
8.1 Poles and zeros

We remind you of the following terminology: Suppose f(z) is analytic at z0 and

f(z) = an(z − z0)n + an+1(z − z0)n+1 + . . . ,

with an 6= 0. Then we say f has a zero of order n at z0. If n = 1 we say z0 is a simple zero.

Suppose f has an isolated singularity at z0 and Laurent series

f(z) =
bn

(z − z0)n
+

bn−1
(z − z0)n−1

+ . . .+
b1

z − z0
+ a0 + a1(z − z0) + . . .

which converges on 0 < |z − z0| < R and with bn 6= 0. Then we say f has a pole of order n
at z0. If n = 1 we say z0 is a simple pole.

There are several examples in the Topic 7 notes. Here is one more

Example 8.1.

f(z) =
z + 1

z3(z2 + 1)

has isolated singularities at z = 0,±i and a zero at z = −1. We will show that z = 0 is a
pole of order 3, z = ±i are poles of order 1 and z = −1 is a zero of order 1. The style of
argument is the same in each case.

At z = 0:

f(z) =
1

z3
· z + 1

z2 + 1
.

Call the second factor g(z). Since g(z) is analytic at z = 0 and g(0) = 1, it has a Taylor
series

g(z) =
z + 1

z2 + 1
= 1 + a1z + a2z

2 + . . .

Therefore

f(z) =
1

z3
+
a1
z2

+
a2
z

+ . . . .

This shows z = 0 is a pole of order 3.

At z = i: f(z) = 1
z−i ·

z+1
z3(z+i)

. Call the second factor g(z). Since g(z) is analytic at z = i,

it has a Taylor series

g(z) =
z + 1

z3(z + i)
= a0 + a1(z − i) + a2(z − i)2 + . . .

where a0 = g(i) 6= 0. Therefore

f(z) =
a0
z − i

+ a1 + a2(z − i) + . . . .

This shows z = i is a pole of order 1.

The arguments for z = −i and z = −1 are similar.
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8 RESIDUE THEOREM 2

8.2 Words: Holomorphic and meromorphic

Definition. A function that is analytic on a region A is called holomorphic on A.

A function that is analytic on A except for a set of poles of finite order is called meromorphic
on A.

Example 8.2. Let

f(z) =
z + z2 + z3

(z − 2)(z − 3)(z − 4)(z − 5)
.

This is meromorphic on C with (simple) poles at z = 2, 3, 4, 5.

8.3 Behavior of functions near zeros and poles

The basic idea is that near a zero of order n, a function behaves like (z − z0)n and near a
pole of order n, a function behaves like 1/(z − z0)n. The following make this a little more
precise.

Behavior near a zero. If f has a zero of order n at z0 then near z0,

f(z) ≈ an(z − z0)n,

for some constant an.

Proof. By definition f has a Taylor series around z0 of the form

f(z) = an(z − z0)n + an+1(z − z0)n+1 + . . .

= an(z − z0)n
(

1 +
an+1

an
(z − z0) +

an+2

an
(z − z0)2 + . . .

)
Since the second factor equals 1 at z0, the claim follows.

Behavior near a finite pole. If f has a pole of order n at z0 then near z0,

f(z) ≈ bn
(z − z0)n

,

for some constant bn.

Proof. This is nearly identical to the previous argument. By definition f has a Laurent
series around z0 of the form

f(z) =
bn

(z − z0)n
+

bn−1
(z − z0)n−1

+ . . .+
b1

z − z0
+ a0 + . . .

=
bn

(z − z0)n

(
1 +

bn−1
bn

(z − z0) +
bn−2
bn

(z − z0)2 + . . .

)
Since the second factor equals 1 at z0, the claim follows.

8.3.1 Picard’s theorem and essential singularities

Near an essential singularity we have Picard’s theorem. We won’t prove or make use of this
theorem in 18.04. Still, we feel it is pretty enough to warrant showing to you.
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8 RESIDUE THEOREM 3

Picard’s theorem. If f(z) has an essential singularity at z0 then in every neighborhood
of z0, f(z) takes on all possible values infinitely many times, with the possible exception of
one value.

