4. Rings

L

- 41. Definition and examples

W,
le i

of B

up is an algebraic system with one binary opera-

. The familiar examples of real numbers and 2 x 2

irices are systems which involve two binary opera-
ﬁ'onS- In this chapter we study algebraic systems with
o binary operations. We start considering the system

’V p

f integers. Z has two binary operations “+" and

W (Z,4) is an abelian group. Multiplication is an
 ociative binary operation in Z. These two binary
.~ gperations are connected by the two distributive Jaws

8
A

nbya(b+c) =ab+acand (a+b)c = ac + be.
eralisation of these basic properties in Z leads us

1o the concept of a system called ring.

Definition. A nonempty set R together with two

operations denoted by “+” and “.” and called

Jddition and multiplication which satisfy the following
j:. oms is called a ring.

::i. ﬁ) (R,+)isan abélian group.

(i) “"is an associative binary operation on R.

. )

"' i) a:(b+c) =a-b+a-cand(a+b)-c = a-c+b-c -

foralla, b, c, € R.

Notation. The unique identity of the additive group
R, +)is denoted by 0 and is called the zero element of

he ring and the unique additive inverse of a is denoted -

Y —a.

Examples

Tl

3

L Z 4,9 Q.+, )i R, + % (C, +, ) arall

Bl e

rings.
(Z,+,)isa ring.
LetR = (a +bv2/a,b e Z).

" Clearly R is an abelian group under usual
“ addition.

Leta +b+/2 and ¢ + d+/2 € R. Then

(@ + bv2)(c + dV2) = (ac + 2bd)
+ (be + ad)V2 € R.

Since the two binary operations are the usual
addition and multiplication, the distributive
laws and the associative law hold.

Thus R is a ring with usual addition and

multiplication.

Let R = {(a+ibj/a,b € Z). Then R is a ring
under usual addition and multiplication. This
ring is called the ring of Gaussian integers.
In general, any subset of complex numbers
which is a group under addition and is closed
for multiplication is a ring (Verify).

{0} with binary operations ‘+’ and ‘-’ defined
as 0+ 0 = 0 and 0.0 = O is a ring. This is
called the null ring.

In R x R we define (a,b) + (c,d)
= (a+c,b+d)and (a, b)-(c,d) = (ac, bd).
Here (R x R, +) is an abelian group. The
identity is (0, 0) and the inverse of (a, b) is
(—a, —b).

Further (a, b)[(c, d) + (e, f)]

= (a,b)(c+e,d + f)

= (ac + ae, bd + bf)

= (ac, bd) + (ae, bf)

= (a,b)(c,d) + (a, b)(e, f).
Similarly [(a, b) + (c, d)](e, f)

= (a,b)(e, f) + (c,d)(e, f).
Hence (R x R, +, ) is a ring.

Let (R, +) be any abelian group with identity
0.

We define multiplication in R by ab = 0 for
alla,b € R. Clearly a(bc) = 0 = (ab)c so
that multiplication is associative.
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Modern Algebra

Also a(b + ¢) =0=ab+acand

(a+b)c=0=ac+bc'

Hence R is a ring under these operations. This
ring is called the zero ring.

This example shows that any _abCIiaﬂ.S"O“P
with identity O can be made into a ring by
defining ab = 0.

(Z,. @, ©)isaring, for, we know that (Zn, ®)

is an abelian group and © is an associative %

binary operation.

We now prove the distributive laws.
Leta, b, c € Z,.

Then b @& ¢ = (b + ¢) (mod n).
Hencea © (b & ¢) = a(b + ¢) (mod n).

Alsoa ® b = ab (mod n) and
a ® ¢ = ac (mod n) so that

(a®b)® (a®b) = (ab+ ac) (mod n).

Sincea@(b®c)and (@O b)B(aOc) € Zy,
wehavea®@ (b&c)=(aOb)® (a Oc).

Similarly (a® b) ©Oc=(aOc)B (b O o).
Hence (Z,, ®. ®) is aring.

(9(S),A,N) is a ring. We know that
(% (S), A) is an abelian group (refer example
12 of section 3.1).

Also N is an associative binary operation on
2 (S).

It can easily be verified that
AN(BAC)=(ANB)A(ANC)and
(AAB)NC =(ANC) A(BNC).

Hence (p(S5), A, N) is a rifig.

M>(R) under matrix addition and multiplica-
tion is a ring. :

Let R be the set of all real functions. We define
addition and multiplication by

(f +g)(x=f(x) + g(x) and

(fe)(x) = f(x)g(x).

Then R is aring.

Clearly addition of functions 18 Associaty,.
commutative,

The constant function 0 defined by 0() _
is the zero element of R and — f isthe ady,,

inverse of f.
Hence R is an abelian group.

The associativity of multiplication ang ,,
distributative laws are consequences f |,

corresponding properties in R. Hence |
ring.

Let A be any abelian group. Let Hom (4,
the set of all endomorphisms of A. .
Let f.8 € Hom(A). We define

f+egby (f+ g)(x) = f(x) +g(x) 4
fg = fog Then Hom (A) is aring,

Proof. Let f, 8 € Hom(A).

Then (f +8&)(x+Y)
= f(x+y)+gx+y)

= f(x)+ f(y) +8(x)+g(y) |
= fx)+ &) + S +20y) |
=(f+2)x)+(f+2)0.

Hence f + g € Hom(A).
Obviously + is associative.
Since A is an abelian group f + g =g+ f

If 0 is the identity element of the group A then
the homomorphism 0 defined by 0(a) =0,
for all a € A is the zero element of Hom(A)

Now, let f € Hom(A). The function -/
defined by (=f)(x) = —[f(x)] is also:

homomorphism, since
N+ ==[f(x +y)]
= —[f(x) + f(y)]
==N0) + (- f)y).

Clearly f + )= e
additive inverse of f 0 and hence — f is tht

Thus Hom(A) is an abelian group
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Nn\\l_ (" o '[')(,\' 4ﬁ '\')
i = Jlg(x + y))

—

= Jle(x) + g(y))

= S8+ flg(y)

-—

=(fog)(x)+ (f o g)(y).
Hence fopg e Hom(A).

Similarly (f + g) o p = f
Thus Hom(A) is a ring.

Let Q be the set of all s
ap+aji+azj+ask where ag, ay,az, a; € R.
Two such symbols A +ayi +ayj + a_;k and
bo+ b1t + b2 j + bk are defined to be equal
iffa, = b;,i =0, 1,2, 3. We now make 0
into a ring by defining + and . a5 follows.

0’i~+g oh.

ymbols of the form

Forany x =ao+ayi +ayj + azk
Y=bo+bii+byj+bsk,

and

Y+ y=(a0+aii +ayj + azk)
+ (bo + byi + by + b3k)
= (a0 + bo) + (a; + by)i
+ (@2 +b2)j + (a3 + b3)k and
xy = (ao +a\i + ayj + ask)
(bo + byi + by j + bik)
= (aobo — a1by — azb; — a3b)
+ (aob) + a1by + azby — azbs)i
+ (aoba + axbg + azb) — ayb3) j
+ (aob3 + a3bg + a\ by — ayb) k.
The formula for the product comes from

multiplying the two symbols formally and
collecting the terms using the relations

=2 = k2 = ijk=—1,ij = —ji =k,
Jk=—kj=iand ki = —ik = j.

Clearly + is associative and commutative.
0=0+0i 4+ 0/ + Ok is the zero element.

—ay —ayi —axj — ask is the additive inverse
of ap + a)i + axj + azk.

14,

Rings 4.3

The associative law of multiplication and the
two distributative laws can be easily verified.

Hence (Q, 4, ) is a rng.
This ring is called the ring of quaternions.

The set R of all matrices of the form
BT

—b
matrix addition and matrix multiplication.

g ) and
a

Where a, b € R is a ring under

Proof. let A — ( 2

—b
5 CiNed
( —d ¢

e

A A

=( ac — bd ad+bc)€R.

—(ad +ac) ac — bd
Clearly matrix addition is commutative and
associative.

(53
(7
(4 2)

Further matrix multiplication is associative
and the distributive laws are valid for 2 x 2
matrices.

) € R is the zero element.

—b ; . :
is the inverse of the matrix

Hence R is a ring.

Exercises

L.

Prove that the set of all real numbers of the
form a + b+/3 where a, b € Q under usual
addition and multiplication is a ring.

Scanned with CamScanner



44

6.

10.
1.
2%

13.

Modern Algebra

Prove that the set of all matrices of the form

( 8 g )whcn:a € Risaringundcr

matrix addition and multphcanon.

Show that (Z, &, ©) 1s a nng where
deb=a+b-—l and
aOb=a+b-—ab.

Shaqw that (nZ, +, -) is a ring.
sets (0, 1) and {a, b} are

Verify whether the )
rings with operations defined by the following
tables.

@ 4]0 1 B R
olo I ojo O
1|1 o 1{0 1

® +|a b a b
ala b ala b
b|b a bla b

Construct the Cayley tables for the ring
(9 (S), A,N) when S = (1,2).

Show that (2Z, +, #) isaring where + is usual
addition and # is givenby a* b = 3ab. -
in R x R define (a, b)+(c,d) = (a+c,b+d)
and (a, b)(c, d) = (ac — bd, bc + ad). Show
that (R x R, +, -) is aring.

Let § = {iy/y € R). Is § aring with usual
addition and multiplication?

Is (9 (S), U, N) aring? E:

Is (9 (S), A, V) aring? -

InQ wedefinea®b =abanda®p = a+b.

Show that (Q, &, ©) is not a ring.
Determine which of the following statements
are true and which are false,
(a) The set of all even integers is a ring
under usual addition and multiplica-

tion. , .
The set of all odd integers is a ring

under usual addition and multiplica-
tion.

(b)

Theorem 4.1. Let R bearinganda,b ¢ g ™
 Thep

(¢c) Inany ring addition i .
- )
d) Thenon-z MMuty,
( ero elCan[g of Ve
) an

a group under multip|; Np
l“Phc.\lmn : ["{m

ANSwers.
5. (a)Ring (b) Notaring 9.No g N

3. @T OF ©T @p

4.2. Elementary properties of
B

(i) Oa= a0 =10 (i) a(=b) = (—a)p - ‘
_ ~(ah
(i) (—a)(=b) =ab (iv) a(b—c)=ab

(i) a0=a(0+0)=a0+ a0,

Proof.

- a0 = 0. (by cancellation law in (g b
Similarly Oa = 0.

(i) a(=b)+ ab=a(—=b+b) =a0 =,

a(—b) = —(ab).

Similarly, (—a)b = —(ab).

Gii) By (ii), (—a)(=b) = —[a(=b)] = —(-q,

= gb
(iv) a(b—c)=alb+(-0))=ab+a(-

= ab-—m

Solved problems

Problem 1. If R is a ring such that a®> = a for4

a € R, prove that

(Ya+a=0 (a+b=0=a = b (iii)ab=h

Proof. ‘(i) a+a=(a+a)a+a)
=ala+a)+aa+a)

=aa +aa+aa+ aa
= (a +a) + (a + a) (since at =

Hence a +a = 0,
Leta+b=0.By()a+a =0
“+b=“+080thata=b_

(ii)
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. Hence ab + bg —
__ a + SO thay by (i), ab = ba.
;A'ri-ng R is called

a € R. For example (
‘ P (S :
# »4,n) 1s a Boolean

2. Complete the C,

I ley
, b, c,d) VIV table for the ring
: b
7 e’ Rl 2 b ey
__‘\———._
b
a £ d ala gq o
: b a d c b a b
grd a b
i = :
o Weoe b a L2 e
v First we shall compute cb.
b=+ d)b  (from addition table)
a_f.;' =bb+db
- =b+b

(from multiplication table)

. =a (from addition table)

Now, cc=c(b+d)=cb+cd=a+a=a.
I bc=((b+d)c=cc+dc=a+c=c.
bd=bb+c)=bb+bc=b+c=d.
‘dd=(b+c)d=bd+cd=d+a=d.

the completed table for multiplication is

Reth N Cas d
ala a a a
pita b s.cxid
chlta a‘a va
di|Raethi*-c"itd

Ringy 4.5

Exercises

I.  Given any positive integer n show that there

exists a'ring with n elements

2. Let R be aring and n any positive integer. Let

Ol B e 0 v ¥ 6 00 ,an € R. Prove that
(—ay)(—az)...... (—ap)
O e viee dp if n is even
£ —A AL . a, ifnisodd
3. Complete the Cayley table for the nng
R = {a, b, c,d).
+|la b ¢ d -\a e drnd
aslfavgde. W aslid-ra -4 -'a
Pileb ol C bla b
g erad b c|a C
d |dac= b a dLa b ¢

Show that in this ring xx = x forall'x € R.
4. Prove by induction that

a(by + by +---+ by) = aby +aby +-- -+ ab,.

