Cauvery College for Women (Autonomous)

Nationally Accredited (III Cycle) with 'A' Grade by NAAC

Annamalai Nagar, Tiruchiappalli-18.

Name of the Faculty	:	Dr.K.Kalaiarasi
Designation	•	Assistant Professor
Contact Number	•	9003480382
Department	:	Mathematics
Programme	•	M.sc Mathematics
Batch	:	2018 Onwards
Semester	:	IV
Course	:	Advanced numerical analysis
Course Code	:	P16MA43
Unit	•	Ι
Topics Covered	:]	Franscandental and polynomial

Equations-muller method, chebyshey method, polynomial equation.discrete rule of sciencehydrative method-vieta method, bairstow method, graffe's root squaring method.

		UNIT-I					
	Bije	Bijection Method!					
	. Find the $\chi^3 - 4\chi - 9 = 0$ correct to the using						
1		ction m			J		
	Sol			•			
	L	et f(x)	$) = \chi^{3} - 4\chi^{2}$	9			
		flo)= -9 (-4	2)			
		fli) = 1 - 4(1) -	-9=-12 (i-ve)			
		3		9 = -9(-ve)			
	,			-9 = 6(+ve)			
	ð	, × , ,		lies between	2 and 3.		
	5	T The					
	n	a	- b -	$2n = \frac{a+b}{2}$	$f(x) = x^3 - 4x - 9$		
		a	, 3	2.5	-3.3750		
	2	2.5	200.3	2-75	0.7968		
	3	2.5	2.75	2.625	-1.412		
	4	2-625	2-75	2.6875	-0.3391		
	5	2.6875	2.75	2.71873	0.2209		
	6	2.6875	2.71875	2.70312	-6.0610		
	Ţ	2.70312	2-71875	2.71094	0.079		
	8	2.70312	2.71094	2.70703	0.00902		
	9	a 2.70507 2.70703 2.70507 -0.06201					
	10	270507 2-70703 2.70605 -0.0005					
	11	2.70605	2.70703	2,70654	- 0-0042		
	12	2.70605	2.70654	2.70629	-0.0021		
	13	2.70629	2.70654		- 0.0010		
	14.	2.70641	2.70654	2.70647			
			The root	й 2.706.			

	f(0) = 0 - 0 - 1 =) = 1 - 1 - 1 =	-1(-ve)	
	fla)= 23-2-	1 = 5(+ie) stween 1 au	2d 2,
n	The sloot	b	$2n = \frac{a+b}{2}$	
1.		2	1,5	0.875
1	I	1.5	1.25	-0.2968
2	1		1-375	0-2246
3	1.25	1-5	1 3125	_0.0515
4	1.25	1.375	1.3435	0.08150
5	1.3125	1.375		0.0140
6	1.3125	1.3435	1.328	-0.0189
7	1.3125	1,328	1.3202	- 0.0026
8	1.3202	1.328	1-3241	0.0059
9	1.3241	1.328	1-3261	0-0016
10	1.3241	1-3261	1,3251	- 0.0005
11	1-3241	1.3251	1-3246	
12	1.3246	1-3251	1.3248	0,0003
13	1.3246	1.3248	1.3247	-0.00007
14	1.3247	1.3248	1.3247	- 0.00007
15	1-3247	1.3 248	1.3247	-0,00007

Hw

2	223-	$x^{3} - x^{2} + x - 7 = 0$					
N.	Soln	:	$(n) = n^3$	~2.1 × 1			
		Let $f(x) = x^3 - x^2 + x - 1$ f(0) = 0 - 0 + 0 - 7 = -7(-ve)					
		f(1) = 1 - 1 + 1 - 1 = (-ve)					
			0		1+2-7 = (-ve)		
			J	32 +3-7 = 11			
		. The	2 Jloot	lies between	a and 3.		
	n	a	Ь	$2n = \frac{a+b}{2}$	$f(x) = x^3 - x^2 + x - 7$		
	١	ನ	3	2.5	4,875		
	a	2	2.5	2-25	1.5781		
	3	2	2-25	2-125	0.2050		
		ି ହ	2.125	2.0625	- 0.4177		
	4	2.0625	2.125	2.0937	-0.1119		
	5	2.0931	2-125	2.1093	0-0447		
	6	2.0937	-	2.1015	-0.0339		
	7	3 - C. 19 1 - 1	2-1093	2-1054	0-0053		
	8	2.1015		2.1035	-0.0138		
	9	2.1015	2.1054	P(- 0- 0037		
	10	2.1035	2.1054	2.1045	0-0002		
	μ	2.1045	2.1054	2-1049			
	12	2.1045	२,१०५१	2.1047	-0-0017		
	13	2.1047	2.1049	2.1048	-0.007		
		2.1048	2.1049	2.1048	-0.0007		
	14		2.1049	2.1048	-0.0007		
	15	2.1048		(215	a .		
		F	The stor	ot is \$2.104			
		*	3 - 4 - 13				
	, v			CALLER .			

Regular Falsi Method!

1. Determine the root of rex-3=0 correct four decimal places by regular falsi method. Soln:

Let
$$f(x) = xe^{\chi} - 3$$

 $f(0) = -3(-\chi e)$
 $f(1) = 1e^{1} - 3 = -0.2817 (-\chi e)$
 $f(2) = 2e^{\chi} - 3 = 11.7781 (+\chi e)$

. The stoot lies between 1 22.

n	a	f(a)	Ь	f(b)	$\chi = \frac{af(b) - bf}{f(b) - f(b)}$	
1	1	-0.2817	2	1127781	1.02335	-0.1525
2	1.02335	-0.1525	2	11-7781	1.0358	-0.0817
3	1.0358	-0-0817	ર	11.7781	1.0424	-0. 0487
4	1.0424	-0.0437	2	11.7781	1.0459	- 0, 02 34
5	1,0459	-0.0234	à	11.7781	1.0477	-0,0129
6	1.0477	-0.0129	2	11.7781	1.0487	-0.0070
7	1.0487	-0.0070	2	11.7781	1.0492	- 0, 0041
8	1.0492	-0.0041	2	11-1-181	1-0495	- 0.0234

., The root is 1.049.

$$a^2 \times \lambda^2 = \log_e \chi - 12 = 0$$

Soln?

$$-\log_{e} x - 12 = 0$$

Let $f(x) = x^{2} - \log_{e} x - 12$
 $f(0) = -12[-ve)$
 $f(1) = 1 - 0 - 12 = -11(-ve)$
 $f(2) = 4 - 0.6931 - 12 = -8.6931(-ve)$
 $f(3) = 9 - 1.0986 - 12 = -4.0986(-ve)$

f(4) = 16 - 1. 3862 - 12 = 2.6138 (+ve) The groot lies between 3+4 a = 3 b = 4f(a) = -4.0986 f(b) = 2.6138 $n^{(1)} = af(b) - bf(a)$ · f(b) - f(a)p(1) = 3.6106 $+(2)^{(1)} = -0.2474$ $\alpha = 3.6106$ b = 4f(a) = -0.2474 f(b) = 2.6138 $\mathcal{H}^{(2)} = 3.6442$ $f(x)^{(2)} = -0.0129$ CL = 3.644& b=4 f(a) = -0.0129 f(b) = 2.6138n(3) = 3.64591.4. $f(\pi) = -0.0010$ a = 3.6459 b=4f(a) = -0.0010 f(b) = 2.61382(4) = 3.6460 Ze' and a for The groot is 3.6460 3. x- cos x =0 intringto = (is)} Let $f(x) = x - \cos x$ Soln ! f(0) = 0 - 1 = -1 (-ve) (.) (3) $f(1) = 1 - \cos 1 = 0.4597$. The roots lies between 0. and 1.

The second	A. A.	11100	110)	b	f(b)	X= af(b)-bro f(b)-fro	the
	n	۵	+(a)		0.4597	0.6850	-0.0894
	1	D	-1		0.4597	0.7361	- 0.0049
	a	0.6850	-0.0894		0.4597	0.7387	0.5461
	3	0.7361	-0.0049	1		0.7361	0.5455
	4	0.7361	-0.0049	0.7387	0.540		0.5454
	5	0.7361	-0.0049	0.7361	59455	0.7359	0.5454
	6	0.7361	- 0.0049	0.7360	0.5454	0.7357	0.5454
	7	0.7361	-0.0049	0.7359	0 · 54 54	0.7359	0-5451
		-: T	he stoot	is 0.7	359		
N	owto	n's Rap	hson M	ethod ?			
	ormu						٠
			= 21n -	f(xn)	n =0	,1,2,	
		, 1111		f'(xn)	.,		
		.1 .			no the	find th	re scoot
	Jsing	Newt	tons R	aprison Increa	t ito	four de	umal
d	etwe	en o · of th	· .2011	ation.			
P	laces	og in	и3_6x+4	=0			
	Soln:						
		ider,	f(x) = x	3-62+4		- · ·	
			f'(x) = 3	$3x^2 - 6$			
		41	(0) = 4	(tve)		* *	
		2		6+4 = -11	(-ve)		 #
	The	-	.5) = 1. 12		· · ·		
	IVU				· · · · · ·		
		f(0	-6) = 0-61	6 (tre)			
				143 (+ve)			7
		fl	0.8) = -0	.288 (-1	e)		8 y
		Xo = 0.	7		ñ		
	-	$f(x_0) =$	0.143			3	
		f'(36) =	-4.53	tina ≇ a	- -		

st approximation: $\mathcal{H}_1 = \mathcal{H}_0 - \underline{f}(\mathcal{H}_0)$ f ((>10) = 0.7 + 0.143 = 0.7 + 0.03154.53 = 0.7315673= 0.7315673 21 = 0.73156 f(x1) = 0.002124 $f'(x_i) = -4.39442$ $\Re_2 = \Re_1 - f(\Re_1)$ f'(21) = 0.73156 - 0.002124 = 0.73156 + 0.0048 - 4.39442 $\chi_2 = 0.73204$ $f(x_2) = 0.0000 47$ f (12) = -4.39235 $\chi_3 = \chi_2 - \frac{f(\chi_2)}{f'(\chi_2)}$ = 0.73204 - 0.000047 -4.39235 = 0-73204 +6.00001 = 0.73205 23 = 0.7321 root correct to four decimal places 0.7321. The

secant Method: If XK+1 e XK are two approximations to the root then we determine as ea, $\chi = -\frac{\alpha_1}{\alpha_2} \rightarrow 0$ by using the conditions $f_{k-1} = a_0 \chi_{k-1} + a_1$ $f_k = a_0 x_k + a_1$ where $f_{k-1} = f(\mathcal{X}_{k-1})$, $f_{\mathbf{K}} = f(\mathbf{x}_{\mathbf{K}})$ on solving we obtain $a_0 = (f_k - f_{k-1})$ (xk - xk-1) $\alpha_1 = \frac{(\chi_k f_{k-1} - \chi_{k-1} f_k)}{(\chi_k - \chi_{k-1})} \longrightarrow \mathfrak{G}$ From the equis () & () the next approximation XK+1 to the root is given by $\mathcal{N}_{k+1} = \mathcal{N}_{k-1} f_k - \mathcal{N}_k f_{k-1} \longrightarrow \Im$ fr-fr-1 which may also be wouthen as $\chi_{k+1} = \chi_{k-1} (\chi_{k-1} - \chi_{k-1})$ $f_{k-1} \rightarrow \bigoplus K = 1, 2, ...$ This is called secant (or) chord method. 1. Find the scoot of the lqn $f(x) = x^3 - 2x - 5 = 0$ correct to three decimal places by secant method. An the total property is a property of soln: $f(x) = x^3 - ax - 5$ f(0) = -5 (-ve) f(i) = 1 - 2 - 5 = 1 - 7 = -6(-ie)

	f(a) = 8 - 4 - 5 = -1(-ve)						
	f(3) = 27 - 6 - 5 = 16(1)						
		. The	stoot J	lies bet	tween 2	4 3	đ
	4 -	* • • · ,	no = 2	& H1	= 3		
	I	No	×,	X2	f(20)	$f(x_i)$	-flaz)
	1	2	3	2.059	-1	16	-0.3910
	a	3	2.059	2.0814	16	-0-3910	- 0.145
	3	2.059	2.0814	2.095	0.381	2 0.150	0-005
	4	2.08	2-095	2.0942	-0.1457	0.0050	-0.0039
		*	. Th	e root	к 2.09	5	
H-W.	and a second						
a.	X	sinx +	$\cos x = f($	(x)		1	
	soln'and have						
	$f(x) = x \sin x + \cos x$						
	f(o) = 1(tve)						
	f(1) = 1.3817 (tve)						
	f(2) = 1.4024 (tre)						
	1		f(3) = -0		- "4" +) 1 1 .	
			e root			and 3.	
	n	Ho	21	f(26)	$f(x_1)$	$\chi_2 = \frac{\chi_0 f(x_1) - \chi_1}{f(x_1) - f(x_2)}$	fix.) f(2)
	1	2			-0.5666	8.71224	0.2198
	2	3	2-71224	-0.5666	0.2198	2.79266	0-01505
	3	2.71224	2-79266	0.21982	0.01505	2.79857	-0.00048
	40	2.79266	2.79857	0.01505	-0.00048	2.79838	
	50	2-19857	2-79838	-0.000421	0.000016	2-79838	0-0000lb
	Verone and a first second seco		. The :	N foot	2.7984	· · · ·	
	Citizen en en estatuer en est				5	hi . King	