Example 8.3. It is easy to see that in any neighborhood of z = 0 the function w = e1/z

takes every value except w = 0.

8.3.2 Quotients of functions

We have the following statement about quotients of functions. We could make similar
statements if one or both functions has a pole instead of a zero.

Theorem. Suppose f has a zero of order m at z0 and g has a zero of order n at z0. Let

h(z) =
f(z)

g(z)
.

Then

• If n > m then h(z) has a pole of order n−m at z0.

• If n < m then h(z) has a zero of order m− n at z0.

• If n = m then h(z) is analytic and nonzero at z0.

We can paraphrase this as h(z) has ‘pole’ of order n −m at z0. If n −m is negative then
the ‘pole’ is actually a zero.

Proof. You should be able to supply the proof. It is nearly identical to the proofs above:
express f and g as Taylor series and take the quotient.

Example 8.4. Let

h(z) =
sin(z)

z2
.

We know sin(z) has a zero of order 1 at z = 0 and z2 has a zero of order 2. So, h(z) has a
pole of order 1 at z = 0. Of course, we can see this easily using Taylor series

h(z) =
1

z2

(
z − z3

3!
+ . . .

)

8.4 Residues

In this section we’ll explore calculating residues. We’ve seen enough already to know that
this will be useful. We will see that even more clearly when we look at the residue theorem
in the next section.

We introduced residues in the previous topic. We repeat the definition here for completeness.

Definition. Consider the function f(z) with an isolated singularity at z0, i.e. defined on
the region 0 < |z − z0| < r and with Laurent series (on that region)

f(z) =

∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.
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8 RESIDUE THEOREM 4

The residue of f at z0 is b1. This is denoted

Res(f, z0) = b1 or Res
z=z0

f = b1.

What is the importance of the residue? If γ is a small, simple closed curve that goes
counterclockwise around b1 then ∫

γ
f(z) = 2πib1.

γ small enough to be inside |z− z0| < r, surround z0 and contain no other singularity of f .

This is easy to see by integrating the Laurent series term by term. The only nonzero integral
comes from the term b1/z.

Example 8.5.

f(z) = e1/2z = 1 +
1

2z
+

1

2(2z)2
+ . . .

has an isolated singularity at 0. From the Laurent series we see that Res(f, 0) = 1/2.

Example 8.6.

(i) Let

f(z) =
1

z3
+

2

z2
+

4

z
+ 5 + 6z.

f has a pole of order 3 at z = 0 and Res(f, 0) = 4.

(ii) Suppose

f(z) =
2

z
+ g(z),

where g is analytic at z = 0. Then, f has a simple pole at 0 and Res(f, 0) = 2.

(iii) Let
f(z) = cos(z) = 1− z2/2! + . . . .

Then f is analytic at z = 0 and Res(f, 0) = 0.

(iv) Let

f(z) =
sin(z)

z
=

1

z

(
z − z3

3!
+ . . .

)
= 1− z2

3!
+ . . .

So, f has a removable singularity at z = 0 and Res(f, 0) = 0.
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Example 8.7. Using partial fractions. Let

f(z) =
z

z2 + 1
.

Find the poles and residues of f .

Solution: Using partial fractions we write

f(z) =
z

(z − i)(z + i)
=

1

2
· 1

z − i
+

1

2
· 1

z + i
.

The poles are at z = ±i. We compute the residues at each pole:

At z = i:

f(z) =
1

2
· 1

z − i
+ something analytic at i.

Therefore the pole is simple and Res(f, i) = 1/2.

At z = −i:
f(z) =

1

2
· 1

z + i
+ something analytic at −i.

Therefore the pole is simple and Res(f,−i) = 1/2.

Example 8.8. Mild warning! Let

f(z) = − 1

z(1− z)

then we have the following Laurent expansions for f around z = 0.