4.3. Isomorphism

In the study of any algebraic system, the idea of

two systems being structurally the same is of basic
importance. In algebra, this concept is always called
isomorphism. As in the case of groups, isomorphism
between two rings can be defined as follows.

Definition. Let (R, +,-) and (R, +, ) be two rings.
A bijection f : R-— R’is called an isomorphism if
(i) fa+b)= f(a)+ f(b) and
(i) f(ab) = f(a)f(b) foralla,b € R.

Iff:R—> R'is an isomorphism, we say that R is
isomorphic to R’ and we write R ~ R'.

Note. Let Rand R’ betworingsand f : R — R'be
an isomorphism. Then clearly f is an isomorphism of
the group (R, +) to the group (R', 4).

Hence f(0) =0"and f(—a) = —f(a).
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4.6 Modemn Algebra

Examples

L. f : C = C defined by f(z) = T is an
isomorphism. For, clearly f is a bijection.
Also

JG+)=u+u=0+0
= f(z1)+ f(z3), and

au=fa)f(n)

2. Let C be the ring of complex numbers. Let

S be the set of all matrices of the form
_: 2 where a,b € R. Then § is a

ring under matrix addition and matrix multi-

plication. Refer example 14 in 4.1. Now the

mapping f : C — S defined by f(a+ib) =
_: 2 1s an isomorphism.

)= =

Clearly f is a bijection. Now let x = a + ib
and y = ¢ + id.

f(x+y) = fll@a+c)+i(b+a))

b a+c¢ b+4d
ALY a e

o a b cie.d
-\ b s i —-d ¢
= f(x)+ f(y).

Similarly f(xy) = S (x) f(y). (verify).

3. The groups (Z, +) and (2Z, +) are isomor-
phic under the map f : Z — 2Z, given by
flx) =
Howcvcr f is not an isomorphism of the
ring (Z, +) to (2Z, +, -) since f(xy) = 2xy
and f(x)f(y) = 2x2y = 4xy so that
fxy) # f(x)f(y).

In fact there is no isomorphism between the
rings (Z, +, -) and (2Z, +, -)(verify).

Exercises

1. In 2Z we define a * b = %ab. Show that
(2Z, +, %) is a ring isomorphic to (Z, +, -).

- ring (Z,+,-) has 1 as a multiplicative identity and

2. Let § be the set of all marice,

the |
(g g) wherea € R, Show th;, f R _

1 0
gi\"ﬂﬂ b)’ f(a) =3 (;) 0) 1$an; OMorm)

3. Verify whether / : R = R given 1,
f{x) = ~x is an isomorphism,

4. LetA= '(aobt C)/a. b, C € Rl Ucf”m

(a-ch)'}'(xc)',Z) = (” +* ,I’.I} 4 Y. ¢4
and (a,b,¢) - (x,y,2) = (ax,ay 4},
Show that (A, 4, -) is a ring,

5. Let S be the set of all matrices of .

3 lc’ . Show that § is a ring under

addition and matrix multiplication.
6. Show that the rings given in exercises 4 44 5
are isomorphic.

4.4. Types of rings

Compared with addition in R, the multiplication i
R is relatively unknown to us. For example the def.
inition of a ring does not guarantee the existence of
an identity with respect to multiplication. The ring
(2Z, +, -) has no multiplicative identity. Even if 4 ring
has a multiplicative identity some elements of the ring
may not have multiplicative inverses. For example, the

all the elements of Z except 1 and —1 do not have
multiplicative inverses.

Again in a ring R, the multiplication need not be
commutative. For example, in the ring of 2 x 2 matri-
ces matrix multiplication is not commutative. Hence

we get several special classes of rings by imposing|
conditions on the multiplicative structure.

Definition. A ring R is said to be commutative if
ab =baforalla,b e R. -

Examples

1. The familiar rings Z, Q, R are all commu-
tative. The following are examples of non-
commutative rings.
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. Let F denoy,

R. We dcﬁn: [(h; Setof al funcuo

; f b= +g) Xy = f“)n:-ﬁ'(;mi:l:g
1 E_‘; commutative ring,‘ Then (F, 4, »)gi: )nun-
*\‘l‘h ring of qQua
. of4.lisanon.

- and ji = k.
:”J(R) IS a non

1eMiong 2iv

N in exa
com Utative . mple 13

nng since i j = &
-commulalivc ring
Determine wh;

.h'ch of the rip S given i
on 4 1 are commutative &S given in

52, 3,4 5 ¢ 7
rings.

qu R be aring. We Say that R is a rin
dentity if there exists 4 element | € R '
=la=aforalla e R 5

&9, 11, 44 ge

1. The familiar rings 7,
~ identity.

Z. +.) whenn > | isa
 idenity.

Q.Rare ) rings with

Vl‘\
[

et

ng which has no

‘M(R) is a ring with identity.

cises Determine which of the rings given in
ion 4.1 are rings with identity.

Al o Y e e

- P

F 1,3,4,6,8.9,10, 11, 12, 13 and 14 are
3 1th i(hnﬁtY-

Consnder the null ring (0). In this case 0is
ith additive identity and multiplicative identity. This
only case where O can act as the multiplica-

identity, for if 0 is the multiplicative identity in
2 R, then 0a = a for all @ € R. Butin any ring
0.Hencea = 0, sothat R = {0}. In what follows
: ;ﬁll exclude this trivial case when speaking of the
~micativc identity. Hence whenever we speak of

dmultiplicative identity in a ring, we assume that the
'ﬁﬁllﬁplicative identity is not 0.

Theorem 4.2, In a ring with

identity the identity
tlement is unique.

Rings 4.7

Proof. Let 1. I’ be multiplicative identities
Then 1 - 1" = | (considering 1" as identity)
and 1 - 1" = |’ (considering | as identity)
| = I". Hence the identity element is unique

Definition. Let R be a ring with identity. An element
u € R is called a wnit in R if it has a multiplicative

inverse in R. The multiplicative inverse of u is denoted
by u~'.

For example, in (Z, +, ), | and — | are units

In M2(R), all the non-singular matrices are units

In Q, R and C every non-zero element is a unit.
Theorem 4.3. Let R be a ring with identity. The set of
all units in R is a group under maltiplication.

Proof. Let U denote the set of all units in R.

Clearly 1 e U.Leta, b e U.

Hence a—!, b~! exists in R.

Now (ab)(b~'a—') = abb—")a"' = ala™!
=aa! = I.

Similarly (b='a=")(ab) = 1.

Henceab € U.

Also(@ ') ' =aandhenceac U = a~' c U.

Hence U is a group under multiplication.

Exercises Find all the units in the nngs given in
section 4.1

Answers. 1.InZ, 1 and —1 are units: Q*.R* and
C* are the units in Q, R and C respectively. 2. Nil
3.land—1, 4. )i —1,—i. ~S5:Nil 6. RY%ax R
T.Nil. 8.{afa € Z,and(a,m)=1). 9.5. 10.All
non-singular matrices.  11. All bijections.  12. All
automorphisms  13.Q* 14 R*.

Definition. Let Rbea ring with identity element. R

is called a skew field or adivision ring if every non-zero
element in R is a unit.

(ie) For every non-zero element a € R, there exists

a multiplicative inverse a=' € R such that

aa"'=ala=1.

Thus in a skew field the non-zero elements form a
group under multiplication.
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Defmition. A commutative skew fcld s called 2

field

In other words 2 field s asystem (F, +, -) satisfying
the following conditions.

(n
(n)

(F, 4) s an abelian group.
(F — {0}, -) is an abehian group.

Gil) a-(b+c)=a-b4+a-cforalla,b,ceF.

Examples

Q. R and C are fields under usual addition and
hiplicat

Let p be a prime. Thea (Z,, ©, ©) is ficld.

Proof. (Z, &, 0) is a ring (by example 8
of4.1)

Also since p is prime (Z, — (0},0) is an
abelian group. (refer example 23 of 3.1).
Hence (Z,.®, ©) is a field.

Lc(Mbcbtheselofallmmi:aofd\cfam
a

skew field under matrix addition and matrix
multiplication.

Proof. LetA,Be M.

iHa
gl T

a+b b d
A+ B = ol e
—b—-—d a@a+r¢7

m=(

al o o 8
ol A g

a+c b+d
= B e =
—(b+d) a+c
Hence M is closed under matrix addition.

Obviously matrix addition is associative and
commutative.

08 09\*
( 0 0 )IS the zero element of M.

ac — bd ad + j:
o3 —BC—EZ —Bd-.g-:j

which is of the form ( = )
_uv -

Hence M 1s closed under matrix muir,

tion. )

Further matrix multiplication is assoc;,.

and ( 5.0 ) € M is the multiplica;..

03
Now, let A = ( by f )beani*-;»-
—-b - a -
matrix in M.
Then eithera # 0 or b # 0 so that either
la] > Oor|b] > 0.

Hence |A| = a@a + bb = |a]*> + |b]* > 0
Thus A is a non-singular matrix and hence .

an inverse and A~! € M. Thus M is 2 s
field. Also since matrix multplication is na

commutative, M is not a field. =~

Let Q be the ring of quarternions given m
example 13 of section 4.1. Q is a skew ficld
but not a field.

ML We have proved that (Q, +,) 152
ring.
1 =1+0i 40 + 0k is the identity elemen

= 90 +aii + a3 j + a3k be a non-zen
elementin Q.

Then not all of agp, ay,

aj, asz are zero
g :
Leta__go_'_ai.’ | ag

+a3. Clearly a # 0.
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a:,fa\,.; ~ (a3 /a)k.

=1. (verify).

1S no
ot SOk COmmutaglve since

(Z,+,) is a M€ Qisnot o field.
‘ Iy Ty CommUlaIWe nng With
but not a field since 1 ang identity

: =1 are ty
h hﬂ\’e 1 ¥ Oﬂly

: Nverses,
-71 44.Ina skew ﬁEId R.
= a)’. a * 0 =X = y
xa - ¥a,a#0 = x = { (cancellation

'__. ax—Oﬁa—Oorx._O laWsinring)

(l) Letax = ay and g #0

Since R is a skew field there exists o-

suchthataa™! =4a-1q — | 'eR

. Henceax =ay = ¢! (ax) = a~1(ay)

- =x=y.
) can be proved similarly.

Ifa=0o0rx =0, then clearly ax = 0.
. Converscly letax =0anda # 0.
‘% ax = a(.

Ly

o x =0by ().

Me. Thus in a skew field the product of two non-
m elements is again a non-zero element. However
this i not true in an arbitrary ring. For example,

1. Consider the ring (R xR, +, -) where ‘+' and
‘.” are defined by

(a,b) + (c,d)=(a+c,b+d)and
(a, b) - (c,d) = (ac, bad).
R x R is a commutative ring with ideﬁtity.
Here (1,0)(0, 1) = (0, 0).

2. Thc product of two non-zero matrices can
equal to the zero matrix. For example

() ()90

Definition.

a € R is said o be a zero-divisor if there exists a
non-zero element b € R such that ab = 0 or ba = 0.

Rings 4.9

Let R be a ring. A non-zero element

Examples

1. Inthe ring R x R, (1, 0) and (0, 1) are zero
divisors, since (1,0)(0, 1) = (0,0). In fact
all the elements of the form (a, 0) and (0, a)
where a # 0 are zero divisors.

. ¢ 1 0 0 0
2. Inthe rmgofmalnces(o 0).(1 l)

are zero-divisors, since
L0 D 0N 1500
V0 1l = (o Bla 1 2
3. In the ring Zy3, 3 is a zero-divisor, since ’
3©4 =0. Also 2, 4, 6 are zero-divisors.

4. In the ring of integers, no element is a zero-
divisor.

S. No skew field has any zero-divisor.

Theorem 4.5. A ring R has no zero-divisors iff can-
cellation law is valid in R.

Proof. Let R be a ring without zero-divisors.
Letax =ayanda #0.
ax -ay—O Hencea(x —y) =0anda # 0.

x — y = 0 (since R has no zero-divisors).

x = y. Thus cancellation laws is valid in R.
Conversely let the cancellation law be valid in R.
Letab =0and a # 0. Then ab = 0 = a0.
Hence by cancellation law b = 0.

