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Residue Theorem

8.1 Poles and zeros

We remind you of the following terminology: Suppose f(z) is analytic at zg and
f(2) = an(z — 20)" + ans1(z — 20)" T+ ...,
with a, # 0. Then we say f has a zero of order n at zg. If n = 1 we say zg is a simpleyzero.

Suppose f has an isolated singularity at zgp and Laurent series

bn bn—l
f(z) = (z—20)" (z—20)"1 7 z—2

which converges on 0 < |z — 29| < R and with b,, # 0. Then we say f has#a pole of order n
at zg. If n =1 we say zg is a simple pole.

There are several examples in the Topic 7 notes. Here is one more

Example 8.1.
z+1

f(Z) - 2’3(22 £ 1)
has isolated singularities at z = 0, +% and a zero atyz = —1. We will show that z =0 is a
pole of order 3, z = +i are poles of order 1{and’z)= —1 is a zero of order 1. The style of
argument is the same in each case.
At z=0: 1 +1

z

A=y
Call the second factor g(z). Since'g(z) is analytic at z = 0 and ¢(0) = 1, it has a Taylor
series 41

(%)= ZZQT =14 a2+ a2’ +...

Therefore

This shows(z =0 i¢ a pole of order 3.

At z =i f(aes L ZSZ(—Zi:ll”L')' Call the second factor g(z). Since g(z) is analytic at z = 1,

it hag @ Taylor series

1
Q(Z)Zé”?ztri):a°+a1(2—i)+a2(2—i)2+--~
where ag = ¢(i) # 0. Therefore
f(z):%—&—al—i—ag(z—i)—i—....

This shows z = ¢ is a pole of order 1.

The arguments for z = —i and z = —1 are similar.
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8.2 Words: Holomorphic and meromorphic

Definition. A function that is analytic on a region A is called holomorphic on A.

A function that is analytic on A except for a set of poles of finite order is called meromorphic
on A.

Example 8.2. Let
2422423
(z=2)(z—=3)(z —4)(z —5)

This is meromorphic on C with (simple) poles at z = 2,3,4, 5.

flz) =

8.3 Behavior of functions near zeros and poles

The basic idea is that near a zero of order n, a function behaves like (z <z)” and near a
pole of order n, a function behaves like 1/(z — zp)™. The following maké this a’little more
precise.

Behavior near a zero. If f has a zero of order n at zy then neat,_z,
~ n
f(z) = an(z = 20)",
for some constant a,.

Proof. By definition f has a Taylor series around zg of the form

f(2) = an(z — 20)" + ang1(z =20V N . ..

= an(z — 2)" (1 4 I ) + 2 (= )2 )

iy, Qn

a

Since the second factor equals 1 at %g, theslaim follows.

Behavior near a finite pole. If f“has a pole of order n at zy then near z,

for some constant b,

Proof. This is nearly.identical to the previous argument. By definition f has a Laurent
series around=z of the form

bn bn—l
f(z) = EETND + )T +...+Z_ZO +ap+
bn b’n—l bn—2 2
= 1 — —
Gz ( + ™ (z — 20) + b (z—20)" + )

Since the second factor equals 1 at zg, the claim follows.

8.3.1 Picard’s theorem and essential singularities

Near an essential singularity we have Picard’s theorem. We won’t prove or make use of this
theorem in 18.04. Still, we feel it is pretty enough to warrant showing to you.
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Picard’s theorem. If f(z) has an essential singularity at zp then in every neighborhood
of zg, f(z) takes on all possible values infinitely many times, with the possible exception of
one value.

Example 8.3. It is easy to see that in any neighborhood of z = 0 the function w = e!/?
takes every value except w = 0.

8.3.2 Quotients of functions

We have the following statement about quotients of functions. We could make similar
statements if one or both functions has a pole instead of a zero.