On 0 < |z| < 1:

f(z) = −1

z
· 1

1− z
= −1

z
(1 + z + z2 + . . .).

Therefore the pole at z = 0 is simple and Res(f, 0) = −1.

On 1 < |z| <∞:

f(z) =
1

z2
· 1

1− 1/z
=

1

z2

(
1 +

1

z
+

1

z2
+ . . .

)
.

Even though this is a valid Laurent expansion you must not use it to compute the residue
at 0. This is because the definition of residue requires that we use the Laurent series on the
region 0 < |z − z0| < r.

Example 8.9. Let
f(z) = log(1 + z).

This has a singularity at z = −1, but it is not isolated, so not a pole and therefore there is
no residue at z = −1.

8.4.1 Residues at simple poles

Simple poles occur frequently enough that we’ll study computing their residues in some
detail. Here are a number of ways to spot a simple pole and compute its residue. The
justification for all of them goes back to Laurent series.
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8 RESIDUE THEOREM 6

Suppose f(z) has an isolated singularity at z = z0. Then we have the following properties.

Property 1. If the Laurent series for f(z) has the form

b1
z − z0

+ a0 + a1(z − z0) + . . .

then f has a simple pole at z0 and Res(f, z0) = b1.

Property 2 If
g(z) = (z − z0)f(z)

is analytic at z0 then z0 is either a simple pole or a removable singularity. In either case
Res(f, z0) = g(z0). (In the removable singularity case the residue is 0.)

Proof. Directly from the Laurent series for f around z0.

Property 3. If f has a simple pole at z0 then

lim
z→z0

(z − z0)f(z) = Res(f, z0)

This says that the limit exists and equals the residue. Conversely, if the limit exists then
either the pole is simple, or f is analytic at z0. In both cases the limit equals the residue.

Proof. Directly from the Laurent series for f around z0.

Property 4. If f has a simple pole at z0 and g(z) is analytic at z0 then

Res(fg, z0) = g(z0) Res(f, z0).

If g(z0) 6= 0 then

Res(f/g, z0) =
1

g(z0)
Res(f, z0).

Proof. Since z0 is a simple pole,

f(z) =
b1

z − z0
+ a0 + a1(z − z0)

Since g is analytic,
g(z) = c0 + c1(z − z0) + . . . ,

where c0 = g(z0). Multiplying these series together it is clear that

Res(fg, z0) = c0b1 = g(z0) Res(f, z0). QED

The statement about quotients f/g follows from the proof for products because 1/g is
analytic at z0.

Property 5. If g(z) has a simple zero at z0 then 1/g(z) has a simple pole at z0 and

Res(1/g, z0) =
1

g′(z0)
.

Proof. The algebra for this is similar to what we’ve done several times above. The Taylor
expansion for g is

g(z) = a1(z − z0) + a2(z − z0)2 + . . . ,
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8 RESIDUE THEOREM 7

where a1 = g′(z0). So

1

g(z)
=

1

a1(z − z0)

(
1

1 + a2
a1

(z − z0) + . . .

)

The second factor on the right is analytic at z0 and equals 1 at z0. Therefore we know the
Laurent expansion of 1/g is

1

g(z)
=

1

a1(z − z0)
(1 + c1(z − z0) + . . .)

Clearly the residue is 1/a1 = 1/g′(z0). QED.

Example 8.10. Let

f(z) =
2 + z + z2

(z − 2)(z − 3)(z − 4)(z − 5)
.

Show all the poles are simple and compute their residues.

Solution: The poles are at z = 2, 3, 4, 5. They are all isolated. We’ll look at z = 2 the
others are similar. Multiplying by z − 2 we get

g(z) = (z − 2)f(z) =
2 + z + z2

(z − 3)(z − 4)(z − 5)
.

This is analytic at z = 2 and

g(2) =
8

−6
= −4

3
.

So the pole is simple and Res(f, 2) = −4/3.