Hence R has no zero-divisors.

Theorem 4.6. Any unit in R cannot be a zero-divisor.
~

Proof. leta € R be aunit.
Thenab=0= a '(ab)=0= b =0.
Similarly ba =0 = b =0.

Hence a cannot be a zero-divisor.

Note. The converse of the above result is not true.
(ie.,) a is not a zero-divisor does not imply a is a unit.
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For example, in Z, 2 1 not d sero-divisor and 2 1s not
aumt, |
Definition. A commutative ring with identity having
o zero-divisors is called in integral JM.

Thus in an integral domain ab = 0 =» cithera =

orb=0.

0

Or equivalently ab =0andat0=b=0

mn#OmdbOOs.abﬂl.

Examples

1. Zis an integral domain.
2. nZ wheren > | isnounlnmytldqﬁ“n
since the ring nZ does not have an identity.

3. Z,»is notan integral domain since 4 is a zero-
divisor in Z;3.

4. 7715 anintegral domain.
Theorem 4.7, Z,, is an integral domain iff n is prime.

Proof. Let Z, be an integral domain.
We claim that n is prime. Suppose n is not prime.,
Thenn = pgwherel < p<nandl < q <n.
Clearly p© g = 0.
Hence p and g are zero-divisors.

Z, is not an integral domain which is a
contradiction. Hence n is prime.

Conversely, suppose n is prime. Let a, b € Z,.
Thena © b = 0= ab = gn where g € Z,,.

= nlab
=5 nla or n|b (since n is prime)

='a=00rb=0.

Z,, has no zero-divisors.
Also Z,, 1s a commutative ring with identity.

Hence Z,, is an integral domain.
Theorem 4.8. Any field F is an integral domain.

Proof.
divisors.

It 1s enough if we prove that F has no zero-

Leta, b€ F.ab =0anda #0
Since Fisaficlda™' exists
Now, ab =0=3 a Lab) =0
= b =0
F has no zero-divisors,

Hence F is an integral domain

' Note. The converse of the above theorer |,
(ie) An integral domain need not be a ficld |

For example Z is an integral domain b,
field.

Theorem 4.9. Let R be a commutative ring v,
tity 1. Then R is an integral domain iff the ..,
non-zero elements in R is closed under multip|;.,,

Proof. Let R be an integral domain.
Leta,b e R — (0).

Since R has no zero-divisors ab # 0 sothat £ -
is closed under multiplication.

Conversely, suppose R — {0} is closed under
tiplication. Then the product of any two non-z;
elements is a non-zero element. Hence R ha g
zero-divisors so that R is an integral domain.

Theorem 4.10. Let R be a commutative ring v
identity. Then R is an integral domain iff cancellation
law is valid in R.

Proof. The result is an immediate consequence of
Theorem 4.5.

Theorem 4.11. Any finite integral domain is a field

Proof. Let R be a finite integral domain. We neet

only to prove that every non-zero element in R hasa
multiplicative inverse.

Letae Randa # 0.
Let R = {0, 1, ay, a,

Consider {al, aay, aa,, .. .. aa, )
C T Ry B

By Theorem 4.9 all these elements are non-zero and
all these elements are distinct by Theorem 4.10

Hence aa; = | for some q; € g

—a’ - ~k
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"\1‘
:""ﬁf"Sincc R is Commy

£

lative, aa

—

ﬂt;a— y ' = @ja = ] so that

"'Hencc R is a fielq.

‘_':';-Rﬂ'f'rk‘ lTjhe ﬂb(we result is oy true for an infi-
ﬂm‘mtcglfa. Omain. For SXample congider the ring of
-~ integers. IL1S an ingegry) domain by, not a field.

~ Theorem 4.12. 7, i . field iff ,, prime.
mf By theorem 4 7. Z
‘ ”ispnme

- Further Z, is finite. Hence the resy]y follows from
% Theorem 4.11.

n IS an integral domain iff

rove the existence of

~ identity.
Y LetR=(0,ay,... yay).

Leta€ Randa # 0.

Then the elements 0], aay, ,aay, are
~ distinct and non-zero.

aa; = a for some ;.

J.' - Since R is commutative we haye aa; = g;a = q.

We now prove that g; is the identity element of R.
Lethb € R. Then b = aa;

ajb = a,.-(aqj) = (aja)a; = aaj = b,
Thus a;b = ba; = p.

for some ;.

Since b € R is arbitrary, q;

is the identity of R.
. 'Hencc the theorem.

Solved problems

Problem 1. Prove that the set F of all real numbers of
the form q + b+/2 where a,b € Qis a field under the
Usual addition and multiplication of real numbers.

Solution, Obviously,

(F, +)isanabelian group with
0as the zerg element.

Rings 4.11

Now, leta + by/2 and ¢ + d/2 € F. Then
(a+b\/§)(r+dﬁ) = (ac4+2bd)+(ad+bc)/2 € F.

Since the two binary operations are the usunl ild.dl-
tion and multiplication of real numbers. multiplication

is associative and commutative and the two distributive
laws are true.

1 =140vV2 € Fandisthe multiplicative identity.
Now, leta + by/2 € F — (0).

Then a and b are not simultaneously 0.

1 a — b+/2
SRS P2

We claim that a2 — 2p2 4 (.

Case ()a # 0and b = 0, thena® — 262 = 22 4 0,
Case (ii)a =0and b # 0, then a® —2b% — _9p2 #0.
Case (iii) @ # 0 and b # 0. Suppose a? — 252 — 0.
Then a” = 2b2 50 that a2/b2 = 2.
Hencea/b = +-./2.

Now,a/b € Qand /2 € Q. Thisis a contradiction.
Hence a® — 252 # (.

l a b \/;
= — | —— e F
a+ b2 (02_%2) (az~2b2)
and is the inverse of 4 + b/2.
Hence Fisa ﬁeld:

Problem 2. Z is the ring of integers and R is any ring.

ThenZ x R = {(m,x)/m € Z and X. € R}. We
define ® and ® on Z x R as follows. (m, x)&®(n, y) =
(m+-n, X+y);(m, xX)®O(n, y) = (mn, my-+nx+xy)
where nx and my denote respectively the concerned
multiples of the elements x and Y in R. Prove that

ZxRisa ring under & and ©. Also prove that Z x R
1s commutative iff R is commutative.

Clearly Z x R
® with (0, 0) as the identi
inverse of (m, x) is (
under ©.

1S an abelian group under
ty element and the additive
—Mm, —x).Clearly Z x R is closed

Scanned with CamScanner
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Let (m, x), (n,¥),(p.2) €Z x R.
[(m. x) O (n, )] O (p.2)
= (mn,my +nx +xy) Q (p,2)
= (mnp. mnz 4 p(my + bx 4 xy)
+ (my 4 nx 4+ xy)2)
= (mnp,mnz 4+ pmy+ pnx + pxy
+myz + nxz + xyz)

Now, (m, x)®O[(n, y) © (p, D]
= (m,x)® (np,nz+ py + y2)
= (mnp,m(nz + py + y2) + npx
+ x(nz + py + y2))
= (mnp,mnz + mpy + myz + npx
4+ nzx + pxy + xyz)
Hénce O is associative. .
Now, (m, x) ® (1,0) = (m, x) and
(1,0) © (m,x) = (m, x)
(1, 0) is the identity element of Z x R.
Now, (m,x) O [(n, y) & (p, 2)]
=mx)Omn+p,y+2)
= (m(n+ p),m(y +2) + (n+ p)x + x(y + 2))
= (mn+mp,my+mz+nx + px+xy+ xz)
= (mn+mp,my+nx+xy+mz+ px + x7)
= (mn,my +nx +xy) @ (mp,mz + px + x2)
=(mx)O(n,y)&(m,x)0O(p,2)
Left distributive law is true.

Similarly we can verify the right distributive law,

[(m,x)& (n, y)] O (p, 2)
=(m,x)O(p,2)® (n,y) O (p,2)
Hence Z x R is a ring with identity.
Suppose R is commutative.
Then (m, x) © (n, y) = (mn, my + nx + xy)
= (nm,nx +my + yx)
(since R is commutative xy = yx)

=(n,y)®(m,x)

7 x R is commutative.
Conversely, suppose Z x R is commugyy;,,.

Hence (m, x) © (n, y) = (1, y) O (m, v,

(mn, my + nx + xy) = (nm, nx +my
Hence my + nx 4 xy = nx +my 4 y,
=my+nx 4 yy

xy. =iys
R is commutative.

Problem 3. Give examples of

(i) a finite commutative ring with identity yhi,
is not an integral domain.

(ii)

a finite non-commutative ring.
(iii) - an infinite non-commutative ring with ide,
tity. (iv) an infinite ring having no ideny,
Solution.

(1) A = (Z4,®, ©) is a finite commutative ring
with identity 1.
We have 2 ©® 2 = 0. Thus 2 is a zero-diviser
in A and hence A is not as integral domain.
(11)) Consider the set M2(Z3) of all matrices with
entries from Z3. Clearly M>(Z3) is finite
and is also a ring under matrix addition and
multiplication.

1 0 I 2 1
Further (0 2) (2 1) - (l

G-

hence M, (Z3) is non-commutative.

(i) M,(R) is an infinite non-commutative rn
Fh ’ 10
th id :
withii entlty( N )
(iv) (2Z, +, -) is an infinite ring with no identit

Problem 4. Prove that the only idempotent elemen®
of an integral domain are 0 and 1.

Solution. Let R be an integral domain.
Leta € R be an idempotent element.

Then a2 = g so that a2 — a =a(a—1)=0
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| are the only rdempotent elements of R

5. "' F be a finite field with p,

E ofrallac F Clements.

7:—0 then obviously a" —
leta # 0.

| tnﬁcld. F — {0} is a
BiF o=y T

= 1 (by Theorem 3.35)

a=10.

ﬂmmthcmseofanngmﬂndcn—
s b — b + a is redundant. (ie.,) The
eb-{-acanhedmvedfmmlheo\her

ing the two distributive laws of a ring.

..4'»‘,)(“ +b) = l(a +b) + 1(a + b)

| =a+b+a+band

1)(a +bh)=(0+Da+(1+1b
=a+a+b+b.

. a+btatb=ata+b+b.
-a = a + b (by cancellation laws).

7. If the additive group of a ring R is cyclic
R is commutative. Deduce that a ring with
IS commutative.

'ij(k. +) is a cyclic group.
R=(a).Letx,y € R.

-
=(@+a+...... +a)(a+a+...... +a)
m times n times

=mna2=nma2=nama

_=yx.

Rings

Hence R is a commutative ring
Now, let R be a nng with 7 elements

Then (R, 4) is a group of order 7.
Hence (R, 4) is cyclic.

Hence R is commutative

Problem 8. Let R and R’ be ringsand f - R — R’ be
an isomorphism. Then

(1)
(1)

R is commutative = R’ is commutative.

R is ring with identity = R’ is a ring with
identity.

R is an integral domain = R’ is an integral
domain.

Risafield = R'isa field.

(1i1)

(iv)

Solution. (i) Letd’,b’ € R'. Since f is onto.
there exists @, b € R such that f(a) = @’ and
f(b) =b’.Now,
a'b’ = f(a)f(b)
= f(ab) (since f is an isomorphism)
= f(ba) (since R is a commutative ring)
= f(b)f(a)
=ba,

R’ is a commutative ring.
(i1) Let1 € R be the identity element of R.
Leta’ € R'. Thenthereexistsa € R such that

fla) =d.
Now, f(1)a’ = f(1) f(a) = f(la)

Sa) =4
Similarly @’ f(1) = a’ and hence f(1) is the

identity element in R'.
R’ is a ring with identity.

Let R be an integral domain. Then by (1) and
(ii), R" is a commutative ring with idenury.

(ii1)

Now, we prove that R’ has no zero-divisors.
Leta’,b' € R"and leta’d’ = 0.