Theorem. Suppose f has a zero of order m at zyp and g has a zero of order n at zgwLet

h(z) = g((g

Then

e If n > m then h(z) has a pole of order n — m at z.
e If n < m then h(z) has a zero of order m —n at z.

e If n = m then h(z) is analytic and nonzero at 2.

We can paraphrase this as h(z) has ‘pole’ of order n% m at zg. If n — m is negative then
the ‘pole’ is actually a zero.

Proof. You should be able to supply the pr@of.#It)is nearly identical to the proofs above:
express f and g as Taylor series and take the‘quetient.

Example 8.4. Let
sin(z)
h(%) = ——
=2
We know sin(z) has a zero ofiorder™ at z = 0 and 2% has a zero of order 2. So, h(z) has a
pole of order 1 at z = 0. Of course, we can see this easily using Taylor series

h(z):;<z—§?+...>

8.4 Residues

In this section we’ll explore calculating residues. We've seen enough already to know that
this willkbe useful. We will see that even more clearly when we look at the residue theorem
imthe next section.

We introduced residues in the previous topic. We repeat the definition here for completeness.

Definition. Consider the function f(z) with an isolated singularity at zp, i.e. defined on
the region 0 < |z — 29| < 7 and with Laurent series (on that region)

flz)=>" (Z_b"ZO)n + an(z—2)"

n=1 n=0
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The residue of f at zp is by. This is denoted

Res(f,z0) =b1  or Res f=b;.

2=20

What is the importance of the residue? If v is a small, simple closed curve that goes
counterclockwise around by then

f(2) = 2miby.
2l

~ small enough to be inside |z — zp| < 7, surround zy and contain\nyether singularity of f.

This is easy to see by integrating the Laurent series term by_terms, The only nonzero integral
comes from the term b;/z.

Example 8.5.

1 1
_ 1/2z:1 - 3 W
f(z)=e +22+2(2z)2+'”

has an isolated singularity at 0. From the Laurentiseries we see that Res(f,0) = 1/2.

Example 8.6.
(i) Let
f(z)=%+%+§+5+6z.
f has a pole of order' at(z = 0 and Res(f,0) = 4.
(ii) Suppose
f2) =2 +9(2),
wheresg is analytic at z = 0. Then, f has a simple pole at 0 and Res(f,0) = 2.
(iii) Let
f(z) =cos(z) =1—22/20+....
Then f is analytic at z = 0 and Res(f,0) = 0.

(ivy Let

So, f has a removable singularity at z = 0 and Res(f,0) = 0.
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Example 8.7. Using partial fractions. Let

Find the poles and residues of f.

Solution: Using partial fractions we write

z 1 1 1 1
& =Gy "2 =i ta i

The poles are at z = +4. We compute the residues at each pole:

At z =i:

1 1
f(z) = 3 - + something analytic at 7.
z2—1
Therefore the pole is simple and Res(f,7) = 1/2.
At 2z = —i: )
flz) = 2 1 + something analytic atg=i.

Therefore the pole is simple and Res(f, —i) = 1/2.
Example 8.8. Mild warning! Let

1
f(Z):—m

then we have the following Laurent expansions fér)f around z = 0.

On0< |zl <1

1 1 1
=, Lo 24 ).
f(2) NN z( +z4+2"+...)
Therefore the pole at z = 0 is simplé*and Res(f,0) = —1.
On 1< |z| < oo:
1 1 1 1 1
D). = (14 -+ =),
A 22 1-1/z 22< Tt Et >

Even though this is a yalid Laurent expansion you must not use it to compute the residue
at 0. This is because the definition of residue requires that we use the Laurent series on the

region 0 < &= zo| < 7.
Example 8.9. let
£(2) = log(1 + 2).

TPhisshas a singularity at z = —1, but it is not isolated, so not a pole and therefore there is

no residue at z = —1.

8.4.1 Residues at simple poles

Simple poles occur frequently enough that we’ll study computing their residues in some
detail. Here are a number of ways to spot a simple pole and compute its residue. The

justification for all of them goes back to Laurent series.
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Suppose f(z) has an isolated singularity at z = zy. Then we have the following properties.