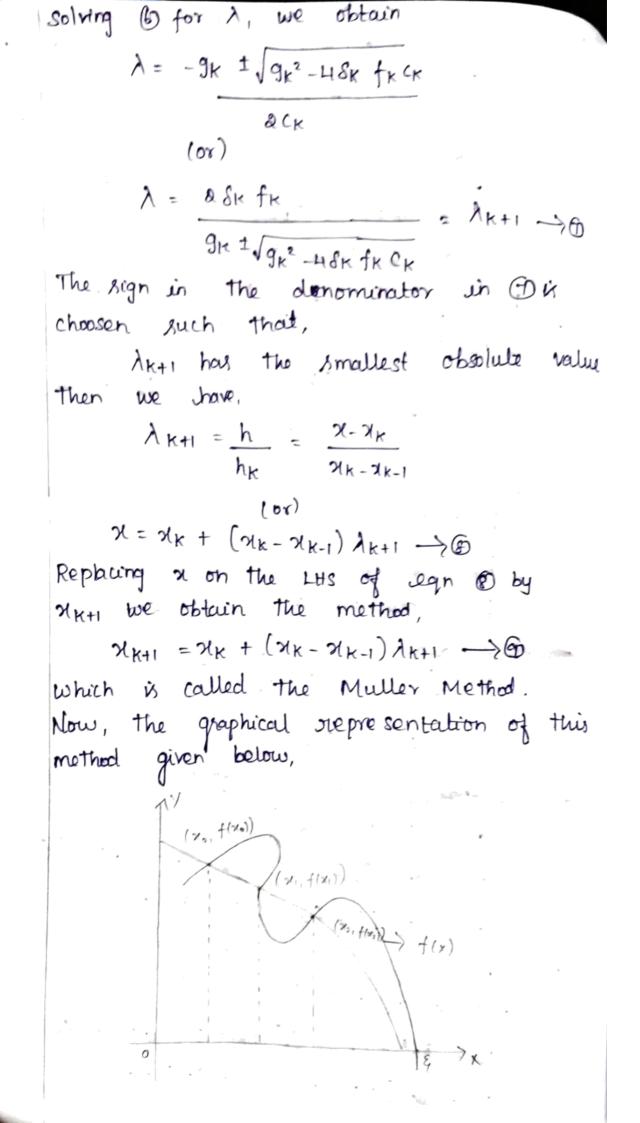
Muller Method! We assume for the function fixed a Polynomial of degree à and woute as, $f(x) = a_0 x^2 + a_1 x + a_2 = 0, \quad a_0 \neq 0 \longrightarrow 0$ where, a, a, a, are arbitrary parameters to be determined by prescribing three appropriate Conditions on f(n) and its derivatives. If xk-2, xk-1 and xk are three approximations to the root & of f(x) equal Then, we determine α_0 , α_1 , and α_2 , uirs(1)By using the Conditions, to 2010. i) $f_{k-2} = a_0 \chi_{k-2}^2 + a_1 \chi_{k-2} + a_2$ ii) $f_{k-1} = a_0 \chi_{k-1}^2 + a_1 \chi_{k-1} + a_2$ $iii) f_{K} = a_{0} \chi_{K}^{2} + a_{1} \chi_{K} + a_{2}$ Eliminating a, a, and as forom O and @ we get,

which may simply fy and obtain,

$$f(x) = \frac{(\pi - \pi_{K-1})(\pi - \pi_{K})}{(\pi_{K-2} - \pi_{K-1})(\pi_{K-2} - \pi_{K})} f_{K-2} + \frac{(\pi - \pi_{K-2})(\pi - \pi_{K-2})}{(\pi_{K-1} - \pi_{K-2})}$$

$$f_{K-1} + \frac{(\pi - \pi_{K-2})(\pi - \pi_{K-1})}{(\pi_{K-1} - \pi_{K-2})(\pi_{K-1} - \pi_{K-1})} f_{K-1} - \pi_{K-2}$$

$$f_{K-1} + \frac{(\pi - \pi_{K-2})(\pi_{K} - \pi_{K-1})}{(\pi_{K-1} - \pi_{K-2})(\pi_{K-1} - \pi_{K-1})} f_{K-1} + \frac{(\pi + \pi_{K-1})}{\pi_{K-1} + \pi_{K-1}} f_{K-1} + \frac{(\pi + \pi_{K-1})}{\pi_{K-1}$$



Solve
$$f(x) = x^3 - 3x - 5 = 0$$
 by using Mullev's method.
soln'
Let $f(x) = x^3 - 3x - 5$
 $f(0) = -5 = -xe$
 $f(1) = 1 - 3 - 5 = -7 = -xe$
 $f(2) = 8 - 6 - 5 = -3 = -xe$
 $f(3) = 27 - 9 = 13$ (two)
Taking the initial approximations,
 $x0 = 1$, $x_1 = 2$, $x_2 = 3$
 $f_3 = -7$ $f_1 = -3$ $f_2 = 13$
Formula,
 $x_{K+1} = x_{1K} + (x_{1K} - x_{1K-1}) \Lambda_{K+1} \rightarrow 0$, $K = 1, 2, ...$
put $K = 2$ in 0 ,
 $x_3 = x_2 + (x_2 - x_1) \Lambda_3$
 $= 3 + (3 - 2) \Lambda_3$
 $x_3 = 3 + \lambda_3 \rightarrow 0$
 $\lambda_{K+1} = -\frac{2}{3} \frac{\partial K}{f_{K-2}} - \frac{\partial K}{\delta_K} \frac{f_{K-1}}{f_{K-1}} + \frac{f_{K}}{f_{K}}$
 $G_K = \Lambda K [\lambda_K f_{K-2} - \delta_K f_{K-1} + f_{K}]$
 $g_{K} = \lambda_K^2 f_{K-2} - \delta_K^2 f_{K-1} + f_{K} (\lambda_{K+1} + \delta_K)$
 $\delta_{K} = 1 + \lambda_K$ $j = \lambda_K = \frac{h_K}{h_{K-1}}$
 $h_K = x_K - x_{K-1}$
Put $K = 2$, $\delta_2 = 1 + \lambda_2$
 $= 1 + \frac{(3-2)}{2-1}$

$$\begin{bmatrix} 5_{2} = -3 \\ Sub in Sk = 2qn, \\ S_{2} = 1+\lambda_{2} \\ A_{2} = 1 \\ g_{a} = \lambda_{2}^{2} f_{b} - S_{2}^{2} f_{1} + f_{2} (\lambda_{2} + S_{2}) \\ = 1(-7) - 4(-2) + f_{2} (1+2) \\ = -7 + 12 + 13(3) \\ = -7 + 12 + 39 \\ = -7 + 51 \\ g_{3} = -7 + 51 \\ = 1 (-7 + 6 + 13) \\ = 1 (-7 + 6 + 13) \\ = -7 + 19 \\ C_{2} = \lambda_{2} (\lambda_{2} f_{2} - 4 S_{2} f_{2}) \\ = \frac{9}{2 \pm \sqrt{g_{2}^{2} - 4 S_{2} f_{2}}} \\ = \frac{-52}{9 - 2 \pm \sqrt{(13)}} \\ h_{4} \pm \sqrt{(588)} \\ = -52 \\ h_{4} + 26 \cdot 22q \end{cases} \xrightarrow{(-52)}_{h_{4}} \\ = \frac{-52}{70 \cdot 229} \xrightarrow{(-52)}_{17 \cdot 771} \\ \end{bmatrix}$$

۳,

р^а. ,

$$\lambda_{3} = -0.74043 \quad (0r) - 2.9261.$$

$$(2) \Rightarrow \chi_{3} = 3 + \lambda_{3}$$

$$= 3 - 0.74043$$

$$= 3.85957$$

$$\chi_{3} \simeq 2.85957$$

$$\chi_{3} \simeq 2.85$$

$$\int treation: \chi_{0} = 2, \quad \chi_{1} = 2.86, \quad \chi_{2} = 3, \quad \chi_{2} = 13$$

$$fo = -3, \quad f_{1} = -0.24, \quad f_{2} = 13$$

$$put \quad K = 2, \quad \chi_{2} = (\chi_{2} - \chi_{1}) \quad \lambda_{3}$$

$$= 3 + (3 - 2.26) \quad \lambda_{3}$$

$$\chi_{3} = 3 + 0.714 \quad \lambda_{3} \longrightarrow 9$$

$$\delta_{2} = 1 + \lambda_{2} = 1 + \frac{h_{2}}{h_{1}} = 1 + \frac{(\chi_{2} - \chi_{1})}{(\chi_{1} - \chi_{2})}$$

$$= 1 + \frac{(3 - 2.26)}{(2 - 26)}$$

$$= 1 + \frac{0.714}{0.26}$$

$$= \frac{0.714}{0.26}$$

$$\delta_{2} = \frac{3 - 2.26}{2.26 - 2}$$

$$= \frac{0.714}{\lambda_{1} - \chi_{0}} = \frac{3 - 2.26}{2.26 - 2}$$

$$g_{1} = \lambda_{1}^{2} f_{0} - \delta_{2}^{2} f_{1} + f_{2} \quad (\lambda_{2} + \delta_{2})$$

$$= (2.85)^{2} (-3) - (3.85)^{2} (-0.24) + (13)$$

$$(2.85 + 3.65)^{2}$$

$$= -24, 367 + 3.557 + 87.1$$

$$= 66 \cdot 29$$

$$C_{2} = \lambda_{2} \left[\lambda_{2} \text{ fo} - \delta_{2} \text{ fi} + \text{f}_{2} \right]$$

$$= 2 \cdot 85 \left[2 \cdot 85 \left[-3 \right] - (3 \cdot 85) \left(-0 \cdot 24 \right) + 13 \right]$$

$$= 2 \cdot 85 \left[-8 \cdot 55 + 0 \cdot 9 \cdot 24 + 13 \right]$$

$$= 2 \cdot 85 \left[5 \cdot 3 \cdot 74 \right]$$

$$C_{2} = 15 \cdot 32$$

$$\lambda_{3} = -2 \cdot 52 \cdot \text{f}_{2}$$

$$= -2 \left(3 \cdot 85 \right) (13)$$

$$\frac{66 \cdot 29 \pm \sqrt{166 \cdot 29^{2} - 4} (3 \cdot 85) (13) (15 \cdot 32)}{66 \cdot 29 \pm \sqrt{14394} \cdot 3644 - 3667 \cdot 66 \left(1327 \cdot 364 \right)}$$