Since f is onto there exist a, b € R such that
f(a) =a"and f(b) =b".
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a'd' =0 fla)f(b) =0. Exercises

= flab) =0 1. Give examples of

=> ab = 0 (since fis 1-1) (@) & ‘commutative fing

divisors gith
=a=00rb=0 oy s Cr,
(b) a non-commutative fine
(since R is an integral domain) divisors. & With 2ey,
N i (¢) an integral domain whic
= f(a)=0or f(b) =0. field. o is g
= ol O BT, (d) askew field which s not 4 fig,
. & a e d.
. R'is an integral domain. s i:,,hfg:r::g“.:;c ”?g ol deny;,
(V) We need to prove that every non-zero element ; e domjy
N R’ has an inverse. Leta’ € R' and a’ # 0. 2. Prove that a ring ?{3 is commutative g
Then there exists @ € R — (0} such that a,beR,(@+b)" =a’+2qp 4 p2, Al
fa) =a' 3. InR x R wedefine + and - by
Now, f(aYa' = f(a~")f(a) B G b+ d) ang
= f(a~'a) = f(1). (@,b) - (c,d) = (ac — bd,ad + p. Pro.
Hence f(a~') is the ifiverse of a'. L DS S ﬁ;,ld. [Multiplicatie im’cr:
of (a,b) is (a/(a® + b*), —b /(a2 4 b2)). g

Problem 9. Prove that the only isofnorphism

4. Provethatifaring R isboth an integra| 4.
J:Q — Qisthe identity map. g Omaip

- and a skew field then it is a field.

Solution.  Since f is an isomorphism £(0) =0 and 5. Prove that {0, 1, a,b} is a field under g,
F(1) = 1. Now, let n be a positive integer. operations defined by the following Cayley

; tables.
f(n) = f(14+ 14 ...4 1) (written n times)
o T : S0 El a b 0
= f()+ f(1)+...4+ f(Q1) (written n times)
ORI a b UBRRO=E0 0 0
= LS iR e + 1 (written n times) | e Wit 1 .
=n: amifass’b. 0 -1 aRig0s a” b 1
Now, if n is a negative integer, let n = —m where . 1.0 2

an2sk 6. Prove that the set of all real numbers of the
s 3 3 .

Then f(n) = f(—m) = —f(m) =—m =n. form a'—l—. V71 b+ /49 ¢ where a, b, ¢ € Q
forms an integral domain under usual addition

Thus for any integer n, f(n) = n. and multiplication.

Now, leta € Q. Thena = p/q where p,q € Z. 4 7. Prove that the set of all 2 x 2 matrices of
the form ( gl ) where a, b € Z forms

Hence : 0 b |
a commutative ring with unity under n.mlrl\

f(a) = f(p/q) = fpa™H =rp)f@™") addition and matrix multiplication but is 1%
£ )[f(q)]—l i pq"l el an integral domain. -

i 8. Determine which of the following are true &
Hence f is the identity map. which are false.
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(o Inany integral domaip ey,
element has an inverge

Zs is a field. »
37 is an integral domain

Set of all matrices o

i : Fthe form
K, weren.beRisaring.

5 Every ring has a multip|icar.

) 5 Plicative idep,.
4 The non-zero elements of a
- group under multiplicatiop

0} Any finite commutative ring ha

~ identity. b
() (0] is an integral domain,

- Any commutative skew field 5 5 field

field is o

~ A ring can have more than ope mul
" tiplicative identity. :
Any ring with identity s commuta-
tive.

Any ri.ng with odd number of ele-
- ments 1S commutative,

- The setofall 2 x2 non-singular matri-

- ces with entries from R is a skew

5 field under matrix addition and matrix
multiplication.

®F ©T @F ©T (OF (@T
()T ®WF (OF mF mFE

aracteristic of a ring

ring. Then (R, +) is a group. Foranya € R
peatat-..+a (written n times).

Rings 4.1 5

Examples

L Zgisa ring of characteristic 0.
In general Z,, is a ring of characteristic n.

2. Zisa ring of characteristic zero, since there
is no positive integer n such that na = 0 for
alla € Z.

3. Ms(R) is a ring of characteristic zero.

4. (p(S),A,N) is a ring of characteristic 2,
since 2A = AAA = @ forall A € p(5).

5. Any Boolean ring is of characteristic 2 (refer
solved problem 1 of 4.2).

Theorem 4.14. Let R be a ring with identity 1. 1f 1 is
an element of finite order in the group (R, +) then the
order of 1 is the characteristic of R. If 1 is of infinite
order, the characteristic of the ring is 0.

Proof. Suppose the order of 1 is n. Thenn is the least
positive integer such thatn - 1 =0
(ie,) l+1+4+...4+ l(ﬁ times) = 0. Now, leta € R.

Then, na = a +a + ...+ a(n times)
=]l.a+l-a+...+1-a
=U+1+4+...+ Da.
=0-a
=,0!

Thus na = 0 for alla € R.
Hence the characteristic of the ring is n.

If 1 is of infinite order then there, is no positive
integer n'such thatn - 1 = 0. Hence the characteristic

of the ring is 0.

Theorem 4.15. The characteristic of an integral
domain D is either O or a prime number.

Proof. If the characteristic of D is O then there 1s

BT m the ring Z¢ we have 6a = Oforalla € Zs. nothing to prove. If not be the characteristic of D be n.

Definition. Let R be a ring. If there exists a positive
integer n such that na = 0, foralla € R then the least
, m positive integer is called the characteristic of the
ring R. 1f no such positive integer exists then the ring
1552id to be of characteristic zero.

If n is not prime, let n = pq where 1 < p <n and
1 <q <n.

Since characteristic of D is n we have n - 1=0.

chcen»l:pq-l=(p-1)(q‘l)=0.
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Since D is an integral domain either p- 1 = 0 or
g« 1=

Since p, g are both less than n, this contradicts the
definition of the characteristic of D.

Hence n is a prime number.

Corollary. The characteristic of any field is either 0
Or a prime number.

Proof. Since every field is an integral domain the
result follows.

Note.

I~ The characteristic of an arbitrary ring need not
be prime. For example Zg is of characteristic
6.
2. The converse of the above theorem is not true.
.(1e.,) If the characteristic of a ring R Is prime
then R need not be an integral domain.
For example the ring (p (5), A, M) is of char-
acteristic 2 but it is not an integral domain. If
A and B are two disjoint nonempty subsets of
S we have AN B = ® and hence A and B are
zero divisors in g (S).

Theorem 4.16. In an integral domain D of character-
istic p, the order of every element in the additive group

Is p.
Proof. Leta € D be any non-zero element.

Let the order of a be n. Then n is the least positive
integer such that na = 0,

Now, by the definition of the characteristic of D we
1ave pa = 0.

Hence n|p. Now, since pisprime,n = lorn = p-
If n = |, na = a = 0 which is a contradiction.
Hence n = p. Thus the order of a is p.

\l(;te. The above result is not true for an arbitrary

ng. For example the characteristic of the ring Zg is 6
vhereas the order of 2 € Z is 3.

Exercises

1. Prove that any integral domain of characteris-
tic zero is infinite.

2. Show that the characteristic of M>(Z,) is 3.

.

3. Give an example of an infinite rin
teristic not zero.

4. In a field of characteristic | Show,
(axb)’ =al £ b7, thy

5. *Let a, b be arbitrary elements ¢ ar
whose characteristic is 2 and |¢q ab \nk R
Then show that (a+b)* = q24 ;2 X (”\ by

6. Determine which of the following - ”U'\ )2
which are false. Cang

o
( \
o ‘f C h"]T'l
ac

(a) nZis of characteristic 5
(b) The characteristic of any rip,
0 or a prime number,

(c) The characteristic of Q jg Zerg.

(d) The characteristic of any finjs
not zero.

() The characteristic of any fieq S 201

ise
Biseipy,
€ rlnu is

Answers.
6. @F (®F @©T T (F

4.6. Subrings

Definition. A non-empty subset S of a ring (R, 4
is called a subring if S itself is a ring und

er the Samé
operations as in R.

Examples

1. 2Zis a subring of Z.
2. Zis asubring of Q.
3. Qisa subring of R,
4. Risasubring of C.

5. Thesetof all matrices of the form ( 8 8 )
is a subring of M>(R).

6. {0} and R are subrings of any ring R. Theyarc
called the trivial subrings of R.

1. S={a+ b\/ifa. b € Q) is a subring of R.
8. {0,2)isa subring of Z.

Theorem 4.17. A non-empty subset S of a ring R is?
subring iffa, b € § = 4 — p € Sandab € .
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pe a subring of R,
s ¥ is a subgroup of (R, +).
el

‘bes=>a )€ S,
s,mlflsarmg abe §

, let S be a non-empty gy,
ua—beSandabes OFR such

g ) ls a subgroﬂp of (R, +).
] undel‘ multiplication

t X be any set and let F

be th
'ubsets of X. Then F is a hik

subring of

t A, B € F. Then A and B s finite
A'_— B)U(B — A) = AAB | I8 a finite set

Bt b e S. Thena = n.1andb — 1. |
melZ.

—b=n-l-m-1=(n-m).les.
ab=(n-1)(m-1) = (nm)-1€S.
&@ceSnsasubnngofR

?l'oﬂim3 Given an example of

(&) aring without identity in which a subring has
an identity.

) a subring without identity, of a ring with
identity.

© aring with identity 1 in which a subring has
identity 1’ # |,

(d)

Rings 417

A subring of a non-commutative ring which is
Commutative,

©) & subring of a field, which is not a field.
Solutlon. (a) Consider the set R of all matri-
ces of the form Z 3 where a, b € R.

Then R is a ring under matrix addition and
multiplication (verify).
We now prove that this ring does not have

an identity, Let (f[ 8) be a marfix
€.V

d 0

0

0

) (4 5)

05 )=\
(a0)(s 8)=(%3)
S| 3 ).

such that (

o R
QO
N

=ac=aandad =b =>c¢=landd = ba~".

(b)

(c)

(d)
" (e)

Hence the matrix ( ; g ) depends on the

matrix ( Z g ) so that the ring R does not

have an identity element.
However the subring S of R consisting of

all matrices of the form ( 8 g ) has

LR s identit
0 o )2 identity.

2Z is a subring of Z. Z has 1 as the identity
but 2Z doesnot have an identity.

M (R) is a ring with the idenlity( (’) (1’ )

The subring l( g g ) /a 5 R] has the
et 1950
1dent1ty( 0 0 )

Example given in (c).

Qis a field. Z is a subring of Q but Z is not a
field.
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Theorem 4,18, The intersection of two subrings of a
ring R is a subnng of R.

Proof. Let A, B be two subrings of R.

Leta,b e ANB. Thena, b € Aand B.
Since A and B are subrings @ — b and ab € A and B.
a-bandab € AN B.
A N B is subring of R (by Theorem 4.17).
Note.

I. The union of the two subrings of a ring need
not be a subring.

2. The union of two subrings of a ring is again a
subring iff one is contained in the other (proof

as in theorem 3.20).
Definition. A non-empty subset S of a field (F, +, )

i1s called a subfield if S itself is a field under the same
operations as in F.

Forexample, Qs a subfield of R and R is a subfield
of C. '

Theorem 4.19. A non-empty subset S of a field F is a
subfield iff )

() a,beS=a—-beSand
(i) a,beSandb+0=ab!es.

The proof follows by applying Theorem 3.17 to the
groups (F, +) and (F — {0}, ).

Exercises

1. Prove that every subgroup of (Z,+) is a
subring of the ring of integers. (Hint: Any
subgroup of Z is nZ for some n).

2. Prove that every subgroup of (Z,, ®) is a

subring of (Z,, &, ©).

Find all the subrings of Zg, Z, and Z,5.

4. Let Aand B betworings. In A x B we define.

=

(a1, by) @ (a2, by) = (ay + a1, by + by) and
(a1, b)) © (a2, b) = (ayaz, b by).
Show that A x B is aring. This ring is called

the direct sum of the rings A and B and is
denoted by A & B.

I is called an ideal of R if |
right ideal.

5 If Aand B are two rings with ide

that A @ B is also a ring wih ideng,. |

6. Let A be a ring with identity | in
ring without identity. Then gh,, th

is a ring without identity, Prove

S = ((a,0)/a € A)is a sub rng .:

with identity (1, 0).

7. If Aand B are helds,is Aqy g, fiel

8. Prove that the intersection of v, "
a field F is a subfield of
9. Let Rbearingand leta be 5 fixeq
R.Letl, = (x € R/ax = (). Sho
a subring of R.
10. Let R bea finite ring and S be 4 Subr;
Show that the order of S divides 1he ,,,

el
W |

4.7. Ideals

We now introduce the concept of an idey) ;,
Ideals play an importantrole in the developme,
theory similar to the role played by norm
in group theory.

R is called a left ideal of R if

(i) a,bel =2a—-bel.
(i) aelandre R=rael.

I is called a right ideal of R if

(i) abel=a—-bel.
(1) aelandre R=ar e I.

Thus in an ideal the product of an element

Examples

L. Inanyring, R, {0} and R are ideals. The

called improper ideals of R.

