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16CCCCM8 -Business Tools for Decision Making 

Semester-IV 

UNIT-1 

Measures of central tendency  

 A number or a quantity which is a representative of a set of data is called central 

tendency. This single value describes the characteristics of the entire mass of data and is 

called as central value or average. Individual series is the arrangement of raw data 

individually. Discrete series means where frequencies of a variable are given but the variable 

is without class intervals. Continuous data includes any value within range.  
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Mode:  
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Geometic mean:  
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Harmonic mean:  
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UNIT-II 

Measures of variation 

 It represents the amount of dispersion in a dataset. It define how far away the 

data points tend to fall from the center. 

  



Range:  
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Quartile deviation  
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Standard deviation  
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UNIT-III 

Correlation is a statistical measure which determines co-relationship or 

association  of two variables.regression  describes how an independent variable is 

numerically related to the dependent variable. to represent linear relationship between 

two variables. 
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UNIT-IV 

Measurement of Trend 

Free hand graphic method. 

 The values of a time series are plotted on a graph paper in the form of a historigram 

Method of Semi Average  

 Divide the data into two equal parts with respect to time. And then we plot the 

arithmetic mean of the sets of values of Y against the center of the relative time span. The 

trend values can then be read from the graph corresponding to each time period. 

Moving Average Method 

 This method uses the concept of ironing out the fluctuations of the data by taking the 

means. It measures the trend by eliminating the changes or the variations by means of a 

moving average. 

Least Square Method 

 Method for finding the best fit of a set of data points. It minimizes the sum of the 

residuals of points from the plotted curve. It gives the trend line of best fit to a time series 

data. This method is most widely used in time series analysis. Y = a + b X 

  

UNIT-V 

Index  Numbers which was developed for measuring the effect of change in prices 

have become one of the most widely used statistical devices today. They are used to feel the 

pulse of the economy and as indicators of inflationary or deflationary tendencies. That is why 

they are described as barometers of economic activity. 
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