$$= -100 \cdot 1$$

$$\frac{66 \cdot 29 \pm \sqrt{4394} \cdot 3644 - 3667 \cdot 66 \left(1327 \cdot 364 \right)}{66 \cdot 29 \pm 36 \cdot 430} = \frac{-100 \cdot 1}{66 \cdot 29 - 36 \cdot 430}$$

$$\lambda_{3} = -3 \cdot 35 \quad \text{and} \quad -0 \cdot 97$$

$$\lambda_{3} = 3 \pm \left[0 \cdot 74 \times 0.977 \right]$$

$$\Rightarrow \lambda_{3} = 4 \cdot 28424$$

$$\therefore \text{ The stept B} \quad 2 \cdot 28424.$$

Chebyshev method: We determine a. a, eas using the condition $f_K = a_0 \chi_k^2 + a_1 \chi_k + a_2$ $f'_{k} = \partial a_{0} x_{k} + a_{1}$ $f_k'' = a_0 \longrightarrow 0$ on eliminating ai's we obtain fx +(x-xx)fk'+ $\frac{1}{2}(\pi - \pi_k)^2 f_k'' = 0 \quad \longrightarrow \textcircled{O}$ which is the Taylor socies expansion of fix) about x=xk such that the terms of order $(x-x_k)^3$ & higher power one neglected. The eqn @ is a Quadratic eqn & can be solved easily only one of the 2 root. Converges to the correct root. In order to get the next approximation to the correct stow we write (2) as $\chi_{k+1} - \chi_{k} = -\frac{f_{k}}{f_{k}'} - \frac{1}{2} \left(\chi_{k+1} - \chi_{k}\right)^{2} \frac{f_{k}''}{f_{k}'} \rightarrow \Im$ we substitute for (2k+1-2k) by (-fk/fk) m the suight side of (3) and obtain $\chi_{kH} = \chi_k - \frac{fk}{fk'} - \frac{1}{2} \frac{fk^2}{fl'^3} fk'' \longrightarrow \Phi$ which is called the chebysher method. This method requires 3 evaluations for each iterations. If (2k+1-2k) in the r.H.S of (3) is suplaced by the second or regula falsi method the order of the method " reduced.

	Bioblem :
1.	solve f(x) = x=3-4x-9=0 by using Cheby shev
1	method.
	Soln! Let $f(x) = x^3 - 4x - 9$
	$f(x) = 3x^2 - 4$
	f''(x) = 6x
	\Rightarrow f(o) = -9 (-ve)
	f(1) = -12 (-ve)
	f(2) = -9 (-ve)
	f(3) = 6 (+ve)
	Let 20=3 put k=0 in (1),
	f(3)=6
	$f'(3) = 3(3)^2 - 4 = 23$
	f''(3) = b(3) = 18
	$\begin{aligned} \chi_{1} &= \chi_{0} - \frac{f_{0}}{f_{0}} - \frac{1}{2} \frac{f_{0}^{2} f_{0}''}{(f_{0}')^{3}} \\ &= 3 - \frac{b}{23} - \frac{1}{2} \frac{(b)^{2} (18)}{(23)^{3}} \end{aligned}$
	$\chi_1 = 2.7125$
	$f(2.7125) = (2.7125)^3 - 4(2.7125) - 9$
	JL2.1125/ = 0.1076
	Put $K=1$, $f^2 f''$
	Put $K = 1$, $\mathcal{H}_2 = \mathcal{H}_1 - \frac{f_1}{f_1^{-1}} - \frac{1}{2^2} \frac{f_1^2 f_1''}{(f_1')^3}$
	$= 2.7125 - \frac{0.1016}{18.013} - \frac{1}{2} (0.1076)^2 (10.275)$ $= \frac{0.1076}{18.013} - \frac{1}{2} (18.073)^3$
	= 2.7065

 $f(2.7065) = (2.7065)^3 - 4(2.7065) - 9$ = -0.0005

Put k=2 $\chi_{3} = \chi_{2} - \frac{f_{2}}{f_{2}'} - \frac{1}{2} \cdot \frac{f_{2}^{2} f_{2}''}{(f_{2}')^{3}}$ $= 2.7065 - \frac{(-0.0005)}{17,9754} - \frac{1}{2} \cdot \frac{(-0.0005)}{(17.9754)^{3}}$

x3 = 2-7065

I 2/k 2/k+1 5/k+10 3 2/7125 0.10761 2.7125 2.7065 -0.00052 2.7065 2.7065 -0.0005. The stoot is 2.7065

Porform two iterations of the chebysher method to find an approximate value of 1/7 Take the initial approximate as no=0.1

Soln !

q,

Let $x = \frac{1}{7}$ we get $\frac{1}{52} = 7$ Define $f(x) = \frac{1}{52} - 7$ we get $f'(x) = -\frac{1}{32}$

 $f''(x) = \frac{2}{x^3}$

Using $x_0 = 0.1$ we get $f(x_0) = 3$ $f'(x_0) = -100$ $f''(x_0) = 2000$

7d 317. g

$$\begin{aligned} \pi_{k+1} &= \pi_{k} - \frac{\pi_{k} - \pi_{k-1}}{f_{k} - f_{k-1}} \quad f_{k} \quad k = 1, 2, \cdots \\ \text{We obtain,} \\ &\in_{k+1} &= e_{k} - \frac{(4_{k} - e_{k-1}) \quad f(\xi_{1} + e_{k})}{f(\xi_{1} + e_{k}) - f(\xi_{1} + e_{k-1})} \\ \text{Escharding } f(\xi_{1} + e_{k}) \quad \text{and } f(\xi_{1} + e_{k-1}) \text{ in Tayboly} \\ \text{Sences about the point } \xi_{1} \quad \text{and noting that} \\ f(\xi_{1}) = 0 \quad \text{we get,} \\ &\in_{k+1} = e_{k} - (e_{k} - e_{k-1}) \left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) + f'(\xi_{1}) \quad e_{k-1} + \frac{e_{k}}{2!} \quad f''(\xi_{1}) - \frac{1}{2!} \\ &\left[f(\xi_{1}) - \frac{1}{2!} \\ & f''(\xi_{1}) \\ & f'''(\xi_{1}) \\ & f''(\xi_{1}) \\ & f''(\xi_{1}) \\ & f''$$

$(or) \in K_{+1} = \frac{1}{2} \frac{f''(\xi)}{f'(\xi)} \in K \in K_{-1} + O \left(\frac{1}{2} \in K_{-1} + \frac{1}{2} \in K_{-1} + \frac{1}{2} \in K_{-1} + \frac{1}{2} \right)$
EK+1 = C EK EK-1 (And higher powers of
$C = \frac{1}{2} \frac{f''(\xi)}{f'(\xi)}$ Ex our neglected)
The relation of the form 3 is called the
equation.
Suppose P is the order of this method
then $F_{k} = A \in \mathbb{R}^{P} \longrightarrow (A)$
where A & p are to determined from the
we have $EK = A E_{K-1}$
cor) E _{k-1} = A-1/P E _k 1/P substitute these values of E _{k+1} & E _{k-1} in 3
substitute these values of
we obtain $A \in R^P = C \in R A^{-YP} \in R^{+YP}$
ELP = CA-YP EK EK
The state of Provide Charles of the state of
$E_{k} = CA$ of E_{k} on both sides we get comparing the power of E_{k} on both sides we get
$P = \Gamma + \gamma P \qquad \qquad$
$P = \frac{P+1}{P} \Rightarrow P^2 = P+1$ $P^2 = P-1 = 0$
$p^2 - p - l = 0^{-1}$
$p = 16^{-1}(1 \pm \sqrt{5})^{-1}$
find state of
neglecting the - sign method is P=1.618
noglecting the -' sign, we juict convergence for the second method is $P=1.618$ we also obtain $A = C \overline{P+1}$
we also obtain A=

Regular - Falsi Method !

If the function f(x) in the equality f(x)=0 is convex in the interval (xo, x) that contains the root, then one of the point to or x, is always fixed and the other point vouries with k. If the point No is fixed. Then the function f(x) is approximated by the Straight line possing through the point. (x_0, y_0) and (x_k, f_k) , k = 1, 2, ...The irror equation 3 becomes. EKti = CEOEK where $c = \frac{1}{2} = \frac{f''(q)}{f'(q)}$ and $f_0 = 2/0 - q$ N independent of K. There fore, we can write $E_{k+1} = C^* E_k$ where $c^{\dagger} = C \in \mathcal{C}$ is the asymptotic lerror Hence the Regula - Falsi method hows linear rate of covergence. Newton - Raphson Method !. Substitute, $x_k = \xi + \epsilon_k$ in $\lambda_{k+1} = \lambda_k - \frac{f_k}{r} f$ expanding $f(\xi + \epsilon_k)$, $f'(\xi + \epsilon_k)$ in Taylor's services about the point & we obtain, $\xi + \epsilon_{k+1} = \xi + \epsilon_k = f(\xi + \epsilon_k)$ f'(gter)

$$\begin{split} \varepsilon_{k+1} &= \varepsilon_{k} - \left[\frac{f(q) + \varepsilon_{k} \cdot f'(q) + \frac{\varepsilon_{k}}{2} f''(q) + \cdots \right] \\ &\quad f'(q) + \varepsilon_{k} f''(q) + \frac{\varepsilon_{k}}{2} f''(q) + \cdots \right] \\ &\quad = \varepsilon_{k} - f'(q) \left[\varepsilon_{k} + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad f'(q) \left[1 + \varepsilon_{k} \frac{f''(q)}{f'(q)} + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \left[1 - \varepsilon_{k} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \cdots + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \cdots + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \cdots \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \cdots + \frac{\varepsilon_{k}}{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{f'(q)} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{f'(q)} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{f'(q)} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{f'(q)} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} \frac{\varepsilon_{k}}{f''(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{f'(q)} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} \frac{\varepsilon_{k}}{f''(q)} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{\varepsilon_{k}} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{\varepsilon_{k}} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k}^{2} \frac{f''(q)}{f'(q)} + \varepsilon_{k} + \varepsilon_{k} + \varepsilon_{k}^{2} - \frac{\varepsilon_{k}}{\varepsilon_{k}} \right] \\ &\quad = \varepsilon_{k} - \left[\varepsilon_{k} - \varepsilon_{k} + \varepsilon_{k$$

Where
$$a_0$$
, a_1 and a_2 and a_2 and a_3 problem of a_1 produced by prescribing 3 appropring Condition an $f(x)$ and in devivatives.
If $\chi_{K-2} \chi_{K-1}$ and χ_{K} are 3 approximation to the size $f(x)=0$ then we may determine a_0 , a_1 and a_2 in (1)
 $f_{K-2} = a_0 \chi_{K-2}^2 + a_1 \chi_{K-2} + a_2$
 $f_{K-1} = a_0 \chi_{K-1}^2 + a_1 \chi_{K-1} + a_2$
 $f_{K} = a_0 \chi_{K-1}^2 + a_1 \chi_{K-1} + a_2$
 $f_{K} = a_0 \chi_{K-1}^2 + a_1 \chi_{K-1} + a_2$
 $f_{K} = a_0 \chi_{K-1}^2 + a_1 \chi_{K-1} + a_2$
 $f_{K} = a_0 \chi_{K-1}^2 + a_1 \chi_{K-1} + a_2$
 $f_{K-1} \chi_{K-2}^2 \chi_{K-2} + a_1 \chi_{K-2} + a_2$
Eliminating a_0 , a_1 and a_2 forom (0 and (3),
 $\begin{cases} f(x) \chi^2 \chi + a_1}{f_{K-2} \chi_{K-2}^2 - \chi_{K-2}} \\ f_{K-1} \chi_{K-1}^2 - \chi_{K-1} \\ f_{K-1} \chi_{K-2}^2 - \chi_{K-1} \\ (\chi_{K-2} - \chi_{K-1}) (\chi_{K-2} - \chi_{K}) \\ (\chi_{K-2} - \chi_{K-1}) (\chi_{K-2} - \chi_{K-1}) \\ (\chi_{K-3} - \chi_{K-1}) (\chi_{K-3} - \chi_{K-1}) \\ f_{K-1} (h_{K-1} + h_{K}) \\ h_{K} (h_{K} + h_{K-1}) \\ h_{K} (\chi_{K-3} - \chi_{K}) \\ \chi_{K-3} (\chi_{K-3} - \chi_{K-1}) \\ \chi_{K-3} (\chi_{K-3} - \chi_{K-3}) \\ \chi_{K-3} (\chi_{K-3} - \chi_{K$