2. 2Zis anideal of Z.
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Proof. Leta,b € 27 Thetia —b e
a€2Zandb € Z. Then ab i even and h.fn?l
ab € 2Z. Thus 2Z is an ideal of 7 ce

In general nZ is an ideal of 7 (prove)

In M2(R) the set S of all matrices of the form

( Z 3 is a left ideal and it is noy a right
ideal.

Clearly A\ BES=>A-Becs

Now, let A € Sand B ¢ M>(R).

a 0 p
A= , o ;mdB:(r ‘\, )
g ) a 90
b 0 )

men“=(r s
Pa+gqgb
)eS

ra+sb o
Hence S is a left ideal. Howevyer

a 0
= P q
AB ( e ) ( s, )
ey 9P aq
Hence S is not a right ideal.

Let R be any ring. Leta € R.

LetaR = {ax/x € R). Then qaR is a right
ideal of R.

Similarly Ra = {xa/x € R} is a left idea] of
R.

Letax,ay € aR. ‘
Thenax —ay = a(x — y) € aR.
letar eaR and y € R.

Then (ax)y = a(xy) € aR.

Thus a R is a right ideal.

Similarly Ra is a left ideal of R.

4.19

Rings
24 ere
For example, consider the ring ﬁ/; l:‘”
(4) = {0, 4,8, £16, £24,...... | and 4 ¢ (4).
Remark,

(1) Every left ideal of a ring R is a subring of R

Let / be a left ideal of R. Leta,b ¢ /. Then
by definition, a — b and ab € I. Hence / 15 a
subring of R.

(1))  Similarly every right ideal of R is also a
subring of R,

(M) Any ideal of R is a subring of R. (by (i) and
(i1))

(iv)  However, a subring of R need not be an ideal
of R.

For example, Z is a subring of Q but Z is not an ideal
of Qsince 1 € Zand L e Qbut1-4=14¢Z

Theorem 4.20. Let R be a ring with identity 1. If / is
anideal of R and | € /, then / = R.
Proof. Obviously / € R. Now, let r € R.
Sincele/,r-1=rel.ThusRC I.
Hence R = J.

Theorem 4.21. Let F be any field. Then the only
ideals of F are {0} and F.
(ie.,) A field has no proper ideals.

Proof. Let / be an ideal of F. Suppose I # {0}.

We shall prove that / = F. Since I # {0}, there
exists an element a € [ such that a # 0.

Since F is a field a has a multiplicative inverse
-1
(RS T,

Now,aelanda'e€e F=3aa'=1¢€¢1.
Hence by theorem 4.20, [ = F.

inition. If R is acommutative ringthenaR = Ra_
anideal. This is called the principal ideal generated
Joand is denoted by (a).

Theorem 4.22. Let R be a commutative ring with
identity. Then R is a field iff R has no proper ideals.

Proof. If R is a field, by theorem 4.21. R has no

IfRisa commutative ring with identity 1 then ;
proper ideals.

=al € (a). This may not be true if the ring R does
have an identity.

Conversely, suppose R has no proper ideals.
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To prove that R is a field we need to show that every

non-zero element in R has an inverse. Leta € R and
a0

Consider the principal ideal aR.

Since R is a ring with identity,a = a - | € aR.

. aR # (0).Since R has no proper ideals,aR = R.
Hence there exists x € R such thatax = L

Thus x is the inverse of a. Hence R is a field.

Definition. An integral domain R is said to be a

principal ideal domain (PID) if every ideal of R is
a principal ideal.

Examples

1. Zis a principal ideal domain since any ideal

of Z is of the form nZ.

2. Any field F is a principal ideal domain since
the only ideals of F are (0) and (1) = F (by
theorem 4.21). '

Exercises
1.

Show that intersection of two left ideals of a
ring R is again a left ideal of R. Prove similar
results for right ideals and ideals.

2. Let I, and /; be two ideals of R.

Leth +h={a+b/acl,bel).

Show that I| + I is an ideal of R.

3. Let X be a non-empty set. For any non-empty
subset A of X show that (A, ®) is a subring
but not an ideal of the ring (g (X), A, N).

4.

Let A and B be any two rings. Show that
A x (0) and {0) x B are ideals of A & B.

5. Prove that ‘(g 2 )/a.beR} is a

subring but not an ideal of M>(R).

6. Determine which of the following statements
are true and which are false.
(a) A subring of a commutative ring is
commutative.

(b) A subring of a ring with identity is

again a ring with identity.

the same as the idcnln\,d SUbrj,
the ring. 7 Clemg,
(d) The set of all NON-Sing,,
matrices is a subring (f %\11 I
(e) Every subring of Mng R”'*y 1
of R. S Sanjg
3 . d]
() Everyideal of a rng R is
R .

‘ a wh““u.

(g) Zisanideal of R. )

(h) Qisanideal of R,

(i) - {0,2] is an ideal of Zy.

0) {0, 1} isan ideal of 7,

(k) Inacommutative rip
is a right ideal,

Bevery |of, e
(I) R has no proper ideals

(m) Qs a principal idea] domaj,

(n) Zis a principal ideal domain.
Answers.
6. @T OF @F @F (F (r
®WF OT GF WT OT @y

4.8. Quotient rings

Let R be a ring. Let (/, +) be a subgroup of (. 1
Since addition is commutative in R,/ is 3y
mal subgroup of (R,+) and hence the colleci
R/T ={I +a/a € R} is a group under the operatio
defined by (/ +a)+(I+b) = I+ (a+b). Tomake R/l
a ring, we have to define a multiplication in R// Itj;
natural todefine (I +a)(I +b) = I +ab. But we hae
to prove that this multiplication is well defined (ic.)
it is independent of the choice of the representatives

from the casets. We shall prove that this happens iff |
is an ideal.

Theorem 4.23. Let R be a ring and / be a subgrow

of (R, +). The multiplication in R// given by

(I +a)(I +b) = I + ab is well defined iff [ is¥
ideal of R.

Proof. Let / be an ideal of R.

To prove multiplication is well defined,

let! +ay=1+aand ] + b =1/ +b.

Scanned with CamScanner

X
|

|
o

g



b . el+aandb, €] 4 p
mal

-
__‘

‘ _eaih1 = (i1 +a)i2+b)

al=i|+aandb| =i2+bwherei|.i~el

. = fli2tib+aiy4 g,
letsamdcalwchavcx,h ith,aiy e |
carby = = i3+ab whereis = i +ib4qiy ¢ N
b g1t ab.

¥ :ly suppose that the multiplication in R/1
by (I + U + b) = I + ab is well defineq.

@F""‘““‘ I is an ideal of R,
lﬁ' € [ and r € K. We have 1o prove that

M’,+;r=(l+l)(l+r)=(.’+O)(l+r)

B, - =] +0r = I.
. ir € l.Similarly ri € I.

Hence 1 i an ideal.

Definition. Let R be any ring and / be an ideal of R.
Ve have two well defined binary operations in R/I
iven by (I + a) + (I +b) = I + (a + b) and
+a)(I +b) = I + ab. It is easy to verify that
/1 is a ring under these operations.

The ring R// is called the quotient ring of R

I. Thésubset I = (0, 3) of Zj is an ideal (verify)
Zg/l = (I, 1+ 1,1 +2)isaring isomorphic
to Z3.

Here Zg is not an integral domain but the
quotient ring Zg// is an integral domain.

2. The subset pZ where p is prime is an ideal of
the ring Z.
Z/pZ = (pZ, pZ+1...... ,PZ+(p—1)).
Itis easy to see that the ring Z/ pZ = Z,. Here
Zisan integral domain but not a field whereas
Z/pZis a field.

Rings 4.21

Exercises

I. Let R be aring and / be an ideal of R. Prove
that (i) if R is commutative then R// is com-
mutative, (i) if R is a ring with identity then
R/1I is a ring with identity.

2. Find all ideals / of Z3. In each case compute
Zy/1.

3. Give addition and multiplication tables for the
ring 3Z/12Z. Is the ring isomorphic to Z4”?

4. Determine which of the following statements
are true and which are false.

Let R be aring and / an ideal of R. Then,

(a) R iscommutative = R/[ is commu-
tative,

(b) R/Iiscommutative = R is commu-
tative.

(c) R is aring with identity = R// is a
ring with identity.

(d) R/Iis aring with identity = R is a
ring with identity.

(¢) R isan integral domain = R// is an
integral domain.

(f) R/I is an integral domain = R is an
integral domain.

(g) Risafield = R/I is a field.

(h) R/Iisafield = R is a field.

Answers.

455 - (a):T
(@F (hF

(b):E 2 (e)AT (d)Fl(e)F (HF

4.9. Maximal and prime ideals

We have seen that if R is a ring and / is an ideal of R
then R/ is a ring. Further is R is commutative then
R/I is also commutative. We now proceed to answer
the following questions for commutative rings with
identity. Which ideals / give rise to quotient rings that
are (i) fields (ii) integral domains?

Definition. Let R be aring. Anideal M # R is said
to be a maximal ideal of R if whenever U is an ideal
of R such that M € U < R then either U = M or

U = R. That s, there is no proper ideal of R properly
containing M.
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Examples

1. (2) is a maximal ideal in Z. For, let U be an
ideal properly containing (2).

U contains an odd integer say, 2n + 1.
l=Qn4+1)-2nel.
U = Z (by theorem 4.20).

Thus there 1s no proper ideal of Z properly

containing (2). Hence (2) is a maximal ideal
of Z.

2. Letpbe any prime. Then (p) is maximal ideal
nZ.

Let U be any ideal of Z such that (p) € U.
Since every ideal of Z is a principal ideal
U = (n) for somen € Z.

Now.pe(p)§U=>peU=(n).
p = nm for some integer m.
Since p is prime eithern = 1 orn = p-

Suppose n = 1. Then U = Z.
Suppose n = p. Then U = (p).

There is no proper ideal of Z properly con-
taining (p). Hence (p) is a maximal ideal in Z.

3. In any field F, (0) is a maximal ideal of F
since the only ideals of F are (0) and F. (refer
Theorem 4.21)

4.

Let R be the ring of all real valued continuous
functions on [0,1].

Let M = (f € R/f(1/2) = 0}.
Clearly M is an ideal of R.

Let U be any ideal of R properly containing
M.

There exists a function g(x) € U such
that g(1/2) # 0. Let g(1/2) = c.

Take h(x) = g(x) — c.
h(1/2) =g(1/2) ~¢c=c—c=0.
hix) e M CU.

Also g(x) € U. Hence g(x) — h(x) € U.
ceU.

l=cc”! e U,
U = R (by theorem 4.20)

Thus there is no proper jde

containing M. Hence M i

g pr
: : ' mdx'mill, npqm
5. (4)is not a maximal ideal i, 7 R
proper ideal of Z properly C()l"'l.in”r. (%),
= MNe ( §
4)

q

Theorem 4.24. Let R be a commy
identity. An ideal M of R is maxip
field.

l'i||i\1¢ Ming

1LiE gy Vi
5,
"4

Proof. Let M be a maximal ideal i, R

Since R is a commutative ring wi

”\ |d .
M # R, R/M is also a commutative ~Nlity

ng Witk ide ang
Now, let M + a be a non-zero elemen, e
thata ¢ M. We shall now prove th, ‘

t M o
multiplicative inverse in R/M . @ hy,

i
LetU ={ra+m/r € R and m € M),
We claim that U in an ideal of R,
(ri@a + my) = (raa + my)
= (r) —r3)a + (m; — my) ey

Also, r(ria +my) = (rr))a + rmy ey (sine
rmy € M). S

U is an ideal of R.
Now, letm € M. Thenm = 0a 4+ m ¢ U.
MCU.
Alsoa =1la+0€Uanda ¢ M.
M+U. :
U is an ideal of R properly containing M.
But M is a maximal ideal of R.
U= R.Hencel € U.
| = ba + m for some b € R.
Now,
M+1l=M+ba+m= M + ba(since m € M)
= (M + b)(M + a).
Hence M + b is the inverse of M + «.

Thus every non-zero element of R/M has an
inverse.

Hence R/M is a field.
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aversely. suppose K /M s 2 field. )

" st U be any ideal of R properly contamsng M
Thereextts an clementa € 1V such that o iM
. M 4 a1sanon-zem element of R/ M

e l]”illﬁdd”%—ﬂlu;mm“y
¢ b

L (M a)M+b)=M4+

Y Miab=M4+1

' l—abe M.

jsoaelU =abel.
b I=(l-ab)+abecU.Thusl e U.