Property 1. If the Laurent series for f(z) has the form

+ap+ai(z—z20)+...
Z — 20

then f has a simple pole at zp and Res(f, z9) = b;.
Property 2 If
9(z) = (= — 20) f(2)

is analytic at zp then zg is either a simple pole or a removable singularity. In eithet case
Res(f, z0) = g(z0). (In the removable singularity case the residue is 0.)

Proof. Directly from the Laurent series for f around z.

Property 3. If f has a simple pole at zy then

lim (z — z0) f(z) = Res([f, 20)

Z—20

This says that the limit exists and equals the residue. Conversélymif the limit exists then
either the pole is simple, or f is analytic at zg. In both cases%helimit equals the residue.

Proof. Directly from the Laurent series for f around zp.

Property 4. If f has a simple pole at zg and g(z) is analytie at zo then

Res(fg, z0) = g(z0)Restfpzo).
If g(29) # 0 then
1

Resl 19PN )

Res(f, z0).

Proof. Since zg is a simple pole,

b1
Z— 20

{(Pr=

+ag 4+ a1(z — z0)
Since g is analytic,

9(z) =cotei(z—20) + ...,
where ¢p = g(29). Multiplying these series together it is clear that

Res(fg,20) = cob1 = g(z0) Res(f, 20). QED
The sgatement about quotients f/g follows from the proof for products because 1/g is
analytie at 2.

Property 5. If g(z) has a simple zero at zp then 1/g(z) has a simple pole at zp and

1
g'(20)

Res(1/g, zp) =

Proof. The algebra for this is similar to what we’ve done several times above. The Taylor
expansion for g is
9(2) = a1(z — z0) + az(z — 20)* + ...,
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where a; = ¢'(29). So

1 1
g(2)  ai(z — z) 1+ 2(2—20) + ...

The second factor on the right is analytic at zg and equals 1 at zg. Therefore we know the
Laurent expansion of 1/g is

1 1
= 14+ci(z—20)+...
9 m( e AT
Clearly the residue is 1/a; = 1/¢'(29). QED.

Example 8.10. Let

_ 242422
1z) = (z—2)(z—3)(z —4)(z —5)

Show all the poles are simple and compute their residues.

Solution: The poles are at z = 2,3,4,5. They are all isolated. We’ll le6k at z = 2 the
others are similar. Multiplying by z — 2 we get

2+ z +@2
(2 —3)(z&d) (2= 5)

9(2) = (2 =2)f(z) =

This is analytic at z = 2 and

8 4
9) = 2 =%
92) = —g= Ng
So the pole is simple and Res(f,2) = —4/3.
Example 8.11. Let
1
M)/~ sin(z)

Find all the poles and their zesidués.

Solution: The poles of f(%) are the zeros of sin(z), i.e. nm for n an integer. Since the
derivative
sin’(nm) = cos(nm) # 0,

the zeros are simple and by Property 5 above

Res(f,nm) = cos(r) =(-1)".

Example®.12. Let
1

1z) = 2(224+1)(z — 2)%

Identify all the poles and say which ones are simple.

Solution: Clearly the poles are at z = 0, +i, 2.
At z=0:
9(2) = zf(2)
is analytic at 0 and g(0) = 1/4. So the pole is simple and the residue is g(0) = 1/4.



8 RESIDUE THEOREM 8

At z =1: )
9(z) = (z —i)(z) = z2(z+1)(z —2)2

is analytic at i, the pole is simple and the residue is g(i).

At z = —i: This is similar to the case z = i. The pole is simple.

At z =2:
1

(22+1)(z—2)
is not analytic at 2, so the pole is not simple. (It should be obvious that it’s a pole of ordér
2.)