hk-1 =
$$\chi_{k-1} - \chi_{k-2}$$
 $\delta_{k} = 1 + \lambda_{k}$
Alternative Method!
We assume for $f(x)$ a polynomial of degree a
in the form $f(x) = a_{0}(x - x_{k})^{2} + a_{1}(x - x_{k}) + a_{2} = o,$
Substituting $\chi = \chi_{k}, \chi_{k-1}, \chi_{k-2}$
Determine a_{0}, a_{1}, a_{2} forom the equation
 $f_{k} = a_{2}$
 $f_{k-1} = a_{0}(\chi_{k-1} - \chi_{k})^{2} + a_{1}(\chi_{k-1} - \chi_{k}) + a_{2}(\chi_{100})$
 $f_{k-2} = a_{0}(\chi_{k-2} - \chi_{k})^{2} + a_{1}(\chi_{k-2} - \chi_{k}) + a_{2}(\chi_{100})$
 $f_{k-2} = a_{0}(\chi_{k-2} - \chi_{k})^{2} + a_{1}(\chi_{k-2} - \chi_{k}) + a_{2}(\chi_{100})$
 $f_{k-2} = a_{0}(\chi_{k-2} - \chi_{k})^{2}(f_{k} - f_{k-1}) - (\chi_{k} - \chi_{k-1})^{2}(f_{k} - f_{k-2})]$
We obtain $a_{2} = f_{k}$
 $a_{1} = \frac{1}{D}[(\chi_{k} - \chi_{k-2})(f_{k} - f_{k-2})]$
 $a_{0} = \frac{1}{D}[(\chi_{k} - \chi_{k-2})(f_{k} - f_{k-2})]$
 ω here $D = (\chi_{k-1} - \chi_{k})^{2}(\chi_{k-2} - \chi_{k}) - (\chi_{k-2} - \chi_{k})^{2}$
 $(\chi_{k-1} - \chi_{k})$
 $= (\chi_{k-1} - \chi_{k})(\chi_{k-2} - \chi_{k})[\chi_{k-1} - \chi_{k-2}]$
solving the equation D for $\chi - \chi_{k}$ and
 $\chi_{k+1} = \chi_{k} + -a_{1} \pm \sqrt{a_{1}^{2} - 4a_{0}a_{2}}$

$$= \chi_{K} - \frac{2a_{2}}{a_{1} \pm \sqrt{a_{1}^{2} - 4a_{0}a_{2}}} \xrightarrow{k, 2, 2, ...} (3)$$
The sign in the denominator in $a_{q}n_{3}$
is choosen as that of a_{1} so that the
denominator has the maximum **absolute**
value.
i) χ_{K} changes by a Smaller value.
On substituting $\chi_{j}^{\prime} = \xi + \epsilon_{j}^{\prime}$, $j = k \cdot 2$, $k \cdot i, k$
4 lexpart $\int (\xi_{1} + \epsilon_{j})$ in Taylor's Aeries about
the point ξ in $(3) \in uning - f(\xi_{1}) = 0$.
We get,
 $D = (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K-1} - \epsilon_{K-2})$
 $a_{2} = \epsilon_{K} f'(\xi_{1}) + \frac{1}{2} \epsilon_{K}^{2} f''(\xi_{1}) + \frac{1}{6} \epsilon_{K}^{3} f'''(\xi_{1})$
 $= \frac{1}{D} \left[(\epsilon_{K} - \epsilon_{K-2})^{2} \{ (\epsilon_{K} - \epsilon_{K-1}) f'(\xi_{1}) + \frac{1}{2} (\epsilon_{K}^{2} \epsilon_{K}^{2}) + \frac{1}{16} (\epsilon_{K}^{3} - \epsilon_{K}^{3}) f'''(\xi_{1}) + \frac{1}{12} (\epsilon_{K}^{2} - \epsilon_{K}^{2}) f''(\xi_{1}) + \frac{1}{12} (\epsilon_{K}^{2} - \epsilon_{K}^{2}) f''(\xi_{1}) + \frac{1}{2} (\epsilon_{K}^{2} - \epsilon_{K}^{2}) f''(\xi_{1}) + \frac{1}{2} (\epsilon_{K}^{2} - \epsilon_{K}^{2}) f''(\xi_{1}) + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) f''(\xi_{1}) + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) f''(\xi_{1}) + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K-1} - \epsilon_{K-2}) f''_{K}) + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K-1} - \epsilon_{K-2}) f''_{K} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K} - \epsilon_{K-2}) f''_{K} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) f''_{K} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K} - \epsilon_{K-2}) f''_{K} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K} + \epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K} + \epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) (\epsilon_{K} + \epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-2}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) f''_{S} + \frac{1}{2} (\epsilon_{K} - \epsilon_{K-1}) f''_{S} + \frac{1}{2} (\epsilon_$

$$\begin{aligned} \mathbf{a}_{0} &= \frac{1}{D} \left[\left(\xi_{k} - \varepsilon_{k,2} \right) \left\{ \left(\xi_{k} - \varepsilon_{k,1} \right) \frac{1}{2} \left(\xi_{k} \right) + \frac{1}{2} \left(\varepsilon_{k}^{2} - \varepsilon_{k,2}^{2} \right) \frac{1}{2} \xi_{k}^{2} + \frac{1}{2} \left(\varepsilon_{k}^{2} - \varepsilon_{k,2}^{2} \right) \frac{1}{2} \left(\xi_{k}^{2} - \xi_{k,2}^{2} \right) \frac{1}{2} \left(\xi_{k}^{2} - \xi_{k}^{2} - \xi_{k}^{2} \right) \frac{1}{2} \left(\xi_{k}^{2}$$

(Aller

$$\begin{aligned} \varepsilon_{k+1} &= \varepsilon_{k} - \left[\varepsilon_{k} + \frac{1}{2} \varepsilon_{k}^{2} c_{2} + \frac{1}{6} \varepsilon_{k}^{3} c_{3} + \cdots \right]_{k} \\ &= \left[1 + \left\{ \frac{1}{2} \varepsilon_{k} c_{2} + \frac{1}{6} \left(\frac{6}{k^{2}} - \frac{6}{k_{1}} c_{k} c_{1} + \frac{1}{2} \varepsilon_{k}^{2} c_{2} + \frac{1}{6} \varepsilon_{k}^{2} c_{k} c_{k} + \frac{1}{2} \varepsilon_{k}^{2} c_{2} + \frac{1}{6} \varepsilon_{k}^{2} c_{k} c_{k} \right] \\ &= \varepsilon_{k} - \left[\varepsilon_{k} + \frac{1}{2} \varepsilon_{k}^{2} c_{2} + \frac{1}{6} \varepsilon_{k}^{2} c_{k} c_{k} - \frac{6}{6k^{2}} c_{k} c_{k} + \frac{1}{6k^{2}} \varepsilon_{k} c_{k} + \frac{1}{6k^{2}} \varepsilon_{k} c_{k} c$$

*;

1.

The eqn F(P)=0 has the smallest the root in (1,2). We use the Newton -Raphson. method to determine this root. We have $P_{K+1} = P_K - F(P_K)$ F' (PK) $= P_{k} - P_{k}^{3} - P_{k}^{2} - P_{k-1}$ 4, 3 PK2 - 2 PK-1 (or) $P_{K+1} = 2 P_{K}^{3} - P_{K}^{2} + 1$ K = 0, 1Steerling with 3 Pk2 - 2 Pk-1 Po = 2 $P_1 = 1.8571$ $P_3 = 1.8393$ P2 = 1.8395 The stoot of the egn 2.45 is p=1.84 The state of convergence of the muller The state of Forom $(1+2+\frac{1}{p})$ method is Forom $(1+2+\frac{1}{p})$ $p^{2}/p^{2}+p+1 = c^{0+2}$ A = C where c is given by 2-42. Chebysher method: Such $\chi_{k} = \xi + \epsilon_{k} \in esepanding f(\chi_{k}), f(\chi_{k})$ f"(nk) about the point & in the chebysher $\mathcal{H}_{k+1} = \mathcal{H}_{k} - \frac{f(\mathcal{H}_{k})}{f'(\mathcal{H}_{k})} - \frac{1}{2} \left[\frac{f(\mathcal{H}_{k})}{f'(\mathcal{H}_{k})} \right]^{2} \left[\frac{f''(\mathcal{H}_{k})}{f'(\mathcal{H}_{k})} \right]^{2} \left[\frac{f''(\mathcal{H}_{$ we obtain $\frac{f(\chi_{k})}{f'(\chi_{k})} = \frac{f(\xi + \epsilon_{k})}{f'(\xi + \epsilon_{k})}$

$$= e_{k} f'(\xi) + \frac{1}{2} e_{k}^{2} f''(\xi) + \frac{1}{6} e_{k}^{3} f'''(\xi),$$

$$= e_{k} f'(\xi) + e_{k} f''(\xi) + \frac{1}{2} e_{k}^{2} f'''(\xi),$$

$$= \left[e_{k} + \frac{1}{2} c_{2} e_{k}^{2} + \frac{1}{6} c_{3} e_{k}^{3} + \cdots\right] \times \left[1 + \left(c_{2} e_{k} + \frac{1}{2} c_{3} e_{k}^{3} + \cdots\right)\right]^{-1},$$

$$= \left[e_{k} + \frac{1}{2} c_{3} e_{k}^{2} + \frac{1}{6} c_{3} e_{k}^{3} + \cdots\right] \times \left[1 - c_{2} e_{k} + \left(c_{2}^{2}\frac{1}{2}c_{3}\right) e_{k}^{3} + \cdots\right]\right],$$

$$= e_{k} - \frac{1}{2} c_{3} e_{k}^{2} + \left(\frac{1}{2} c_{2}^{2} - \frac{1}{3} c_{3}\right) e_{k}^{3},$$

$$Where c_{i} = \frac{f^{1(i)}(\xi)}{f'(\xi)} i = 2i_{3}, \dots$$

$$\frac{f''(\xi)}{f'(\xi)}$$

$$We gd \left(\frac{f(\chi_{k})}{f'(\xi)}\right)^{2} = e_{k}^{e} - c_{k} e_{k}^{3} + \cdots$$

$$\frac{f''(\chi_{k})}{f'(\xi)} = \frac{f''(\xi) + e_{k}}{f'(\xi) + e_{k}} f''(\xi) + \cdots$$

$$= \frac{f''(\xi)}{f'(\xi)} \left[1 + \frac{c_{3}}{c_{2}} e_{k} + \cdots\right] \left[1 + \left(c_{2} e_{k}\right)\right]$$

$$= c_{2} \left[1 + \frac{c_{3}}{c_{2}} e_{k} + \cdots\right] \left[1 - c_{2} e_{k} + \cdots\right]$$

$$= c_{2} + \left(c_{3} - c_{3}\right)^{2} e_{k} + \cdots$$

$$Sub w G we obtain the coros can
$$e_{k+1} = e_{k} - \left[e_{k} - \frac{1}{2} c_{2} e_{k}^{3} + \cdots\right] \left[c_{2} + \left(c_{3} - b_{3}\right)^{2} e_{k} + \cdots\right]$$$$

ľ

.