5. U = R. Thus there is no proper ideal of R
dy containing M. Hence M is 2 maximal ideal

finit 'Iﬂkhlm\tmﬂnw_
‘isulledapl'uuﬂulifnbe P = cither
e Porbe P.

Let R be an integral domain. Then (0) is 2

prime ideal of R.

"For,abe (0) = ab=0
=a=0o0rb=0(since Risan I.D)
= a € (0)orb € (0).

(3) is a2 prime ideal of Z.
For, ab € (3) = ab = 3n for some integer n.

= 3lab
=% 3la or 3|b
= a€(3)orb e (3).

(3) 1s a pnme ideal.
e. In fact for any prime number p. the ideal (p)
Saprime idealinZ.
4) 15 not a prime ideal in Z.
For.2 x 2 € (4). But2 ¢ (4).

413

| = &

Theorem 4.25. Lex # be any comemstative rimg =i

dentity. Let P be an sdeal of R. Then P = 2 prme
sdeal © R/ P w an imsegral doman,

Prool. Let P be 2 priene adeal
Sance R s 3 commutative ring with wdesaty K/ P »
Now (P+aWP +b)=P +0
= Piab="P
=abe P
=2 a€ Porb e Plunce P s a prime ideal)
=>Pi+a=PxP4+b="FP

Thus R/ P has no zero divisors.
s, R/P is imegral domain.
Conversely, suppose R/ P is an imtegral doman.
We claim that P is a prime ideal of R.
Letabs P.Then P +-ab=P.
(P+a)(P+b)="P.

s P4+a=PorP4+b=P. (since R/P hasno
zero-divisors)

ac PoubeP.

Pisapnmeideal of R.
Corollary. Lei R be acommutative ring with identity.
Then every maximal ideal of R is a prime ideal of R.
Proofl Let M be 2 maximal ideal of R.

-. R/M 1s afield (by theorem 4.24)
R/M is an integral domain. (by theorem 4.8)
M is a prime ideal. (by theorem 4.25)
7
Note. The converse of the above statement is not true.
For example, (0) is 2 prime ideal of Z but not 2 maximal
ideal of Z.

Exercises

1. Prove that in Z, (6) is not a maximal ideal.
2. - Prove that for any composite number n. the
ideal (n) is not a maximal ideal of Z.

3. Prove that (n) is a maximal ideal in Z iff n is

a prime number.
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424 Modemn Algebra

4. Prove that (4) 15 a maximal ideal but not a
prime ideal in the ring of even inlcgg.rs‘

5. Find all prime ideals and maximal ideals of

6. ﬂ; ‘R be a finite commutative ring with iden-
tity. Prove that every prime ideal of R is a
maximal ideal of R.

Answers.
5. (2) and (3) are prime ideals and also maximal
deals.

4.10. Homomorphism of rings

Definition. Let R and R’ be rings. A function
f : R — R'is called a homomorphism if

() f(a+b)= f(a)+ f(b) and
(1) f(ab) = f(a)f(b) foralla,b € R.

If fis I-1, then f is called a monomorphism. If f is
onto, then f is called an epimorphism. A homomor-
phism of a ring onto itself is called an endomorphism.

Note.

1. Obviously anisomorphism of aring is a homo-
morphism and a 1-1, onto homomorphism is
an isomorphism. .

2. The name homomorphism is used for map-
ping between groups and between rings. In
groups, 2a homomorphism preserves the binary
operation of the group. Since rings have two
binary operations, a ring homomorphism is
defined as a mapping preserving the two
binary operations in a ring.

3. Condition (i) of ring homomorphism says that
f is a group homomorphism from the additive
group (R, +) to the additive group (R, +).

Examples

1. f: R —> R’ defined by f(a) = 0 for all
a € R is obviously a homorphism. f is called
the rrivial homomorphism.

)

i

Let R be any ring. The identity map
i : R = R is obviously a homom,

Let Rbeanyring. f : R x R Ry,
Ve,

.f(-l’. y)=x 1S a rnng hnmnmmph,\m by

For,

fla,b)+(c;d)] = fla+tc, by g _
a
= f(a,b) 4 f(c,d

Also, fl(a,b)(c,d)] = f(ac, py,

= Ay

= f(a, by, J
vd)

f:Z - Z, defined by f(x) —

" = T wha
x=gn+r,0<r<nisa h()m“m"rphl lere
M

For, leta, b € Z. ;
Leta=qn+r where0 <r
b=gqan+rywhere0 <r; <n,

r +r=q3n—+n where 0 =< n.
and rjr2 = gan +ry where 0 <, -,

Now,
(@+b)=(q+ag)n+r +r
=(q1+92+g3)n+r,.
s flatb)=r3s=n@&n=fa)es [y
Also,

ab = (qin+r1)(qa2n +r2)

=n(qi1g2n +riq2 +r2q1) +rr;
= n(qig2n + r1q2 + 291 +q4) + 14
f(@ab) =rs=r1 @ra = f(a)© f(b)

Hence f is a homomorphism.

Let R be a ring and / be an ideal of R. Then
® : R — R/I defined by &(x) =/ +xis2
ring homomorphism. ® is called the natural
homomorphism. ~

Px+y)=I+(x+Yy)
=l+x)+U+Yy)
=d(x) + P(y).
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A¢'(X)’) =1+ xy

v g

y
L

I “ll = 34,
I e

<

- fence @ is a ring homomorphisy,

% 1.26. Let Rand R’ beringsand 7 . p R
ﬂl;omofphism. Then, R

[ 3
(o =0

(0)
(? ;(.‘a).____.__f(a) foralla € R.

) : bring of R, th i
* jf § is a subring oL K, then £(S) is a suby;
(i) S R.In particular f(R) is a subring 011: I?’ng

[f § is an ideal of R. then f(S) is an idea] of

[ s isa subring of R, then f~1(g) i
:_(') subring of R. g
[ an ideal o€ S (R). then £~4(S") s an
" jdeal of R.

[ Risa ring with identity 1 and fF(H+#0,
hen (1) = 1" is the identity of f(R).
[fRisa commutative ring then f(R) is also
commutﬂlivc-

(vii)
il

Iy, Since f is a homomorphism of the group
2410 (R',+), the results (i) and (ii) follow from
Tieorem 3.55

i) Since S is a subring of R, (S, +) is asubgroup
of (R, +) and hence f(S) is a subgroup of
(R', ).

Now, leta’, b’ € f(S).

Then @' = f(a) and b’ = f(b) for some
a,beS. :
a'b' = f(a)f(b) = f(ab) € f(5).
Hence f(S) is a subring of R".
() Let § be an ideal of R.

To prove that £(S) is an ideal of f(R) itis
enough if we prove that 7’ € f(R) and

d e f(S)= r'a’anda’r’ € f(5)

Letr' = f(r) and @’ = f(a) where r € R
anda € S.

Now, since S is an ideal of R, ra and ar € S.

Rf”.‘.’-‘ 4.25

Hence f(ra) = f(r)f(a) = r'a" € [(3):
Similarly a’r’ € f(S).
Hence f(S) is an ideal of f(R).

(V) Lel § be a subring of R’. Since (S', +) 15 @
subgroupof (R, 4), f “1(5") is a subgroup of
(R, 4).

Now, leta, b e f-1(5).
Then f(a), f(b) € §".

flab)y = f(a)f(b) € S’ (since S is a
subring of R).

abe (5.
Hence f~'(8’) is a subring of R.
(vi)  Proof is similar to that of (v).
(vii) Let R be aring with identity 1. Leta’ € f(R).
Thena' = f(a) for somea € R.

Now, a’ f(1) = f(a) f(1)
= f(al) = fla)=4d"

Similarly f(1)a’ = a’. Also f(1) #0.
Hence f(1) is the identity of f(R).
(viii) Proof is left to the reader.
Definition. The kernel K of a homomorphism f of
aring R to aring R’ is defined by
{a/a € R and f(a) = 0}.
Theorem 4.27. Let f: R — R’ be a homomorphism.
Let K be the kernel of f. Then K is an ideal of R.
Proof. By definition, K = f=tqop.
Since {0} as an ideal of f(R), by (vi) of theorem
426, K is anideal of R.
Theorem 4.28. (The fundamental theorem of homo-
morphism)
Let R and R’ be rings and f : R — R’ be an epi-
morphism. Let K be the kernel of f.Then R/K =R

Proof. Define® : R/K — R'by ®(K+a) = f(a).

(i) @ is well defined, for,let K + b =K +a.
Thenb € K +a.

. b=k+a where k € K.
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Modern Algebra
s fB)= ftk+a)= f(k)+ f(a)
=0+ f(a) = f(a).
. ®(K+b)= f(b) = f(a) =P(K +a).
() dis/-I.

For, (K +a) = &(K +b) = f(a) = f(b)

= f(a)- f(b) =0
= fla)+ f(=b)=0
= fla=b)=0
=2>a-bek
=2acK+b

= K+a=K+b.

(11) P is onto.
For, leta’ € R’
Since f is onto, there exists @ € R such that
f(a) =ad'.
Hence ®(K 4+ a) = f(a) =a’.
(iv) @ is homomorphism.
For,

®[(K + a) + (K + b)) = ®[K + (a + b)]
= fla+b)

= f(a) + f(b)

| (since fisa hom(;morphism)
= ®(K +a)+ (K +b).

and (K +a)(K +b)] = B(K +ab)
= f(ab)
= f(a)f(b) ‘
(since f is a homomorphism)

=®(K +a)®(K +b).

Hence & is an isomorphism.
Hence R/K = R’

Solved Problems

Problem 1. The homomorphic image of A
domain need not be an integral domain Megr.

Solution. f : Z — Z4 defined by fla) < .
a=4+4+r,0 <r <4isa hpm”m”mhl\' Cre
onto Z4. Here Z is an integral domain ang 7 Im of
integral domain since 2 © 2 = 0, S oy an

Problem 2. Any homomorphism of g field

to ten
either one-one or maps every element 1o 0 self

1§

Solution. Let F be a field and f . p _, r

homomorphism. Let K be the kernel of i 'l‘lm;] KQ&

an ideal of F. By theorem 4.21, K — {0} or  _ !_‘~
If K = (0} then f is 1-1. '
If K = F,then f(a) =0foralla e f

Exercises

1. If R, R', R” are rings and if f . p _ P
Ahdle RS R are homomorphisms they
go f: R— R"isahomomorphism.

2. LetR,R'beringsand f : R — g be an
epimorphism. Then if R is a skew field g,
R’

3. Determine which of the following are hop,.
morphisms. If so find the kernel.

(a) f:C — Cdefinedby f(z) =
(b) f:Z — Zdefined by f(a) =2
(c) LetR={m + n«/i/m. netlRi
a ring under usual addition and mul
tiplication. Define f : R — Rby
f(m+nv2) =m —nV2.
(d) f:C — M,(R) defined by
f(a+ib) = ( —1? b )

a

A7 — 7, f as defined in exampk
4 of section 4.10.
() f:Z — Z defined by

LX) =k 3: Ny
4. Let R be a commutative ring with Idcn“’)]
Prove that if f is homomorphism from f ont

afield F then Ker f is a maximal ideal o
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Determine which of the following are trye and

5 which are false.

(a) Every homomorphism is an isomor-

phism.

(b) Every isomorphism is a homomor-
phism.

(¢) A homomorphism is 1-1 iff its kernel
is {0].

(d) In a nng homomorphism, identity
element is mapped into identity.

(e) A homomorphic image of an integral
domain is an integral domain.

(f) A homomorphic image of a skewfield
is a skewfield.

(z) Homomorphic image of a field is a
field.
() If f : R = R’ is a homomor-
phism and R is commutative then R’
is commutative.

'&) Kerf = {0} (b) Not a homomorphism
Kerf= {0} (d) Kerf= {0} (e)Kerf=nZ
Not a homomorphism.

o

; . Field of quotients of an inte-
- gral domain

If D is an integral domain, the non-zero elements in
D may or may not have multiplicative inverses. For
ample in-Z all the non-zero elements except 1 and
o not have multiplicative inverses. We know that
tegral domain in which every non-zero element
‘multiplicative inverse is a field. In this section we
truct a field F which contains the given integral
ain D. This field will be the smallest field contain-
D. For example Z is contained in the field Q and
‘elements of Q can be expressed as quotients
tegers. The construction of the quotient field of
integral domain is motivated at every step by the
known behaviour of the field of rational numbers.