Example 8.11. Let

f(z) =
1

sin(z)
.

Find all the poles and their residues.

Solution: The poles of f(z) are the zeros of sin(z), i.e. nπ for n an integer. Since the
derivative

sin′(nπ) = cos(nπ) 6= 0,

the zeros are simple and by Property 5 above

Res(f, nπ) =
1

cos(nπ)
= (−1)n.

Example 8.12. Let

f(z) =
1

z(z2 + 1)(z − 2)2
.

Identify all the poles and say which ones are simple.

Solution: Clearly the poles are at z = 0,±i, 2.

At z = 0:
g(z) = zf(z)

is analytic at 0 and g(0) = 1/4. So the pole is simple and the residue is g(0) = 1/4.
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8 RESIDUE THEOREM 8

At z = i:

g(z) = (z − i)f(z) =
1

z(z + i)(z − 2)2

is analytic at i, the pole is simple and the residue is g(i).

At z = −i: This is similar to the case z = i. The pole is simple.

At z = 2:

g(z) = (z − 2)f(z) =
1

z(z2 + 1)(z − 2)

is not analytic at 2, so the pole is not simple. (It should be obvious that it’s a pole of order
2.)

Example 8.13. Let p(z), q(z) be analytic at z = z0. Assume p(z0) 6= 0, q(z0) = 0,
q′(z0) 6= 0. Find

Res
z=z0

p(z)

q(z)
.

Solution: Since q′(z0) 6= 0, q has a simple zero at z0. So 1/q has a simple pole at z0 and

Res(1/q, z0) =
1

q′(z0)

Since p(z0) 6= 0 we know

Res(p/q, z0) = p(z0) Res(1/q, z0) =
p(z0)

q′(z0)
.

8.4.2 Residues at finite poles

For higher-order poles we can make statements similar to those for simple poles, but the
formulas and computations are more involved. The general principle is the following

Higher order poles. If f(z) has a pole of order k at z0 then

g(z) = (z − z0)kf(z)

is analytic at z0 and if
g(z) = a0 + a1(z − z0) + . . .

then

Res(f, z0) = ak−1 =
g(k−1)(z0)

(k − 1)!
.

Proof. This is clear using Taylor and Laurent series for g and f .

Example 8.14. Let

f(z) =
sinh(z)

z5

and find the residue at z = 0.

Solution: We know the Taylor series for

sinh(z) = z + z3/3! + z5/5! + . . .
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8 RESIDUE THEOREM 9

(You can find this using sinh(z) = (ez − e−z)/2 and the Taylor series for ez.) Therefore,

f(z) =
1

z4
+

1

3!z2
+

1

5!
+ . . .

We see Res(f, 0) = 0.

Note, we could have seen this by realizing that f(z) is an even function.

Example 8.15. Let

f(z) =
sinh(z)ez

z5
.

Find the residue at z = 0.

Solution: It is clear that Res(f, 0) equals the coefficient of z4 in the Taylor expansion of
sinh(z)ez. We compute this directly as

sinh(z)ez =

(
z +

z3

3!
+ . . .

)(
1 + z +

z2

2
+
z3

3!
+ . . .

)
= . . .+

(
1

4!
+

1

3!

)
z4 + . . .

So

Res(f, 0) =
1

3!
+

1

4!
=

5

24
.

Example 8.16. Find the residue of

f(z) =
1

z(z2 + 1)(z − 2)2

at z = 2.

Solution: g(z) = (z − 2)2f(z) = 1
z(z2+1)

is analytic at z = 2. So, the residue we want is the

a1 term in its Taylor series, i.e. g′(2). This is easy, if dull, to compute

Res(f, 2) = g′(2) = − 13

100

8.4.3 cot(z)

The function cot(z) turns out to be very useful in applications. This stems largely from the
fact that it has simple poles at all multiples of π and the residue is 1 at each pole. We show
that first.

Fact. f(z) = cot(z) has simple poles at nπ for n an integer and Res(f, nπ) = 1.