,

 $= \left[- \left(\frac{1}{2} \left(\frac{2}{2} - \frac{1}{3} \left(\frac{3}{3} \right) - \frac{1}{2} \right) \left(\left(\frac{2}{3} - \frac{2}{3} \right) - \frac{2}{3} \right) \right] \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{6} \right)^{2} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \left(\frac{2}{3} - \frac{$ + 0(EK4) $= \left(\frac{1}{2} \left(2^{2} - \frac{1}{6} \right) \left(2^{3} + 0 \right) \left(\frac{1}{6} \right) \left(\frac{1}{6} \right) \left(\frac{1}{2} \left(2^{2} - \frac{1}{6} \right) \right) \left(\frac{1}{6} \right) \left(\frac{1}{6}$ Hence the state of convergence of the chebysher method () is 3. Polynomial equation: The root of a real polynomial equation degree n 0 $P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0,$ aoto-D where a, a, ... an are real Numbers. Definition: when a polynomial a (tre) sign follows a (tre) sign and a (re) sign follows a (-re) sign a continuous or permanent of signs is Said to occur. follows a L-ve) sign But if the positive sign, and negative sign follows a (tre) sign. $P_5(x) = 8x^5 + 12x^4 - 10x^3 + 17x^2 + 18x + 520$ Ex! Descarte's Rule of signs! The number of positive real root of Pn(x) = 0 Can not exceed the number of Sign changes in Ph(21). And the number of Negative steal soot of Pn(21) =0 cannot exceed the number of sign changes in Pn(-xe).

eqn @ has maximum of 4 positive rom and I negative root. The exact number of real stools of the Polynomial can be found by Sturm's thing Let f(x) be a given polynomial of dag and let fi(x) orepresent its first order derivatives, denote by f2(x) is the remaining of f.(x) divided by f(x) taken with the stevense sign and f3(x) is the stemacroup of film) divided by f= (x) with the orevense of sign and so on. And till a Constant is avvived at. Thus obtain a sequence of function f(x), f(x), ... fn(x) one called Stimis function (or) Stwim's Sequence. Sturm's theorem! The number of real roots of the equation f(x) =0 (low on [a, b] equals the difference between the number of Changes of sign in the Sturm's sequen at x=a + x=b priorided that f(a) to s f(b) to Proof : If f(x) =0 hais a multiple root. Before obtain the sturm's sequence. f(x), f(x),...,f(x), where f_1(x) is exactly

divisible by f1(2). In this case fr(x) will not be a constant. since film) gives the greatest common divisor of fix) and fix) the multiplicity of the proot of f(x)=0 is one more than 41 that of fi(x). 1/9 we obtain a new stroim's sequence by dividing all the function by $f(x), f_1(x) \cdots f_n(x)$ by $f_n(x)$ Using this sequence we can find the number real roots of the equation f(x)=0 on [a,b] In the same very without taking multipli since a polynomial of degree nhows exactly n roots. The number of complex root equal ton. where a root of multiplicity is to be If gi, g2,... En are real and distinct counted. root of eqn D. $P_n(x) = a_0(x - g_1)(x - g_2) - (x - g_n) = 0.$ Assume that \$1, \$2,... En are real and distand stoots with multiplicity Vi, V2,.... Vs then the eqn O takes of a $P_n(x) = a_0(x - \xi_1)(x - \xi_2) - - (x - \xi_n) = 0$ from where $\gamma_1 + \gamma_2 + \cdots + \gamma_s = h$. 1000

If either
$$g_1$$
 and g_2 are the complex by
by g_1 and g_2 steal and multiplied
together and all other stock g_1 ,
together and all other stock g_1 ,
 $together and all other stock g_1 ,
 $together and all other stock g_1 ,
 $g_1 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_1 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_1 \oplus becomes$.
 $g_2 \oplus becomes$.
 $g_3 \oplus becomes$.
 $g_1 \oplus b$$$

$$= \left[\frac{q_{x}}{l_{0}} - 5\right] = -\frac{q_{x}}{l_{0}} + 3$$

$$f_{3}(x) = -q_{x} + 50$$

$$\frac{f_{3}(x)}{f_{3}(x)} = \frac{10x - 3}{-q_{x} + 50}$$

$$\frac{10y_{1}}{l_{3}(x)} = \frac{10x - 3}{l_{3}(x)}$$

$$\frac{10y_{1}}{l_{3}(x)} = -\frac{1}{q_{x} + 50}$$

$$\frac{10y_{1}}{l_{3}(x)} = \frac{10x - 3}{l_{3}(x)}$$

$$\frac{10y_{1}}{l_{3}(x)} = -\frac{1}{q_{x} + 50}$$

$$\frac{10y_{1}}{l_{3}(x)} = -\frac{1}{q_{3}(x)}$$

$$\frac{10y_{1}}{l_{3}($$

ii) Soln:

$$f(x) = 4x^{4} + 2x^{2} - 1$$

$$f_{1}(x) = f_{1}(x) = 1bx^{3} + 4x$$

$$f_{1}(x) = 4x^{3} + x$$

$$f_{1}(x) = 4x^{3} + x$$

$$f_{1}(x) = 4x^{3} + x$$

$$= x + \frac{x^{2} - 1}{4x^{3} + x}$$

$$f_{2}(x) = - [\text{ sumainder of } -\frac{f(x)}{f_{1}(x)}]$$

$$= -(x^{2} - 1)$$

$$f_{2}(x) = -x^{2} + 1$$

$$f_{3}(x) = -(x^{2} + 1)$$

$$f_{3}(x) = -(x^{2} + 1)$$

$$f_{3}(x) = -[\text{ remainder of } -\frac{f(x)}{1 + x^{2}}]$$

$$f_{3}(x) = -[\text{ remainder of } -\frac{f(x)}{1 + x^{2}}]$$

$$f_{3}(x) = -x$$

$$f_{3}(x) = -x$$

$$f_{3}(x) = -x$$

$$f_{3}(x) = -x$$

$$f_{4}(x) = -1$$

$$x = f(x) = f_{1}(x) = 5x + \frac{1}{-x}$$

$$f_{4}(x) = -1$$

$$x = f(x) = f_{1}(x) = 5x + \frac{1}{-x}$$

$$f_{4}(x) = -1$$

$$x = f(x) = f_{1}(x) = f_{3}(x) = -x$$

$$f_{4}(x) = -1$$

$$x = f(x) = f_{1}(x) = f_{3}(x) = -x + \frac{1}{-x}$$

$$f_{4}(x) = -1$$

$$x = f(x) = -1$$

$$x = -x + -3$$

$$f_{5}(x) = -1$$

$$x = -x + -3$$

$$f_{5}(x) = -1$$

.

,

If any element in Striving's sequence becomes
zero for some value of x, we give to it
the sign of a immediate proceeding element
then, we find that the polynomial has 2
security outs one in the interval (-1, 0) and
one in the interval (0, 1).
The polynomial has the period of
(omplex stock.
2. Find the no of steal and complex stock of
the polynomial

$$P_4(x) = x4^4 - 4x^3 + 3x^2 + 4x - 4$$

 $f'(x) = 4x^4 - 4x^3 + 3x^2 + 4x - 4$
 $f'(x) = 4x^3 - 12x^2 + 6x + 4$
 $f_2(x) = \frac{f(x)}{f_1(x)} = \frac{x^4 - 4x^3 + 3x^2 + 4x - 4}{gx^3 - 6x^2 + 3x + 2}$
 $f_2(x) = -[Remainder of f(x)]$
 $= -[\frac{3}{2}x^2 - \frac{9}{2}x - 3]$
 $= \frac{3}{2}x^2 - \frac{9}{2}x - 3]$
 $= \frac{3}{2}x^2 - \frac{9}{2}x - 3]$
 $= \frac{1}{2}(x) = \frac{f_1(x)}{f_2(x)} = \frac{4x^3 - 6x^2 + 3x + 2}{3x^2 - 9x + 3}$
 $dx \Rightarrow = 3x^2 - 9x + 6$
 $f_3(x) = \frac{f_1(x)}{f_2(x)} = \frac{4x^3 - 6x^2 + 3x + 2}{3x^2 - 9x + 6}$
 $= -(-x + 2)$
 $= x - 2$

 $f_4(x) = \frac{f_2(x)}{f_3(x)} = \frac{3x^2 - qx + b}{x - 2}$ -32 +3 $= - (Remainder of \frac{f_2(x)}{f_3(x)}) - \frac{3x^2 - 9x_{1b}}{-3x^2 - 6x}$ =0 When we divide $\frac{f_2(x)}{f_3(x)}$ we get o as the $\frac{3x}{5}$ if 3(x) is the last element of the strum sequere remainder. hence x= 2 is a double stoot of the polynomial We divide each element of the Strum sequence of by x-2 and obtain the new sequence $f^{+}(x) = x^{3} - 2x^{2} - x + 2$ as $f_1^{(x)} = 2x^2 - 2x - \frac{f_1(x)}{x - 2}$ $f_2^{\star}(x) = x - 1 \frac{f_2(x)}{x - 2}$ $f_3^*(x) = 1 + \frac{f_3(x)}{r^{-2}}$ We construct the r^{-2} following table of sign changes in the strum sequence. $x f^{*}(x) f^{*}(x) f_{2}^{*}(x) f_{3}^{*}(x)$ V(b) 3 + + -00 3 + + -1.5 -2 + + D 1 + ++ 1.5 -0 + + + 2.5 + 0 + + 4 we find that the polynomial has 3 real + ø 2100ts in the interval (-1.5,0), (0,1.5) 4 $p_{1=2}$ which lies in the interval (-1.5, 2.5)(1.5, 2.5) a double root. hence the polynomial how a simple root in Ŕ the interval (-1.5,0) + (0,1.5) and a double proof in the interval (-1.5, 2.5).

Iterative Methods: Burge - Vieta Method ! To determine a real number t such that (x-p) is a factor of the polynomial agn $Pn(x) = a_0 x n + a_1 x n + 1 + \dots + a_{n-1} x + a_n = 0, \quad a_0 \neq a$ If we divide Price) by the factor (x-p) then we get a quotient Qn-1 of dègree n-1 Qn-1 (x) = bo xn-1 + b1 xn-2+ - + bn-2x + bn-1 ->0 and a siemainder R. Thus we have The value R depends on P. Starting with an initial approximation fortherp Po to p we use some iterative method to improve the value of P such that Rn(P) = R(P) = 0 -> (3) This is the single equation in one unknown and the Newton-Raphson method (or) any other iterative method can be applied to improve the assumed value Po. . The Newton - Raphson method for eqn @ $P_{k+1} = P_k - \frac{P_n (P_k)}{P_n' (P_k)'}, k = 0, 1, 2, \dots$ becomes, for obtaining a multiple root we use the modified Newton-Raphion method. For polynomial legn the computation of Pn(B) & Pn'(Po) can be computed of loke Power of me on both iscales of @ we get.

with the help of synthetic division.
On comparing the co-efficients of like prove

$$x$$
 on both sites of \textcircled{O} we get,
 $a_0 = b_0$ $b_0 = a_0$
 $a_1 = b_1 - bP_0$ $b_1 = a_1 + Pb_0$
 $a_2 = b_2 - Pb_1$ $b_2 = a_0 + Pb_1$
 \vdots
 $a_K = b_K - Pb_{K-1}$ $b_K = a_K + Pb_{K-1}$
 \vdots
 $a_{R-} = Pb_{R-1}$ $R = a_{R} + Pb_{R-1}$
Let us introduce a quantity $b_{R} < define$
the following snecurrence size lation
 $b_K = a_K + Pb_{K-1}$, $k = 1, 2, \dots, n \rightarrow \textcircled{O}$
with $b_0 = a_0$
 eq_R \textcircled{O} we have
 $P_R(p) = R = b_R \rightarrow \textcircled{O}$
To determive $P_R'(p)$. we differentiate (6)
w.r.to $P \neq$ obtain
 $\frac{db_K}{dp} = b_{K-1} + P \frac{db_{K-1}}{dp} \rightarrow \textcircled{O}$
Ty we put $\frac{db_K}{dp} = c_{K-1} \rightarrow \textcircled{O}$
 \textcircled{O} becomes $C_{K-1} = b_{K-1} + PC_{K-2}$
which can be wouthen as
 $C_K = b_K + PC_{K-1}$, $k = 1, 2, \dots, n_1 \rightarrow \textcircled{O}$
 \clubsuit $c_0 = \frac{db_1}{dP} = \frac{d}{dP} (a_1 + Pb_0) = b_0$
Diff \textcircled{O} μ wing \textcircled{O} we get