Rings 4.27

We note that every element of Q can be expressed
as a quotient p/q where p.q € Z and g + 0. Fur
ther the two fractions 2/3 and 4/6 represent the same
rational number. In general two fractions a /b and ¢ /d.
where b,d # 0 represent the same rational number
iff ad = be. Also (a/b) + (¢/d) = (ad + bc)/bd
and (a/b)(c/d) = ac/bd. The elements of Z can be
thought of as fractions of the form all.

The construction of the field of quotients F of an
integral domain D is carried out in the following four
stages

(i) Specify the elements of F.
(ii)) Define addition and multiplication in F. '
(ifi) Show that F is a field under these operations.
(iv) D can be embedded in F.
Stage (i) Let D be an integral domain.
Let S = {(a, b)/a,b € D and b # 0).

We are going to think of the ordered pair (a, b) as
one representing a formal quotient a/b. For example.
if D = Z, the pair (1, 2) will eventually represent the
fraction 1/2.

Definition. Two elements (a, b) and (c,d) € S are
defined to be equivalent iff ad = bc. If (a,b) 1s
equivalent to (¢, d) we write (a, b) ~ (¢, d).

Lemma 1. ~ is an equivalence relation in S.
Proof. Let (a,b) € S.
(a, b) ~ (a, b) since ab = ba = ab.

Hence ~ is reflexive.

Now, (a,b) ~ (c,d) = ad = bc
= cb =da = (c.d) ~ (a.b).

Hence ~ is symmetric.
Now, let (a, b) ~ (¢, d) and (¢, d) ~ (e, f).

Now to prove that (a, b) ~ (e, f) we must prove
that af = be.

Case (i) Let ¢ = 0. Now, ad = bc and cf = de.
ad =0andde = 0.
Butd # 0. Hencea =0 and e = 0.
a_f = be =0.
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438  Maodern Algebra

Case(ii) Letc ¢ 0.
We have ad = bc and cf = de.
adcf = bede.
af = be (by cancellation law)
~ s transitive.
Hence ~ is an equivalence relation on .

Consider the equivalence class containing (a, b),
- 2 f@byes
Let 1t be denoted by . Let F = 5 (a, .

Stage (i) Let % 3 ¢ F. We now define

Since D is an integral domain and b, d # 0, we have
bd # 0.

ad + be ac
bd MHEF

Lemma 2. Addition and multiplication defined above
are well defined.

Proof. Let (a). b)) e % and (c1.dy) € 3.
airb = bya and ¢yd = dyc. ()
a\bdd, = byadd, and cydbby = dcbhb,.
(a\dy 4+ byc))bd = (ad + be)bd,.
ad 4 be _aidy + bye

bd bd,

a A C iy . )

b d b, dy
Addition is well defined.

Also from (1), aybcid = byadc.

(ac,bd) ~ (a\cy, b\dy).

— — e 4

Multiplication is well defined.

LLemma 3. Stage (iii) F isa field with the addition and
multiplication defined above,
Proof. It can easily be verified that addition s
commutative and associative.,

. - -—a
9 is the zero of F and

—_—

b
a
inverse of -';

is )
le ad,;'“
Ve

(F,+) is an abelian group,

Clearly multiplication is commutatiye and

l : . n"\l,
tive. I is the identity of F. 0|
a
If 5 is a non-zero element of F, then ¢ 4 0

— € F and is the inverse of &
a

e a8 cf 4+ 4.
acf + ade
bd f
acfb + adep,
 bdfh

_aC+ae
B br
- a

C
~bd

+

RIS
<1

F is a field.

Stage (iv) The field F contains a subring R which i
isomorphic to D.

Lemmad4. Themap f : D — F given by f(a) =
is an isomorphism of D onto f(D).

a
I

Proof. Leta,b e D,

Then f(a+b) = a_:-b = %4—? = f(a)+ f(b)
' b
and f(ab) = “_1_ & 5121 = f(a)f(b).

|
= (a, 1) ~ (1)

=al = 1b

Also f is 1-1. For, f(a) = f(b) = “T

= a=b.
J is an isomorphism.

Thus we have proved the following.
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4.29. Any integral domaip, D can be
field F and every clemen S,

; . ‘ tof fp .
b ;,'s a quotient of two clcmcmﬁ nrl' IF) o e
e ‘ \ '

The field F which we

all; ) AVE Constryc
the field of quotiens o |, ucted

4.30. The field of quotiens F of
) is the smallest field congaip
er field containing D (e
morphic to F.

“ofan integry
R D. (ie.) 1f
N F contains 3
a,be D and b #0.

e F’ and since F' is a field qp-! e
F be the quotient field of ).
ef:F — F'by f(a/b) =ab-1

e @ﬁned. for. let (a), b)) ~ (a, b).
b = bra. Hence a) b ! = gp-1.

since f(a/b) = f(c/d) = ab~ = c4-!

= ad = bc
= a/b=c/d.

.

g T b

AR T W

'T'u.?b. ¢/d e F.
 fl(@/b) + (/)] = fltad + be)/bd)
= (ad + bc)(bd) ™!
| = (ad + bc)d~'b™!
B =ab' +cd™!
B = f(a/b) + f(c/d).
Also, f[(a/b)(c/d)] = fl(ac)/(bd)]
' | = (ac)(bd)™"
- =acd”'b7!

—ab~' .cd”!

— f(a/b)f(c/d).
hus Fis isomorphically embedded in F.

et ) -i:

dolved problems

oblem 1. Describe the quotient field of the integral
'main D = {a + bv/2/a, b € Z).

Rings 4.29

S“l"“(‘ln, ['he set of real numbers R 15 a freld

tontaiming the given integral domain D.

Henee by theorem 4.30, R contains a subfield
1somarphic 1o the field of quotiens of D,

This subfield is precisely the set of all real numbers
ofthe form (a4 b/2) /(e + d/2) where e+ d /2 # 0

(@+bv2)/(c+d2)is of the form p 4 q /2 where
P and g are rational numbers. Thus the quotient field
ofDis(p+ qV2/p.q € Q).

Problem 2. 1f D and D’ are isomorphic integral
domains then their quotient fields are also isomorphic

Solution. Let f: D = D’ be an isomorphism. Let
F and F' be the quotient fields of D and D’ respec-
tively. Consider @ : F — F' given by

®(a/b) = f(a)/f(b). ® is an isomorphism of F onto
F' (verity).

Exercises

1. Show that the field of quotients of any field is
itself.

2. Let R be aring which may or may not have a
unit element. In Z x R we define
(n,ry+(m,s)=Mm+m,r +s)and

(n,r)Y(m,s) = (nm, mr + ns + rs) [Notice
that since m and n are integers mr and ns
are meaningful]. Prove -that S is a ring with
identity and R can be embedded in S. [This
shows that any ring can be embedded ina ring
with identity].

3. Determine which of the following statements
*are true and which are false.

(a) Risafield of quoticnt_s of R.
(b) Qs afield of quotients of Z.
(¢) Risafield of quotients of Z.

(d) If D is any field then the field of
quotients of D is isomorphic to D.

Answers.

3. @T BT @F @T.
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-4‘;"_'\‘.

i c—>c—bes.
@ Hence(@a+0) —@t+b)=c_p ¢
_ a+b<a+€'- -
L coc-beS.Akoacs
a(c—b) € S.
ac—ab € S. Hence ab < g4

. II41_.‘3::;1111: field of complex numbers is nof
i

Suppose C is an ordered field. [ ¢ § be
#o"osiﬁvc elements of C. Consider the comple:
i

either i € S or —i € §.
m 2 -4 S
jeS=i! €S= -l 1€ Sand
’I.ES._-_?(-—J')‘.(—I')" ES= ], 1les.
55 in either case we get a contradiction.

Th
Hence C is not an ordered field.

ion. Let D beanordered integral domain and
jeD. We define,

aifa>0

al = g
lal —aifa<0

|a| is called the absolute value of a.

Exercises

ghow that in an ordered integral domain the follow-
ing are true.

lab] = la| |b].

la + b| < lal| + |b].
at+x<a+yiffx <y.

Ifa > 0,thenax < ay & x < y.
Ifa <0,thenax <ay < x > y.
a<bea <b

413. Unique factorization domain
(U.ED.)

The reader is familiar with the concept of divisibility
in Z. Further any integer can be uniquely expressed
% a product of prime numbers. In this section we

Rings 4.31

introduce the notation of divisibility and factorization

N any commutative ring.

Definition. Let R be a commutative ring

Leta. b € Randa # 0. We say that a divides b and
write alb if there exists an element ¢ € R such that
b = ac.1fa|b we say thata is adivisor ot afactor ol b.

Examples

1. InZ.2|6 since 6 = 2 x 3. However in 2Z, 2
does not divide 6 since there is no element
¢ € 2Z such that 6 = 2c.

2. InZs,213sinced=204.

Let R be commutative ring with identity. Let

u be a unit in R. Then u divides any element

aof R.

For, since u is a unit, u~ " exists and

Wl =uu"' = 1.

fad
re

a=la= (uu")a = u(u'a) = uc
wherec =u~'a € R.
ula.

4. Inafield F every non-zero element is a unit
and hence every non-zero clement divides

every element of F.

Exercises

l. Let R be a commutative ring. Leta, b,c € R
and a # 0. Prove that

(@) albandalc= al(b=£c).
(b) albandalc= albc.

2. Let R be acommutative ring with identity. Let
a be a non-zero element of R. Prove that all

iff @ is a unit in R.

Definition. Let R be acommutative ring. Leta, bbe
two non-zero elements of R. Then a and b are said to

be associates if a|b and bla.

Examples

«1. InZ, for any non-zero integer a, a and —a are
associates. In general in any commutative ring
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4.32 Modern Algebra

R with identity, for any non-zero element a of
R.a and —a are associates.

2. 1In2Z.2 does not divide 2. Hence 2 is not an
associate of 2.

L

In Zg, 2 and 6 are associates.
For,2 = 6 ® 3 and hence 6|2,
Also, 6 = 2 ® 3 and hence 2(6.

Exercises

I. Let R be a commutative ring with identity.
In R — {0} we define a ~ b if a and b are
associates. Prove that ~ is an equivalence
relation.

Is the above result valid if R does not have an
Idenlity? .

rJ

Theorem 4.35. Let R be an integral domain. Let a
and b be two non-zero elements of R. Then a and b
are associates iff @ = bu where u is a unitin R.

Proof. Let a and b be associates. Then a|b and b|a.

Hence there exist elements ¢, d € R such that b = ac
and a = bd.

a = bd = (ac)d = a(cd).

Now, since R is an integral domain cancellation law is
valid in R.

1= cd and hence ¢ and d are units.

a= bd wh-cre d is a unit.

Conversely, let a =t where u is a unit in R.
Then bla.

Also, au™" = b (since u is a unit).

a|b and hence a and b are associates.

Note. Let R be a commutative ring. Let a be a
non-zero element of R. Then the units in R and the
associates of a are divisors of a.

Definition. Let R be a commutative ring with iden-
tity. Let @ € R and a # 0. a is called a prime or
an irreducible element if a is not a unit and its only
divisors are units in R and associates of g.

- 4.14. Euclidean domain

Thus a prime element is an elep,

. v ent of
cannot be factored in R in a non-(rjy;

al W ay "H
Definition. An integral domain p is sy
unique factorization domain (U.F.p )" |

(i) any non-zero element in R\,
can be expressed as the prod
number of prime elements.

(i) the factorization in (i) is un;
and associates of the prime L‘lemun,\
(iC.,) If a - plf’l--.._,
Ngq2...... s where the Pi's an.(l ¥
prime elements, then r = | e C‘ﬂ, S a
“an associate of some ¢ ;. ach

(.‘h 15 ”u] I
Uct o

ad “7

que up 10 th,

Py

For example Z is a U.ED.

In the next few. sections we pjy, )

examples of U.FD. M My,

Definition. Let Rbea U.FED. Leta, p ¢ pp The
elementd € R is said to be a greatest Commoy d,'; o
(g.c.d) of a and b if Ty

(i) dl|aand d|b.
(i) cla and ¢c|b = c|d.

The g.c.d. of a and b is denoted by (a, b).

Exercises

l. Ifdis agcd. of a and b prove that g
associate of d is also a g.c.d of g and

2. Prove that in a U.FD any two elemen(s hawe
ag.cd.

In this section we introduce an important clas o
rings called Euclidean domains and prove that even
Euclidean domain is a unique factorization doman
The concept of Euclidean domain is motivated by
divisibility properties in Z.