Example 8.13. Let p(z), q(z) be analytic at z = z5. Assume p(z9) # 0, g(zo)= 0,
¢ (z0) # 0. Find

9(2) = (= 29f(2) = -

Res M

=20 q(2)
Solution: Since ¢'(z0) # 0, ¢ has a simple zero at zp. So 1/¢ has_a simpléole at zy and

1
q'(20)

Res(l/q, Z()) =

Since p(zp) # 0 we know

p(20)
q'(20)

Res(p/q, z0) = p(z0) Res(1Yg, z0) =

8.4.2 Residues at finite poles

For higher-order poles we can maketstateiments similar to those for simple poles, but the
formulas and computations are meré“involved. The general principle is the following

Higher order poles. If f(z)\haswa pole of order k at zp then
9(z) = (z — 20)" f(2)

is analytic at zg andif
g(z) =ap+ar(z—20)+...

then
g(k—l) (ZO)

Res(f, ZQ) =Aak—-1 = (k — 1)' .

Proofy, This is clear using Taylor and Laurent series for g and f.

Example 8.14. Let
sinh(z)

29

f(z) =
and find the residue at z = 0.

Solution: We know the Taylor series for

sinh(z) = 2 4+ 23 /31 + 2° /5! + ...
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(You can find this using sinh(z) = (e* — e™#)/2 and the Taylor series for e*.) Therefore,

1 1 1

f(z):;‘f‘ﬁ-f-a-f-...

We see Res(f,0) = 0.
Note, we could have seen this by realizing that f(z) is an even function.

Example 8.15. Let
sinh(z)e*
f(Z) - 25 :
Find the residue at z = 0.

Solution: Tt is clear that Res(f,0) equals the coefficient of 2% in the Taylor exp&nsion of
sinh(z)e®. We compute this directly as

23 22 23 1 1
. : 7 2 & N . ¥ A
sinh(z)e —<z—|—3!+...> (1—1—2—1— 5 +3!+...>_...+(4!+3!>z +...
S0 1 1 5

Example 8.16. Find the residue of

1
1) = o)
at z = 2.
Solution: g(z) = (z — 2)2f(z) = Z(Z21+1) is analytic/at z = 2. So, the residue we want is the
aj term in its Taylor series, i.e. ¢'(2). This is easy, if dull, to compute
13
R AL ¢ (2) = ——
es(f? ) g( ) 100

8.4.3 cot(z2)

The function cot(z) turns,out to be very useful in applications. This stems largely from the
fact that it has simple peles at all multiples of 7 and the residue is 1 at each pole. We show
that first.

Fact. f(z)/= cot(z) has simple poles at nm for n an integer and Res(f,nm) = 1.

Proof.
cos(z)

flz) =

This has poles at the zeros of sin, i.e. at z = nw. At poles f is of the form p/q where ¢ has
a sifiple zero at zp and p(zp) # 0. Thus we can use the formula

sin(z) "

p(20)
Res(f, z0) = .
(f:20) q'(20)
In our case, we have
Res(f,nm) = cos(nr) =1,

cos(n)
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as claimed.

Sometimes we need more terms in the Laurent expansion of cot(z). There is no known easy
formula for the terms, but we can easily compute as many as we need using the following
technique.

Example 8.17. Compute the first several terms of the Laurent expansion of cot(z) around
z=0.

Solution: Since cot(z) has a simple pole at 0 we know

b
cot(z):;1+a0—|—alz+agz2—|—...

We also know
cot(z) = c?s(z) _ 1= 2224 2440 — .
sin(z) z—23/31425/50— ...

Cross multiplying the two expressions we get

LA G, B
> ag alz asz z 31 51 el = 9 Al

We can do the multiplication and equate the coefficients oftlike_powers of z.

b a b a 22 2
bl+aoz+<—31'+a1>22+<—3?+a2)23+<1—1+a3>z4:1——i—

So, starting from by =1 and ag =0, we get

—b1 /3! + a1 = —1/2! = a=-1/3
—ag/3!+az =0 = ay=0
b1/5!—a1/3!+a3:1/4! = a3:—1/45.