,

$P_n'(P) = \frac{dP}{dP} = \frac{dbn}{dP} = C_{n-1} \rightarrow (1)$
The Newton-Raphson method in the above
Lation belowies
$P_{K+1} = P_K - \underline{P_{K+1}}$
is nothed is often is called the Burge-
determined grown ak. The calculation of are obtained forom ak. The calculation of the co-efficients bk * Ck can be carried
the co-eph dente
out as given below. and and and and and
P ao ai az an-z an-i, an P bo Pbi Pbn-3 Pbn-2 Pbn-1 Pbo Pbi Pbn-3 Pbn-2 Pbn-1
Pbo Pbi ipii-s bn = R
p bo b_1 b_2 b_{n-2} b_{n-1} $b_n = R$ p_1 p_2 p_{2n-3} p_{2n-2}
$P_{co} = P_{c_1} = P_{c_{n-3}} = P_{c_{n-2}}$
Co Ci C2 Cn-2 Cn-1 = $\frac{dR}{dP}$
The polynomial Pn(x) must be unique
in i hay (not) terms,
If some term is the presenter and which
If some think place with zoto, co-efficient it at the polynomial when p has been obtained to the determined when p has been obtained to the determined accuring the polynomial accuring the polynomial
when P has been officer
Qn-1 (x) = box n-1 + bix n-2 + + bn-2 x + bn-1 Qn-1 (x) = box n-1 + bix n-2 + + bn-2 x + bn-1 dot ated polynomial we
Rn-1 (21) = box is called the deflated polynomial, we is called the deflated polynomial, we
is called the augranic of one Birge-vieta repeat the 1st step of one Birge-vieta
method using the last value of p to obtain method using the last value of p to obtain
method using the last value of real real root The defiated polynomial. The next real root is obtained using this defiated polynomial.
is obtained using this aeflater in

Use synthetic divisionade and poliform & itoriu of the Birge-vieta method to find the smallest the root of the polynomial A-N $P_3(x) = 2x^3 - 5x + 1 = 0$ Use the initial approximation Po=0.5 Also obtain the deflated polynomial. Soln we coste $P_3(x) = 2x^3 + 0x^2 - 5x + 1$ Use the initial approximation Po=0.5 0.5 | 2 0 -5 1 0 1 0.5 - 2.25 2 1 - 4.5 - 1.25 = 630 1 12 2 - 3.5 = (2) $P_1 = P_0 - \frac{b_3}{c_2} = 0.5 - \frac{1.25}{3.5} = 0.142857$ 0.142857 2 0 -5 1 0 0.285714 0.040816 -0.708454 2 0.285714 -4.959184 0.291546 = b_3 0 0.285714 -0.081632 Q 0.571428 -4.877552 = C2 $P_2 = P_1 - \frac{b_3}{c_2} = 0.14 2857 + 0.291546$ 4-877552 P2 = 0.202630 To obtain the deflated polynomial we orepeat the the first port of the Birge-viet

method. we get

$$nethod. we get$$

 2^{00+20}
 $2^{0} -49536 0.082118 = 0.935610$
 $2^{0} -49536 0.082118 = 0.935610$
 $2^{0} -49536 0.082118 = 0.935400$
Since $b_3 = P_3(P_2) = 0.00349$ $2(0.00349) + ...5(0.0037)$
This gives the error in satisfying the given
 $2(0.0125 bo 2^2 + b_1 2 + b_2)$
 $= 22^2 + 0.4052602 - 4.971882$
20 Use Synthetic division and poriform & iteration
of the Birge - vieta method to find two simuliar
 $positive stoot of the equatron$
 $24 - 3x^3 + 3x^2 - 3x + 2 = 0$
Use the unitial approximation.
 $positive x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$
Use the initial approximation.
 $positie = 2^{-1} -3^{-3} -3^{-2} -3^{-1} -3^{-2} -3^{-1} -3^{-2} -3^{-1} -3^{-2} -3^{-1} -3^{-2} -3^{-1} -3^{-2} -3^{-$

A

suppose that [B, 90) is an initial approximation and that $(P_0 + \Delta P, q_0 + \Delta q)$ is the true solution. Following the newton - Raphson method. $\Delta p = -RSq - SRq$ 10 RpSq - Rq Sp $\Delta q = -\frac{RPs - RSp}{RpSq - RqSp} \longrightarrow (3)$ where Rp, Rq, Sp, Sq one the partial devivatives of R and S with respect to p and 9. nespectively. These quantities and R, S cure evaluated at Po, 90. The co-efficients bi, R and s can be determined by comparing the dike power of x in O we obtain bo = ao $a_0 = b_0$ $b_1 = a_1 - Pbb$ a1 = bit Pbo b2 = 92 - Pb1 - 960 $a_2 = b_2 + Pb_1 + 9b_0$ $q_{K} = b_{K} + Pb_{K-1} + q_{b_{K-2}} = b_{K} = q_{K} - Pb_{K-1} - q_{b_{K-2}}$ ak-1 = R+ Pbn-2 +9bn-3 R = an-1 - Pbn-2-9bn-3 an = Stabn-2 $S = an - qbn - 2 \rightarrow (f)$ we now introduce the recivision formula, br = 9r - Pbr-1 - 9br-2, R=1,2...n -> 3 Where bo = ao , bk-1=0 composing the last & equs with those of son @ we get,

R = bn-1S = bn + Pbn-1 The porticul derivatives Rp, Rq, Sp and Sq can be determined by differentiating (5) wirito pand q. we have, $-\frac{\partial bk}{\partial P} = bk-1 + P \frac{\partial bk-1}{\partial P} + Q \frac{\partial bk-2}{\partial P}$ $\frac{\partial bo}{\partial P} = \frac{\partial b k - 1}{\partial P} = 0$ $-\frac{\partial bk}{\partial q} = bk_2 + P \frac{\partial bk_{-1}}{\partial q} + q \frac{\partial bk_{-2}}{\partial q}$ $\frac{\partial b_0}{\partial q} = \frac{\partial b_{k-1}}{\partial q} = 0 \longrightarrow 6$ Put $\frac{\partial b_k}{\partial p} = -C_{k-1}$, k=1,2,...nin the ist eqn of 6 we find CK-1 = 6K-1 - PCK-2 -9CK-3 ->0 Further more if we wonte $C_{K-2} = -\frac{\partial b_K}{\partial a}$ then the 2rd eqn (gives CK-2 = bK+2 - PCK-3 - 9CK-4 we get a recurrence relation for the determination of CK forom bk as CK = bK - PCK-1 - 9 CK-2 K= 1,2 ... n-1 where $C_{K-1} = 0$ and $C_0 = -\frac{\partial b_1}{\partial P} = -\frac{\partial}{\partial P} \left(\alpha_1 - \beta_0 \right)$ we obtain Rp = - Cn-2 Sp = bn-1 - Cn-1 - PCn-2

$$\begin{array}{rcl} Rq = -(n-3 & Sq = -(Cn-2 + PCn-3) \\ \text{sub the above values in seqn (3) and } \\ \text{simplifying we get} \\ \Delta P = -(bn Cn-3 - bn-1, Cn-2) \\ \hline & (2n-2 - Cn-3)(Cn-1 - bn-1) \\ \Delta g = -(bn-1)(Cn-1 - bn-1) - bn Cn-2 \\ \hline & (2n-2) - Cn-3)(Cn-1 - bn-1) \\ \hline & (2n-2)(Cn-2)(Cn-2) - Cn-2 \\ \hline & (2n-2)(Cn) - Cn-2 - Cn-2 \\ \hline &$$

pi, i=0,1,2,... n-2 wie known forom the synthetic division procedure. The next quadratic factor is obtained using deflated polynomial. Porform 2 iteration of the Bairstom method to entract a quadratic factor n2+pn+q forom the polynomial $P_3(x) = x^3 + x^2 - x + 2 = 0$. \bigcirc Use the initial approximation Po = -0.9 2:0, Soln: 0 0.9 2.52 -0.9 1=6 2.8=61 1-43=62 $\Delta p = - (b_3 c_0 - b_2 c_1)$ $C_1^2 - C_0 (C_2 - b_2)$ K66 Rrey $= - \left[(0.119)(1) - (-0.19)(2.8) \right]$ $(2.8)^{2} - (1) \left[(1.43 + 0.19) \right]$ - - 0.1047 $\Delta q = -b_2 (c_2 - b_2) - b_3(c_1)$ $C_1^2 - C_0 (c_2 - b_2)$ = 0.1031 $P_1 = P_0 + \Delta P = -0.9 - 0.1047 = -1.0047$ 91 = 90 + 49 = 0.9 + 0.1031 = 1.0031

2 1.0047 purten. -1.0031 0 1.0047 2.0141 0.0111 -1.0031 -2.0141 $1 = b_0$ 2.0047=b, 0.0110 = b_2 0.0002 = b_3 1.0047 3.0235 ٥ -1.0031 $= c_0$ 3.0094 = c_1 2.0314 = c_2 $\Delta p = - (b_3 c_0 - b_2 c_1)$ $C_{1}^{2} - C_{0} (C_{2} - b_{2})$ $\Delta p = 0.0047, \Delta q = -0.031$ B=P, +AP =-1,000 $q_2 = q_1 + \Delta q_2 = 1,000$ The extracted quadratic factors $\mathfrak{R}^2 + \mathfrak{P}_2 \mathfrak{X} + \mathfrak{P}_2 = \mathfrak{X}^2 - \mathfrak{X} + \mathfrak{I} - \mathfrak{L}\mathfrak{X}\mathfrak{a}\mathfrak{c}\mathfrak{t}$ factors. and the state of the state 1. A. Strain Station the formation and (she his in a (to d) - Marke

1. Perform one iteration of the Bairstow method to
extract a quadractic factor
$$x^{2} + px + q$$
 from the
polynomial $x^{4} + x^{3} + 2x^{2} + x + 1 = 0$. Use the initial
approximation $P_{0} = 0.5$, $q_{0} = 0.5$ Starting with
 $P_{0} = 0.5$ $q_{0} = 0.5$ we obtain.
Soln:
 -0.5 1 1 2 1 1
 -0.5 1 1 2 1 1
 -0.5 0 -0.5 -0.25 -0.625
 -0.5 -0.25 -0.625
 1 $0.5 + b$, $1.25 + b$ $0.3125 = b$
 0 -0.5 0
 1 $0.0 = c_{1}$ $0.715 = c_{2}$ $-0.25 = c_{3}$
 $\Delta p = -\frac{b_{4}c_{1} - b_{3}c_{2}}{c_{2}^{2} - c_{1}(c_{3} - b_{3})}$
 $= (-0.3185)(0.0) - (0.125)(0.715)$
 $(0.715)^{2} - (0.0)(-0.25 - 0.125)$
 $= 0.14b7$
 $\Delta q = -\frac{b_{3}(c_{3} - b_{3}) - b_{4}c_{2}}{c_{3}^{2} - c_{1}(c_{2} - b_{3})}$
 $= -(0.125)(-0.25 - 0.125) - (0.3125)(b.75)$
 $= 0.5$
 $P_{1} = P_{0} + \Delta p = 0.66b71$
 $q_{1} = q_{0} + \Delta q = 1.0$

x2+p,x+q1=x2+0-6667xe+1

Direct Method!

Graeffe's Root squaring method!

It is used to find the scoots of a polynomial with steal co-efficients. The stoots may be steal and distinct steal and equal or complex.