Proof.

f(z) =
cos(z)

sin(z)
.

This has poles at the zeros of sin, i.e. at z = nπ. At poles f is of the form p/q where q has
a simple zero at z0 and p(z0) 6= 0. Thus we can use the formula

Res(f, z0) =
p(z0)

q′(z0)
.

In our case, we have

Res(f, nπ) =
cos(nπ)

cos(nπ)
= 1,
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8 RESIDUE THEOREM 10

as claimed.

Sometimes we need more terms in the Laurent expansion of cot(z). There is no known easy
formula for the terms, but we can easily compute as many as we need using the following
technique.

Example 8.17. Compute the first several terms of the Laurent expansion of cot(z) around
z = 0.

Solution: Since cot(z) has a simple pole at 0 we know

cot(z) =
b1
z

+ a0 + a1z + a2z
2 + . . .

We also know

cot(z) =
cos(z)

sin(z)
=

1− z2/2 + z4/4!− . . .
z − z3/3! + z5/5!− . . .

Cross multiplying the two expressions we get(
b1
z

+ a0 + a1z + a2z
2 + . . .

)(
z − z3

3!
+
z5

5!
− . . .

)
= 1− z2

2
+
z4

4!
− . . .

We can do the multiplication and equate the coefficients of like powers of z.

b1 + a0z +

(
−b1

3!
+ a1

)
z2 +

(
−a0

3!
+ a2

)
z3 +

(
b1
5!
− a1

3!
+ a3

)
z4 = 1− z2

2!
+
z4

4!

So, starting from b1 = 1 and a0 = 0, we get

−b1/3! + a1 = −1/2! ⇒ a1 = −1/3

−a0/3! + a2 = 0 ⇒ a2 = 0

b1/5!− a1/3! + a3 = 1/4! ⇒ a3 = −1/45.

As noted above, all the even terms are 0 as they should be. We have

cot(z) =
1

z
− z

3
− z3

45
+ . . .

8.5 Cauchy Residue Theorem

This is one of the major theorems in 18.04. It will allow us to make systematic our previous
somewhat ad hoc approach to computing integrals on contours that surround singularities.

Theorem. (Cauchy’s residue theorem) Suppose f(z) is analytic in the region A except
for a set of isolated singularities. Also suppose C is a simple closed curve in A that doesn’t
go through any of the singularities of f and is oriented counterclockwise. Then∫

C
f(z) dz = 2πi

∑
residues of f inside C

Proof. The proof is based of the following figures. They only show a curve with two singu-
larities inside it, but the generalization to any number of signularities is straightforward. In
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8 RESIDUE THEOREM 11

what follows we are going to abuse language and say pole when we mean isolated singularity,
i.e. a finite order pole or an essential singularity (‘infinite order pole’).

The left figure shows the curve C surrounding two poles z1 and z2 of f . The right figure
shows the same curve with some cuts and small circles added. It is chosen so that there are
no poles of f inside it and so that the little circles around each of the poles are so small
that there are no other poles inside them. The right hand curve is

C̃ = C1 + C2 − C3 − C2 + C4 + C5 − C6 − C5

The left hand curve is C = C1 +C4. Since there are no poles inside C̃ we have, by Cauchy’s
theorem, ∫

C̃
f(z) dz =

∫
C1+C2−C3−C2+C4+C5−C6−C5

f(z) dz = 0

Dropping C2 and C5, which are both added and subtracted, this becomes∫
C1+C4

f(z) dz =

∫
C3+C6

f(z) dz (1)

If

f(z) = . . .+
b2

(z − z1)2
+

b1
z − z1

+ a0 + a1(z − z1) + . . .

is the Laurent expansion of f around z1 then∫
C3

f(z) dz =

∫
C3

. . .+
b2

(z − z1)2
+

b1
z − z1

+ a0 + a1(z − z1) + . . . dz

= 2πib1

= 2πiRes(f, z1)

Likewise ∫
C6

f(z) dz = 2πiRes(f, z2).

