
deserialized objects. Workarounds are tedious, not
guaranteed.

• Open formats too have their security issues.

• XML might be tampered using external entities like macros or
unverified schema files.

• JSON data is vulnerable to attack when directly passed to a
JavaScript engine due to features like JSONP requests.

DATA SERIALIZATION FORMATS

R.MADHUMATHI

Serialization Formats in Hadoop

• XML

• CSV

• YAML
• JSON

• BSON

• MessagePack

• Thrift
• Protocol buffers
• Avro

TEXT-BASED DATA SERIALIZATION FORMATS

XML (Extensible Markup Language) :

• Nested textual format. Human-readable and
editable.

• Schema based validation.

• Used in metadata applications, web services
data transfer, web publishing.

CSV (Comma-Separated Values) :

• Table structure with delimiters.

• Human-readable textual data.

• Opens as spreadsheet or plaintext.

• CSV file is the most commonly used data file
format.

• Easy to read, Easy to parse, Easy to export
data from an RDBMS table.

It has three major drawbacks when used for HDFS.

1. All lines in a CSV file is a record, therefore, we should not

include any headers or footers. In other word, CSV file cannot
be stored in HDFS with any meta data.

2. CSV file has very limited support for schema evolution.
Because the fields for each record are ordered, we are not
able to change the orders. We can only append new fields to
the end of each line.

3. It does not support block compression which many other file
formats support. The whole file has to be compressed and
decompressed for reading, adding a significant read
performance cost to the files.

JSON (JavaScript Object Notation) :

• Short syntax textual format with limited data
types.

• Human-readable. Derived from JavaScript
data formats.

• No need of a separate parser (like XML) since
they map to JavaScript objects. No direct
support for DATE data type. All data is
dynamically processed

• It is in text format that stores meta data with
the data, so it fully supports schema evolution
and also spiltable.

• We can easily add or remove attributes for
each datum. However, because it’s text file, it
doesn’t support block compression.

YAML Ain't Markup Language :

• It is a data serialization language which is
designed to be human -friendly and works
well with other programming languages for
everyday tasks.

• Superset of JSON

• Supports complex data types. Maps easily to
native data structures.

Binary JSON:

• It is a binary-encoded serialization of JSON-like
documents.

• MongoDB uses BSON ,when storing
documents in collections

• It deals with attribute-value pairs like JSON.
Includes datetime, bytearray and other data
types not present in JSON.

• It is Created by Google

• It is Google's language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data

• Protocol buffers currently
support generated code in Java,
Python, Objective-C, and C++.

• It is designed for data to be
transparently converted
from/to JSON.

• Support rich set of data
structures

• It create schema based

annotation

• Primary use is network
communication

AVRO

• Apache Avro is a language-neutral data

• serialization system, developed by Doug Cutting.

the father of Hadoop.

• It also called a schema-based serialization technique.

FEATURES
• Avro uses JSON format to declare the data structures.

Presently, it supports languages such as Java, C, C++, C#,
Python, and Ruby.

• Avro creates binary structured format that is
both compressible and splitable. Hence it can be efficiently
used as the input to Hadoop MapReduce jobs.

• Avro provides rich data structures.

• Avro schemas defined in JSON, facilitate implementation in the

languages that already have JSON libraries.

• Avro creates a self-describing file named Avro Data File, in which
it stores data along with its schema in the metadata section.

• Avro is also used in Remote Procedure Calls (RPCs).

Thrift and Protocol Buffers are the most competent libraries with
Avro. Avro differs from these frameworks in the following ways

• Avro supports both dynamic and static types as per the
requirement. Protocol Buffers and Thrift use Interface Definition
Languages (IDLs) to specify schemas and their types. These IDLs
are used to generate code for serialization and deserialization.

• Avro is built in the Hadoop ecosystem. Thrift and Protocol Buffers
are not built in Hadoop ecosystem.

PERFORMANCE CHARACTERISTICS

• Speed – Binary formats are faster than textual formats. A late
entrant, protobuf reports the best times. JSON is preferable
due to readability and being schema-less.

• Data size – This refers to the physical space in bytes post
serialization. For small data, compressed JSON data occupies
more space compared to binary formats like protobuf.
Generally, binary formats always occupy less space.

• Usability – Human readable formats like JSON are naturally
preferred over binary formats. For editing data, YAML is good.
Schema definition is easy in protobuf, with in-built tools.

• Compatibility-Extensibility – JSON is a closed format. XML is
average with schema versioning. Backward compatibility
(extending schemas) is best handled by protobuf.