Distinct Roots:

We separate the proofs of the equation $P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n=0}, a_0 \neq 0 \rightarrow 0$ by forming another equation with the help of proof squeening process, whose proofs are very high powers of the proofs of the eqn (D). Separating the even and odd powers of x in (D) and squaring we get $(a_0 x^n + a_2 x^{n-2} + a_4 x^{n-4} + \dots)^2$ $= (a_1 x^{n-1} + a_3 x^{n-3} + \dots)^2$

Simplifying we obtain. $a_0^2 \varkappa^{2n} - (a_1^2 - a_0a_2) \varkappa^{2n-2} + (a_2^2 - a_1a_3 + a_0a_0a_2) \varkappa^{2n-2} + (a_1^2 - a_0a_0a_2)$ $\chi^{2n-4} - \ldots + (-1)^n a_n^2 = 0$

Substituting Z for $-x^2$ we have by $z^n + b_1 z^{n-1} + \dots + b_{n-1} + b_n = 0 \longrightarrow \textcircled{O}$ where $b_n = a_0^2$

$$b_{1} = a_{1}^{2} - 2a_{0} a_{2}$$

$$b_{2} = a_{2}^{2} - 2a_{1}a_{3} + 2a_{0}a_{4}$$

Dn =

Thus all the by's are known interms of an's.

The roots of the eqn \mathfrak{O} core $-\xi_1^2, -\xi_2^2, \ldots, \xi_n^2$ where $\xi_1, \xi_2, \ldots, \xi_n$ are roots of eqn() The co-efficients be's can be obtained as follow, a_0 a_1 a_2 a_3 a_1 a_n

 $a_0^2 a_1^2 a_2^2 a_3^2 \cdots a_n^2$ - 2aoa2 -2a1a3 -2a2a4 ---

Qao a4 2a, a5 ---- bn bo b1 b2 b3 ---- bn

(K+1) the column in the above table can be The obtained as follows.

The terms alternate in Sign Storiting with a tre sign. The 1st term is the Square of the (k+1)th co-efficient ak. The and term is twice the product of the neavest neighbowing co-efficients ak-1 = ak+1. The 3rd is twice the product of the next neighbouring co-efficients ak-2 + ak+2, This Porocedure à continued. Untill there are no available co-efficients to form the Cross products.

This procedure can be supplaced in m' times and we obtain the eqn.

Boxn + B1xn-1 + B2 xn-2 + ... + Bn-1 x + Bn =07 Ð whose stoots R1, R2, R3... Rn are the 2^m the power of the roots of the equation (I) (Pn(x)) with opposite signs. $R_i = -\xi_i^{am}$ i=1,2...n

If we assume that

$$|\xi_{11}| > |\xi_{2}| > ... > |\xi_{n}|$$
Then $|R_{1}| >> |R_{2}| >> ... >> |R_{n}|$.
If the storts of O differ in magnitude
then the some power of the stork core widely
seperated for lorge m. we have

$$-\frac{B_{1}}{B_{0}} = \sum R_{1} R_{1} \simeq R_{1} R_{2}$$

$$-\frac{B_{2}}{B_{2}} = \sum R_{1} R_{1} \simeq R_{1} R_{2}$$

$$-\frac{B_{3}}{B_{2}} = \sum R_{1} R_{1} \simeq R_{1} R_{2}$$

$$-\frac{B_{3}}{B_{2}} = \sum R_{1} R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{B_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{R_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{R_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{R_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{1} = \frac{B_{1}}{R_{1}} = 1 R_{1} R_{2} - ... R_{n}$$

$$R_{2} = R_{1} R_{2} - ... R_{n}$$

$$R_{1} = R_{1} R_{2} - ... R_{n}$$

$$R_{1} = R_{1} R_{2} - ... R_{n}$$

$$R_{2} = R_{1} R_{2} - ... R_{n}$$

$$R_{1} = R_{1} R_{2}$$

Thus the vanishing of all the cross product terms in the squaring process can be used as an indication that the rook have been widely separated.

Equal Roots: After few squarings, if the magnitude of the co-efficients Bk in about helf the square of the magnitude of the corresponding square of the magnitude of the corresponding co-efficients in the previous eqn then co-efficients in the previous eqn then it indicate that Eqk is a double root it indicate that Eqk is a double root by using we can find this double root by using the following procedure, we have,

 $R_{k} \simeq -\frac{B_{k}}{B_{k-1}} \text{ and } R_{k+1} \simeq -\frac{B_{k+1}}{B_{k}}$ $R_{k} R_{k+1} \simeq R_{k}^{2} = \left| \frac{B_{k+1}}{B_{k-1}} \right|$ $\therefore |R_{k}^{2}| = |\xi_{k}|^{2} (2^{m}) = \left| \frac{B_{k+1}}{B_{k+1}} \right|$ d the double

This gives the magnitude of the double Joot sub in the given eqn. We can find in sign. This double Joot can also be found directly Since RK and RK+1 Converge to the

Same root after sufficient squarings. Usually this convergence to the double root is slow.

By making use of the above obsention We can save a number of squarings.

Complex Roots: If Ex and Ex+1 forom a complex pair then this would cause the co-efficients of xn-K in the successive squarings to fluctuate both in magnitude and sign. If ξ_{K} , $\xi_{K+1} = \beta_{K} \exp(\pm i\phi_{K})$ is the complex pair then the co-efficients would fluctuate in magnitude and sign by an amount $2\beta_{k}^{m} \cos(m\phi_{k})$. A complex point can be spotted by such an Oscillation. For an sufficiently longe, PK can be determined yorom the relation. $\beta_k = \left| \frac{\beta_{k+1}}{\beta_{k+1}} \right|$ and ϕ is suitably determined forom the nelation. $2\beta \kappa^{m} \cos(m\phi_{k}) = \frac{\beta \kappa + j}{\beta \kappa - j}$ If the eqn has only one complex pavi, then we can 1st determine all the steal The complex peur can be woutten as roots. εκ, εκ+1= P±iq The sum of the rook then gives $g_1 + g_2 + \dots + g_{k-1} + 2P + g_{k+2} + \dots + g_n = -\frac{a_1}{a_0}$ This determine P, We also have $|B\kappa|^2 = P^2 + q^2$. . BK/ is already determined, this equation gives 9.

of the polynomial 23-622+112, Find all the sloots method of y square the Graeffe's 3100ts A-1' Assing co-efficient of the successive square Soln: The given by, - 20,93 ane -290a2 root a3 az 2^{m} a ao m -6 11 -6 1 T 36 0 ai 05 121 200 36 ł -20,03 2 010022 -78 - 22 49 36 14 ۱ 2 2401 1296 196 Ì -1008 -98 1393 1296 98 1 4 2 9604 1679616 1940449 -254db -2786 1686433 . 6818 1579616 8 1 3 46485124 2.84405622162 2.821699 1 -3.372866 +2.2903243×1010 4.3112258 2.8211530(12) 2.8210 99 16 1 4 ×1012 (r. successive approximations to the proots are 1012 given in the stable. The exact roots of the equation are 3,2,1 Approximation to the rook m ¢, a2 a3 3.7417 1.8708 0.8571 1.9417 0.9821 3.1463 2 12 CALT: 1.9914 0.9995 3 3.0144 1.9998 3.0003 4

Find all the groots of the polynomial

$$x^3 - 4x^2 + 5x - 2 = 0$$
. Using the Connectifie's root squaring
method. $x^4 - x^3 + 3x^2 + x - 4 = 0$ A-17
method. $x^4 - x^3 + 3x^2 + x - 4 = 0$ A-17
iom
soln:
The co-efficients is the groot squaring
by Creatifie's method.
m 2^m ao a_1 a_2 a_3
0 1 1 -4 5 -2
1 16 25 4
-10 -16
1 2 1 6 9 4
1 36 81 16
-18 -48
2 4 1 18 33 16
1 324 1089 256
-66 -576
3 8 1 258 513 256

5	1	66564	263169	65536
		-1026	-132096	ę
4	16 1	65538	131073	655.36
m	2 ^m a	σαι	Q2	a ₃
	I	0,4 295	71010 01718	x1011 0.42949x10
			6x106 -0-83	
5	32	1 0.4297	x 1010 0.858	399x10 0.42959x10
	b		Ь	
the co-e the meign withe The Now we	$fficient$ $itude of$ $previous$ $us indice$ $obtain$ $\xi_{11} ^{32} = \left \frac{B}{B}\right ^{32}$ $= (0)$ $ \xi_{11} ^{32} = 2.6$	B2 is the Con equation. calles &2 the mag	half the mesponding is a di initude 0	magnitude of square of co-efficient ouble root. f the root.
		0109		
All the a, 1, 1 if by the c	oroots t ne wa tirect pr af Squ this lo	the locat nt to gr rocedure wrings. ecample w	o) = 0.98 nook I the d it woul e find	ouble root d take loge
	E ₁ 2 =			
	[43] -	0.9786		

one more equating procedures [42] = 1.0109, [43] = 0.9892

and the second second

-: t

So that the convegance & Slow. It would require few more squarings to stabilize the root.

after chebysher method. S.T the following 2 sequences have convergence of the and order with same limit va. ŀ i) $\chi_{n+1} = \frac{1}{2} \chi_n \left(1 + \frac{a}{\chi_{-2}} \right)$ ii) $\chi_{n+1} = \frac{1}{2} \chi_n \left(3 - \frac{\chi_n^2}{2} \right)$ If xn is a suitably close approximation Ja, show that the magnitude of the error in the 1st formula for Xn+1 is about one - third of that in the second formula, and deduce that the formula. (iii) $\chi_{n+1} = \frac{1}{8} \chi_n \left(6 + \frac{39}{\chi_n^2} - \frac{\chi_n^2}{\alpha} \right)$ gives a sequence with the third order convergences. Taking the limits as n >00 and lim 2 n= Eq, soln! lim 2n+1 = G where & is the exact root. we obtain forom all the three methods Thus all the three method determine va, where a is any, positive sreal number. substructing Nn= & + En, and $\alpha^2 = \xi^2$ we get $x_{n+1} = \frac{1}{2} x_n \left(\frac{1+\alpha}{x_n^2} \right)$ (i) $\xi + \epsilon_{n+1} = \frac{1}{2} \left(\xi + \epsilon_n \right) \left[1 + \frac{\xi^2}{1 + \epsilon_n^2} \right]$ $= \frac{1}{2} \left(\frac{\xi + \epsilon_n}{\xi} \right) \left[1 + \frac{\xi^2}{\xi^2 / 1 + \frac{\epsilon_n}{\xi}} \right]$

$$= \frac{1}{2} \left(\xi_{1} + \epsilon_{n} \right) \left[1 + \left(1 + \frac{\epsilon_{n}}{\epsilon_{1}} \right)^{-\omega} \right]$$

$$= \frac{1}{2} \left(\xi_{1} + \epsilon_{n} \right) \left(2 - \frac{2\epsilon_{n}}{\epsilon_{1}} + \frac{3\epsilon_{n}^{2}}{\epsilon_{1}^{2}} - \cdots \right)$$

$$= \frac{1}{2} \left(2\xi_{1} - \frac{2\epsilon_{n}}{\epsilon_{1}} \left(\xi_{1} \right) + \frac{3\epsilon_{n}^{2}}{\epsilon_{1}^{2}} + 2\epsilon_{n} - \frac{2\epsilon_{n}^{2}}{\epsilon_{1}^{2}} + \frac{3\epsilon_{n}^{3}}{\epsilon_{1}^{2}} + \cdots \right]$$

$$= \frac{2\epsilon_{n}^{2}}{\epsilon_{1}} + \frac{3\epsilon_{n}^{2}}{\epsilon_{1}^{2}} + \frac{3\epsilon_{n}^{2}}{\epsilon_{1}^{2}} + \cdots \right]$$

$$\xi_{1} + \epsilon_{n+1} = \frac{1}{2} \left[2\xi_{1} + \left(3 - 2 \right) - \frac{\epsilon_{n}^{2}}{\epsilon_{1}} + \cdots \right]$$

$$\xi_{1} + \epsilon_{n+1} = \xi_{1} + \frac{1}{2} - \frac{\epsilon_{n}^{2}}{\epsilon_{1}} + 0 \left(\epsilon_{n}^{3} \right)$$

$$\epsilon_{n+1} = \frac{1}{2\epsilon_{1}} - \epsilon_{n}^{2} + 0 - 20$$
Hence the method has second order
Convergence with the error constant

$$c = \frac{1}{2\epsilon_{1}^{2}}$$

$$i) \xi_{1} + \epsilon_{n+1} = \frac{1}{2} \left(\xi_{1} + \epsilon_{n} \right) \left[3 - \frac{\xi_{1}^{2}}{\epsilon_{1}^{2}} - \frac{\epsilon_{n}^{2}}{\epsilon_{1}^{2}} - \frac{2\xi_{n}\epsilon_{n}}{\epsilon_{1}^{2}} \right]$$

$$= \frac{1}{2} \left(\xi_{1} + \epsilon_{n} \right) \left[3 - \frac{\xi_{1}^{2}}{\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \left(\xi_{1} + \epsilon_{n} \right) \left[1 - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \left(\xi_{1} + \epsilon_{n} \right) \left[1 - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}^{2}\epsilon_{1}}{2\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}^{2}\epsilon_{1}}{2\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}\epsilon_{1}}{2\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}\epsilon_{1}}{2\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}\epsilon_{1}}{2\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} - \frac{\epsilon_{n}}{\epsilon_{1}} \right]$$

$$= \xi_{1}^{2} - \frac{\xi_{1}\epsilon_{1}}{\epsilon_{1}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{2\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{\epsilon_{1}^{2}} + \epsilon_{1} - \frac{\epsilon_{n}^{2}}{\epsilon_$$