Using these residues and the fact that C = C1 + C4, Equation 1 becomes∫
C
f(z) dz = 2πi [Res(f, z1) + Res(f, z2)] .

That proves the residue theorem for the case of two poles. As we said, generalizing to any
number of poles is straightforward.

Example 8.18. Let

f(z) =
1

z(z2 + 1)
.
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8 RESIDUE THEOREM 12

Compute

∫
f(z) dz over each of the contours C1, C2, C3, C4 shown.

Solution: The poles of f(z) are at z = 0,±i. Using the residue theorem we just need to
compute the residues of each of these poles.

At z = 0:

g(z) = zf(z) =
1

z2 + 1

is analytic at 0 so the pole is simple and

Res(f, 0) = g(0) = 1.

At z = i:

g(z) = (z − i)f(z) =
1

z(z + i)

is analytic at i so the pole is simple and

Res(f, i) = g(i) = −1/2.

At z = −i:
g(z) = (z + i)f(z) =

1

z(z − i)
is analytic at −i so the pole is simple and

Res(f,−i) = g(−i) = −1/2.

Using the residue theorem we have∫
C1

f(z) dz = 0 (since f is analytic inside C1)∫
C2

f(z) dz = 2πiRes(f, i) = −πi∫
C3

f(z) dz = 2πi [Res(f, i) + Res(f, 0)] = πi∫
C4

f(z) dz = 2πi [Res(f, i) + Res(f, 0) + Res(f,−i)] = 0.
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8 RESIDUE THEOREM 13

Example 8.19. Compute ∫
|z|=2

5z − 2

z(z − 1)
dz.

Solution: Let

f(z) =
5z − 2

z(z − 1)
.

The poles of f are at z = 0, 1 and the contour encloses them both.

At z = 0:

g(z) = zf(z) =
5z − 2

(z − 1)

is analytic at 0 so the pole is simple and

Res(f, 0) = g(0) = 2.

At z = 1:

g(z) = (z − 1)f(z) =
5z − 2

z

is analytic at 1 so the pole is simple and

Res(f, 1) = g(1) = 3.

Finally ∫
C

5z − 2

z(z − 1)
dz = 2πi [Res(f, 0) + Res(f, 1)] = 10πi.

Example 8.20. Compute ∫
|z|=1

z2 sin(1/z) dz.

Solution: Let
f(z) = z2 sin(1/z).

f has an isolated singularity at z = 0. Using the Taylor series for sin(w) we get

z2 sin(1/z) = z2
(

1

z
− 1

3!z3
+

1

5!z5
− . . .

)
= z − 1/6

z
+ . . .

So, Res(f, 0) = b1 = −1/6. Thus the residue theorem gives∫
|z|=1

z2 sin(1/z) dz = 2πiRes(f, 0) = − iπ
3
.
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8 RESIDUE THEOREM 14

Example 8.21. Compute ∫
C

dz

z(z − 2)4
dz,

where, C : |z − 2| = 1.

Solution: Let

f(z) =
1

z(z − 2)4
.

The singularity at z = 0 is outside the contour of integration so it doesn’t contribute to the
integral.

To use the residue theorem we need to find the residue of f at z = 2. There are a number
of ways to do this. Here’s one:

1

z
=

1

2 + (z − 2)

=
1

2
· 1

1 + (z − 2)/2

=
1

2

(
1− z − 2

2
+

(z − 2)2

4
− (z − 2)3

8
+ . . .

)
This is valid on 0 < |z − 2| < 2. So,

f(z) =
1

(z − 2)4
· 1

z
=

1

2(z − 2)4
− 1

4(z − 2)3
+

1

8(z − 2)2
− 1

16(z − 2)
+ . . .

Thus, Res(f, 2) = −1/16 and∫
C
f(z) dz = 2πiRes(f, 2) = −πi

8
.

Example 8.22. Compute ∫
C

1

sin(z)
dz

over the contour C shown.
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8 RESIDUE THEOREM 15

Solution: Let
f(z) = 1/ sin(z).