Definition. Let R be a commutative ring wilh
zero-divisors. R is called an Euclidean domain or

5 . - A B
Euclidean ring if for every non-zero element d €1

e
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% aa n-negative
. defined an':')' galive integey d(a) sapigs

~ For any two non-zerq elemens

O @) < diav). g
.+ For any WO non-zerq elemeny
@ istg.r € R ‘“-hER
V' here exist g Such thay , '

fm either r = O or d(,) _ d(b).= qb 4 ,
7 . '

€ R,

b

ﬁ}—zis.n Euc[idcan domain Where d(u) - |G|

LM d(ab) = lab| = |a||b| > la] = d(a)
lbel a.bbe WO non-zero elements of Z. et

be the quotient and r be the femainder w, ;

- aisdivided by b. ik

Thena =¢gb+rand0 <,

< 1b].
Hence Z is an Euclidean do

main.

2. Any field F is an Euclidean,

dOmai
~d(@) =1forallae F _ (o). N where

" Proof. d(a) = d(ab) = | for all
ae F — {0}. Hence d(a) < d(ab).

Also,a = (ab=")b + 0 5o that g = ab=! 4pq
r=0.

Condition (ii) is satisfied. Hence F is an
Euclidean domain.

3. The ring of Gaussian intcgers.

- R={a+bi/a,b € Z}isanEuclidean domain
where we define d(a + ib) = a2 + p2,

i‘roo!. Let x ;a+ibandy = c+id be
W0 non-zero elements in R. Then
d(xy) = dl(a + ib)(c +id)]
- =d[(ac — bd) + i(ad + bc))
= (ac — bd)* + (ad + bc)?
= (a® + b?)( +d%
>a® 4+ b*
=),
d(xy)> d(x).

Rings 4.33

Now, 10 prove condition (ii), let
a+ pj -
c4di P L h
. y - be ~ ad
Then p = & A and ¢ = ———— and

c? 4 d? b ¢ 4 d?
hence P.qe€Q,
Now, let m, n € Z be such that |p —~ m| < {;
and |g — n| < i

Let p < m =aand g —n =
and |B| < &,
Now,

P so that |«| = -'2

a+bi = (c+diy(p + qi)
= (c+di)[(x + m) + (B 4+ nji)
= (c+dr’)(m+m’)+r
where r = (c+di)(a+ Bi)

Now,a+bi,c+dr’,m + ni € R and hence
r € R. :

If r # 0, then
d(r) = (> + d*)(a® + p?)
<@ +d)(+1)
<ct+d?
=d(y).
d(r) <d(y).
R is an Euclidean domain.

Theorem 4.36. Let R be an Euclidean domain and |
be an ideal of R. Then there exists an element a € |

such that I = aR. (ie.,) Every ideal of an Euclidean
domain is a principal ideal.

Proof. If I = {0}, then we take a — 0. Hence we
assume that I # {0}.

Leta € I be a non-zero element such that d(a) is

minimum. (This is possible since d takes only non-
negative integer values).

Now, we claim that | = aR.

Let x € I. Then there exist g,r € R such that
x =qa+rwherer =0ord(r) < d(a).

Now,a € I = ga € [ (since [ is an ideal).
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L I.
Also x € . Hencer =4 qa €

Now, suppose r # 0. Then d(r) < d(@).

uch that d(r) < d(a)

& ement of 1 8
r is an ¢l hoice of @ and hence

which is a contradiction (© the ¢
r=0.

\ = ga and hence | = aR.

Theorem 4.37. Any Euclidean domain R hasan iden-
tity element.

Proof. Since R is an ideal of R, there exists ¢ € R
such that R = cR.

Every element of R is a multiple of c.

In particular ¢ = ec for some ¢ € R.

Now, let x € R. Then x = cy for some y € R.
ex = e(cy) = (ec)y = ¢y = X.

e is the required identity element.

Theorem 4.38. Any Euclideandomain Risa principal
ideal domain. '

Proof. By definition of Euclidean domain R is a
commutative ring without zero-divisors. By theorem
4.37 R has an identity element. Hence R is an integral
domain. Also every ideal of R is a principal ideal.
Hence R is a principal ideal domain.

Theorem 4.39. Let R be an Euclidean domain. Let a
and b be two non-zero elements of 'R. Then

(1) bisnotaunitin R = d(a) <d(ab).
(i) bisaunitin R = d(a) = d(ab).

Proof. (1) Suppose b is not a unit in R.

By definition of Euclidean domain there exist
elements g, r € R such that

a=q(ab) +r L)
where either r = 0 or d(r) < d(ab).

Now, suppose r = 0 then a = g(ab).

a—q(ab)=0.
a(l —gb)=0.

Now, R has no zero-divisors and a # 0.
1 —gb =0.Hence gb = 1.
b is a unitin R which is a contradiction.
r # 0. Hence d(r) < d(ab). SR(2)

Now, r = a(l = ¢b) (by 1)

(l(") — {”ﬂ(l Y h(/)] > ”'(”’.
d(a) < d(r) < d(ab) (by 2)
d(a) < d(ab).

danq ”,

(i) Suppose b isaunitin R.
Now, d(a) < d(ab).
Also d(a) =d[(ab)b™') > d(ab)
d(a)=> d(ab).
d(a): d(ab).

Theorem 4.40. Let @ be a non-zero elemep,
Euclidean domain R. Then a is a unit in R jff

d(a) =d(l).

Proof. Suppose a is a unitin R.

()f a

cd(a)= d(aa"') (by Theorem 4.39)
=d(l).

Conversely, letd(a) = d(1).
Suppose a is not a unit in R.
Thend(la) > d(1) (by Theorem 4.39)
d(a) > d_(l) which is a contradiction.

a is a unit.

Theorem 4.41. Let a be a non-zero element of g
Euclidean domain R. If d(a) = 0, then a is a unj

in R.
Proof. Suppose @ is not @ unit in R,
Thend(1) < d(la) (by theorem 4.39)

d(l) < d(a) = 0. Hence d(1) < 0 whichisa
contradiction since d takes only non-negative values.

Theorelh 442, Let R be an Euclidean domain. Then|

‘any two elements @, b € R have a g.c.d. and it is of the

form ax + by where x, y € R. |

Proof. Let A = {ax + by/x,y € R}.
We claim that A is an ideal of R.

Letu,ve A Thenu = ax) + by, and
V=ax;+ by,.
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p=alxy —x2) + b(y, _ )
e : eq

=a®6) +b(yo) e 4.
jdeal of R

e Risan Euclidean domaip g, .
e Aisa principal Ideal Ofpir\‘mupal
€l A be such that A= (d) .

_ra+sbwherer s e R
: :.‘w+ob»eAandb=0a+lbeA
v#‘mb=db1<forsomca|.b| ek

pose | € R and /|a and 1.
a + sb) so that l|d.

,-i;-lhe mﬁired g.cd. ofaand b,

‘The g.c.dof any two integers can be £
2¢ the Euclidean algorithm. A similarcp::;jc?
L be used t0 f.ind the g.c.d. of any two non-zero
¥ ats of an Euclidean domain R.

\w..b e R —(0).
b t"ﬂ = bql +r where either ry=0or

l(ﬂ) < d(b).

[fr#0. let b = rig2 + r2 where either r, = 0
cdir) < d(ry). In general if r; # 0, Jet riy) be
schthat ri—1 = Figi+1 +risy where either r; ) = 0

diris1) < d(r;). Then the sequence ry,ry, ......
ust ferminate withsomer, =0.Ifr; =0, thenbisa

dofaand b.1f ry # Oleti > 1 be the firstinteger
ich that r; = 0. Then r;_; is the g.c.d. of a and b.

vefinition. Two elements a and b of an Euclidean
smain R are said to be relatively prime if their g.c.d.

aunit in R.

smark. If a and b are relatively prime, we may
ssume without loss of generality that (a, b) = 1.

heorem 4.43. Let R be an Euclidean domain. Let
b,c € R. Then a|bc and (a, b) = | = alc.

sof. Since (a, b) = 1, there exist x, y € R such
atax + by = 1.

Rings 4.35

acx 4 bey = c.
Now, ajacx. Also albe =» albey.

al(acx 4 bey). Hence alc.

Theorem 4.44, 1 et p be a prime element 1nan
Euclidean domain R. Leta, b € R.

Then plab = pla or plb.

Proof.  Suppose p does not divide a.
Then (p, a) = | (since p is prime)
By theorem 4.43, we have p|b.

Corollary. Lel pbea pfime element in an Euclidean
domain R. Letay,az, ......... ,an € R.

Then plaja;...... a, = p divides at least one a;.

Theorem 4.45. Any Euclidean domain R is a U.FD.

Proof. First we shall prove that any element a in R
is either a unit or can be expressed as the product of a
finite number of prime elements of R.

We prove this by induction on d(a).

If d(a) = d(1) then @ is a unit in R (by Theorem
4.40)

Hence the assertion is true. Now, we assume that
the result is true for all x € R such that d(x) < d(a)
and prove that the result is true for a.

If a is a prime there is nothing to prove.
If not, @ = be where neither b or ¢ is a unitin R.

d(b) < d(a) and d(c) < d(a) (by Theorem
4.39).

Now, by induction hypothesis b and ¢ can be written
as the product of a finite number of prime elements.

Hence a can be expressed as a product of a finite
number of prime elements.

We now prove the uniqueness.

Leta = p\pa...Pr = 4142 . ..qs Where p;s and
g;s are prime elements of R.

Pilqiqz ... qs.
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4.36 Modern Algebra

P11g; for some i. Without loss of gcncralily‘wc
assume that p,|q,. Since p; and ¢, are both prime
clements of R, p; and g, must be associates.

q1 = u) p, where u; is a unit in R.
PIP2...pr =P G293 .. .45
P2Py...Pr=u) Q293 ---4s.

Now, ifr < s, repeating the above argument r times
the left side becomes | and the right side contains a
product of some prime elements which is impossible.

chcc r>8

Similarly s > r and hence r = s.

Further we have shown that every p; is an associate
of some ¢; and conversely. Hence the theorem.

Solved problems

Problem 1. Show that 1 4 i is a prime element in the
rng R of Gaussian integers.
Solution.  Suppose (a + bi)|(1 + i).

Then there exist an element ¢ 4 id € R such that
(@a+bi)(c+di)=1+1i.

dl(a + bi)(c + di)] = d(1 + i),

(a* + b?)(c? +d*)=2anda,b,c,dcZ.
a*+b’=lor+d®=1.

d(a +ib) = d(1) ord(c + id) = d(1).

Eithera+iborc+id isaunitin R (by Theorem
4.40)

Hence 1 + i is a prime element of R.

Problem 2. Prove that 5 is not prime element in the
ring R of Gaussian integers.

Solution. 5=2+i)2—-i)
andd(2+1i)=d(2 —i)=5>d(l).
Hence neither 2 + i nor 2 — i is a unit in R.

Hence 5 is not a prime element of R.

Problem 3. Find the g.c.d. of 16 + 7i and 10 — 5/ in
the ring R of Gaussian integers.

Solution. leta = 164 7i .mdnb:‘.m\S
l

e 0¥ 7i)(10 4 5,
b 10-5i (IO‘s.)mH

61

Ly !
:

= ]

a=(14i)b+(1+2i).

Letgi=14iandr, =142,
b 10-=S5i .
Now, et oo Tl 4 = 3i (verify)
b=(4-30i)(1 +2i)40.
Hence gcd.ofaandbisr) = | 4 9,
Exercises

1. If a and b are associates in 4, Fuc
domain R, prove lhat d(a) = d(p),

2. IsZ,withd(a) = a® whereq # 0, aEuclig,
domain?

3. Prove that in the ring of Gaussian, i integers
element x with d(x) = p where pisa pr 3
in Z is a prime element. o

4. Prove that the element 7, 4 + 3; 5,4 6
are not prime elements in the ring of Gays,
integers.

5. Find'the g.c.d. of the following members i,
the ring of Gaussian integers

(@ 146iand5 — 15;
(b) 3+4iandd — 3i
(c) 114+ 7iand 18 —i.

6. Express 7, 8 and 10+ 5i into prime factors i
the ring of Gaussian integers.

1. Prove that d(—a) = d(a) for any non-zen
element a of an Euclidean ring.

lide &

Answers. 5(a)7—i (b)3+4i (¢)i

4.15. Every P.I.D is a U.F.D.

In this section we prove that every P1.D. is a U.FD

Definition. Let R be a ring. We say that the asceﬁ#-
ing chain condition (A.C.C) holds for ideals in R if {¥
every ascending chain of ideals

= ,___‘
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