There fore, the magnitude of the error in
the first formula is about one third of
the first formula is about one third of
that in the second formula.
The we multiply () by 3 and add to ()
find that
we find that

$$ent1 = 3 en^2 + 0 (en^3) - 3 end end to ()
ent1 = 0 (en^3) - 3 (3)
It can be verified thad 0 (en^3) term in (3).
The new formula
the second formula we obtain
from the second formula we obtain
the new formula
the new formula
 $the new formula$
 $the new formula$
 $the new formula$
 $the second formula we obtain
 $\frac{3}{2} xn + \frac{3}{2} \frac{xn}{xn^2} + \frac{3}{2} xn - \frac{xn^3}{2a}$
 $= \frac{3}{2} xn + \frac{3}{2} \frac{xn}{xn^2} - \frac{xn^3}{2a}$
 $= \frac{3}{2} xn + \frac{3}{2} \frac{axn}{xn^2} - \frac{xn^3}{2a}$
 $= \frac{1}{2} \left[bxn + \frac{3axn}{2n^2} - \frac{xn^3}{a} \right]$
 $xn+1 = \frac{1}{18} xn \left[\frac{6}{2} + \frac{3a^2}{2n^2} - \frac{xn^3}{a} \right]$
which has third order convergence.
The equation $x^4 + x = e$ where e is a smallest
number has a stoot which is close to e,
number has a stoot which is close to e,
to mputation $x_1 + x = e + 4 + e^{2}$
() Find an iterative formula $xn = F(xn)$,
 $x_0 = 0$ for the computation show that we get
 $x_0 = 0$ for the computation when $x_1 = F(xn)$.$$$

neglecting of higher order.
(ii) Give a good estimate (of the form.
Nek. Where N 1x are integers) of the maximum
error. When the stort is estimated by the
expression above.
soln:
We would the given eqn
$$x^{4} + x = \epsilon$$
 in the
form $\chi(x^{3}+1) = \epsilon$
 $x = \frac{\epsilon}{x^{3}+1}$
and consider the formula
 $\chi_{n+1} = \frac{\epsilon}{x^{3}+1}$
 $\chi_{1} = \frac{\epsilon}{x^{3}+1}$
 $\chi_{1} = \epsilon$
 $\chi_{2} = \frac{\epsilon}{x^{3}+1} = \epsilon \left[1 + e^{3}\right]^{-1} e^{1}\left[1 + e^{3}\right]^{-1}$
 $= \epsilon \left[1 + (\epsilon - \epsilon^{4} + \epsilon^{7})^{3}\right]^{-1}$
 $= \epsilon \left[1 - (\epsilon - \epsilon^{4} + \epsilon^{7})^{3}\right]^{-1}$
 $= \epsilon \left[1 - (\epsilon^{3} - \epsilon^{n} + \epsilon^{21} + 3\epsilon^{q} + 3\epsilon^{15} - 3\epsilon^{15} + 3\epsilon^{15} - 3\epsilon^{15} - 5\epsilon^{16} + 3\epsilon^{15} - 3\epsilon^{16} - 5e^{16} + 3\epsilon^{16} + 3\epsilon^{16} - 3\epsilon^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 5e^{16} + 3e^{16} - 5e^{16} + 5e^{16} + 3e^{16} - 5e^{16} + 3e^{16} + 3e^{16} - 5e^{16} + 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} - 5e^{16} + 5e^{16} + 5e$

$$= e - e^{4} + 3e^{7} + e^{7}$$

$$= e - e^{4} + 4e^{7}$$

$$= e - e^{4} + 4e^{7}$$
Taking $\xi = \varepsilon - e^{4} + 4e^{7}$ we find that
$$E^{7}ror = \xi^{4} + \xi - \epsilon$$

$$= (-e^{-4} + 4e^{-7})^{-4} + (e^{-6^{4}} + 4e^{7})^{-6}$$

$$= e^{4} + e^{16} + 256 e^{28} + 4(-e^{7} - e^{13} - 4e^{17} - 6)$$

$$= e^{4} + e^{16} + 256 e^{28} + 4(-e^{7} - e^{13} - 4e^{17} - 6)$$

$$= e^{4} + e^{16} + 256 e^{28} - 4e^{7} - 4e^{13} - 16e^{19} - 256 e^{22} + 16e^{10} + 12(-4e^{13} + 4e^{16} - 16e^{12} - 256 e^{22} + 256 e^{22} + 16e^{10} + 4e^{16} - 192e^{19} - 256 e^{22} + 256 e^{22} + 16e^{10} + 4e^{16} - 192e^{19} + 4e^{-2} - 266 e^{22} + 96e^{16} - 48e^{16} - 192e^{19} + 4e^{-2} - 26e^{10} + 164e^{10} - 192e^{19} + 4e^{-2} - e^{4} + 14e^{7} - e^{4} = 22ee^{10} + 164e^{10} - 192e^{19} + 1e^{4} - e^{4} + 14e^{7} - e^{4} = 22ee^{10} + 164e^{10} - 192e^{19} + 1e^{4} - e^{4} + 14e^{7} - e^{4} = 22ee^{10} + 164e^{10} - 192e^{19} + 1e^{4} - 192e^{19} + 11e^{4} + 11e^{4} - 192e^{19} + 11e^{4} - 11e^{4} + 11e^{4} - 11e^{4} - 11e^{4} - 11e^{4} + 11e^{4} - 11e^{4} - 11e^{4} + 11e^{4} - 11$$

 $dq^3 + q^3 = dq^3 + 1 + q^2$ $g_{1}^{3} = 1 + g_{1}^{2}$ $g_{3}^{3} - g_{1}^{2} - 1 = 0$ Thus the formula is being used to find the root of the equation $f(x) = x^3 - x^2 - 1 = 6$ Sub $\Im_n = \xi + En + \Im_{n+1} = \xi + En+1$ we obtain $\chi_{n+1} = \frac{d\chi_n + \chi_n + 1}{d+1}$ $(\alpha + i) \times n + i = d \times n + \times n^{-2} + i$ $(1+\alpha)(\xi+\epsilon_{n+1}) = \alpha(\xi+\epsilon_{n})+(\xi+\epsilon_{n})^{-2}+1$ $g + E_{n+1} + dg + dE_{n+1} = dg + dE_n + g^{-2}(1 + \frac{E_n}{c})^2 +$ $\xi + \epsilon_{n+1} + \alpha \epsilon_{n+1} = \alpha \epsilon_n + \frac{1}{\xi_1^2} \left(a - a \frac{\epsilon_n}{\epsilon_1} + \frac{3\epsilon_n^2}{\xi_1^2} \right) + c_n \epsilon_n + \frac{1}{\xi_1^2} \left(a - a \frac{\epsilon_n}{\epsilon_1} + \frac{3\epsilon_n^2}{\xi_1^2} \right) + c_n \epsilon_n + c_n \epsilon_$ $(1+\alpha)$ En+1 + $\xi_{1} = \alpha \epsilon_{1} + \frac{\alpha}{\xi_{1}^{2}} - \frac{2\epsilon_{1}}{\xi_{1}^{3}} + \frac{3\epsilon_{1}^{2}}{\xi_{1}^{4}} + \dots + 1$ $(1+\alpha) \in n+1 = -\frac{2}{9} + d \in n + \frac{2}{9^2} - \frac{2}{8^3} + 1$ $= -\frac{\varepsilon}{\varepsilon} + d \varepsilon + \frac{\varepsilon}{\varepsilon} + \frac{\varepsilon}{$ $(1+\alpha)$ Enti = α En - $\frac{\alpha}{\epsilon^3}$ + $b(\epsilon^2)$ $(1+\alpha)$ Entr = $\left(\alpha - \frac{2}{c^3}\right)^{4} + o\left(\epsilon_n^2\right)$ For fastest convergence we must have $\alpha = \frac{2}{s^3}$ We can find the approximate value of g by using Newton Raphson method to determine noot of $x^3 - x^2 + = 0$ we obtain g = 1.4656 and hence $\alpha = 0.6353.20.64$ a

The primine a, and as so that the order of
the iterative method.

$$x_{u+1} = x_{u} - a_1 w_1(x_{u}) - a_2 w_2(x_{u})$$

 $w_1(x_{u}) = f(x_{u}) / f'(x_{u} + \beta w_1(x_{u})) \cdot \beta \neq 0$
solo:
For finding a simple groot of the eqn
 $f(x) = 0$ becomes a high as possible.
 $f(x) = 0$ becomes a high as possible.
 $f(x) = 0$ becomes $x_{u} = x_{1} + e_{K}$ and $f(x_{1}) = 0$ in $w_{1}(x_{u})$
 w_{e} substitute $x_{u} = x_{1} + e_{K}$ and $f(x_{1}) = 0$ in $w_{1}(x_{u})$
 $w_{e}(x_{u})$ to get,
 $w_{1}(x_{e} + \beta w_{1}(x_{u})) = f'[x_{e} + e_{u} + \beta f(e_{u} + o(e_{u}^{2}))]$
 $= f'[x_{e} + e_{u} + \beta f(e_{u} + o(e_{u}^{2})]$
 $f'(x_{u} + \beta w_{1}(x_{u})) = f'(x_{1}) + (1+\beta) E_{u} f''(x_{1}) + o(e_{u}^{2})$
 $w_{1}(x_{u}) = [e_{u} f'(x_{1}) + \frac{1}{2} e_{u}^{2} f''(x_{1}) + \cdots + \frac{1}{2} \frac{1}{1} \frac{1}{1$

 $W^{2} qet = f(2in) = fn - \frac{1}{2} (2 fn^{2} + (\frac{1}{2} C_{2}^{2} - \frac{1}{3} C_{3}) fn^{3} + \cdots$ f1(2m) $f''(2n) = (2 + ((3 - (2))^2) + ((3 - (2))^2)$ f'(xn) these expression in D we obtain the error eqn on simplification as $error eqn = En - \left[En - \frac{1}{2} E_2 En^2 + \left(\frac{1}{2} C_2^2 - \frac{1}{3} C_3 \right) En^2 \right]^{\frac{3}{2}}$ $-\frac{1}{2}\left[\epsilon_{n}^{2}-c_{2}\epsilon_{n}^{3}+\cdots\right]\left[c_{2}t\left(c_{3}-c_{2}\right)^{2}\epsilon_{n}^{2}+\frac{1}{2}\right]$ $-\frac{1}{2} \left[\frac{c_n^3 + \cdots}{c_n^3 + \cdots} \right] \left[\frac{c_2^2 + 2c_2(c_3 - c_2^2)c_n + \cdots}{c_n^3 + \cdots} \right]$ $= \frac{1}{6} c_3 c_n^3 + o (c_n^4)$ Herce the method has cubic convergences. and the second and the second se and a set of an the second