There are 3 poles of f inside C at 0, π and 2π. We can find the residues by taking the limit
of (z− z0)f(z). Each of the limits is computed using L’Hospital’s rule. (This is valid, since
the rule is just a statement about power series. We could also have used Property 5 from
the section on residues of simple poles above.)

At z = 0:

lim
z→0

z

sin(z)
= lim

z→0

1

cos(z)
= 1.

Since the limit exists, z = 0 is a simple pole and

Res(f, 0) = 1.

At z = π:

lim
z→π

z − π
sin(z)

= lim
z→π

1

cos(z)
= −1.

Since the limit exists, z = π is a simple pole and

Res(f, π) = −1.

At z = 2π: The same argument shows

Res(f, 2π) = 1.

Now, by the residue theorem∫
C
f(z) dz = 2πi [Res(f, 0) + Res(f, π) + Res(f, 2π)] = 2πi.

8.6 Residue at ∞

The residue at∞ is a clever device that can sometimes allow us to replace the computation
of many residues with the computation of a single residue.

Suppose that f is analytic in C except for a finite number of singularities. Let C be a
positively oriented curve that is large enough to contain all the singularities.

All the poles of f are inside C

Definition. We define the residue of f at infinity by

Res(f,∞) = − 1

2πi

∫
C
f(z) dz.

Dr. 
S. A

NAND G
NANA S

ELV
AM
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We should first explain the idea here. The interior of a simple closed curve is everything
to left as you traverse the curve. The curve C is oriented counterclockwise, so its interior
contains all the poles of f . The residue theorem says the integral over C is determined by
the residues of these poles.

On the other hand, the interior of the curve −C is everything outside of C. There are no
poles of f in that region. If we want the residue theorem to hold (which we do –it’s that
important) then the only option is to have a residue at ∞ and define it as we did.

The definition of the residue at infinity assumes all the poles of f are inside C. Therefore
the residue theorem implies

Res(f,∞) = −
∑

the residues of f .

To make this useful we need a way to compute the residue directly. This is given by the
following theorem.

Theorem. If f is analytic in C except for a finite number of singularities then

Res(f,∞) = −Res

(
1

w2
f(1/w), 0

)
.

Proof. The proof is just a change of variables: w = 1/z.

Change of variable: w = 1/z

First note that z = 1/w and
dz = −(1/w2) dw.

Next, note that the map w = 1/z carries the positively oriented z-circle of radius R to the
negatively oriented w-circle of radius 1/R. (To see the orientiation, follow the circled points
1, 2, 3, 4 on C in the z-plane as they are mapped to points on C̃ in the w-plane.) Thus,

Res(f,∞) = − 1

2πi

∫
C
f(z) dz =

1

2πi

∫
C̃
f(1/w)

1

w2
dw

Finally, note that z = 1/w maps all the poles inside the circle C to points outside the circle
C̃. So the only possible pole of (1/w2)f(1/w) that is inside C̃ is at w = 0. Now, since C̃ is
oriented clockwise, the residue theorem says

1

2πi

∫
C̃
f(1/w)

1

w2
dw = −Res

(
1

w2
f(1/w), 0

)
Comparing this with the equation just above finishes the proof.

Example 8.23. Let

f(z) =
5z − 2

z(z − 1)
.
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Earlier we computed ∫
|z|=2

f(z) dz = 10πi

by computing residues at z = 0 and z = 1. Recompute this integral by computing a single
residue at infinity.

Solution:
1

w2
f(1/w) =

1

w2

5/w − 2

(1/w)(1/w − 1)
=

5− 2w

w(1− w)
.

We easily compute that

Res(f,∞) = −Res

(
1

w2
f(1/w), 0

)
= −5.

Since |z| = 2 contains all the singularities of f we have∫
|z|=2

f(z) dz = −2πiRes(f,∞) = 10πi.

This is the same answer we got before!
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