As noted above, all the even termssare 0 as they should be. We have

8.5 Cauchy Residue Theorem

This is one of thé major theorems in 18.04. It will allow us to make systematic our previous
somewhat ad hoc approach to computing integrals on contours that surround singularities.

TPhéorem. (Cauchy’s residue theorem) Suppose f(z) is analytic in the region A except
for a set of isolated singularities. Also suppose C'is a simple closed curve in A that doesn’t
go through any of the singularities of f and is oriented counterclockwise. Then

/ f(z)dz = 2mi Z residues of f inside C
C

Proof. The proof is based of the following figures. They only show a curve with two singu-
larities inside it, but the generalization to any number of signularities is straightforward. In
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what follows we are going to abuse language and say pole when we mean isolated singularity,
i.e. a finite order pole or an essential singularity (‘infinite order pole’).

The left figure shows the curve C surrounding two poles z; and z9 of f. The, right figure
shows the same curve with some cuts and small circles added. It is chosen se’that,thére are
no poles of f inside it and so that the little circles around each of the peles are so small
that there are no other poles inside them. The right hand curve is

C=C1+Cy—C3—Cy+Cy+C5—Cs—Cs

The left hand curve is C = Cy 4+ Cy. Since there are no poles inside/C' we have, by Cauchy’s

theorem,
[f(z)dz:/ fez)dz =0
C C14C2—C3—Co+Cs+Cs—CoC5

Dropping Cy and Cs, which are both added and gubtracted, this becomes

/CI+C4 f(2)dzf= /cg+cﬁf(z) dz (1)

b b
f(z):...—k(Z_ZZl)Q—FZ_lZl+ao+a1(z—21)+...

If

is the Laurent expansion of fiaroumnd z; then

bo b1

dz = — ... d
Csf(z) z /03 +<Z?Zl)2+2721+a0+a1(z z1) + z

= 2wiby
= 2mi Res(f, z1)

Likewise

f(2)dz = 2miRes(f, z2).
Ce

Using these residues and the fact that C' = Cy + C4, Equation 1 becomes

/Cf(z) dz = 2mi[Res(f, z1) + Res(f, z2)] .

That proves the residue theorem for the case of two poles. As we said, generalizing to any
number of poles is straightforward.

Example 8.18. Let
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Compute / f(2) dz over each of the contours C1, Cy, C3, Cy shown.

?\
>

Solution: The poles of f(z) are at z = 0,+i. Using the residue theofe just need to
compute the residues of each of these poles.
At z=0:

9(2) = 2f 22 +1 E
is analytic at 0 so the pole is simple and

Res(/, 0) (%Q
At z =1:

9(z) =

is analytic at ¢ so the pole is simple 4

At z = —i:

2) = (z+0)f(2) =

is analytic at —¢ so%e is simple and

Res(f, —i) = g(—i) = —1/2.
L 4
Using the Q theorem we have

Q& / f(z =0 (since f is analytic inside C)
Ch

z)dz = 2miRes(f,1) = —mi
f(z) dz = 2mi [Res(f,4) + Res(f,0)] = mi

f(2) dz = 2mi [Res(f,i) + Res(f,0) + Res(f, —1)] = 0.
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Example 8.19. Compute
/ 52 — 2
—dz.
|z|=2 Z(Z - 1)

Solution: Let

o9z — 2
f(Z) - Z(Z—l).
The poles of f are at z = 0,1 and the contour encloses them both.
T
i L, Rez
At z=0: 5 )
Z —
g(Z) - Zf(Z) - (Z _ 1)

is analytic at 0 so the pole is simple and

Res(f,0) = ¢(0) = 2.

At z =1:
Dz — 2

z

9(2) = -1 (4) ¥

is analytic at 1 so the pole is simple and

Res(fd) = g(1) = 3.

Finally

/C ZEE%% dz = 2mi[Res(f,0) + Res(f,1)] = 10mi.

Example 8.20. Comptite
/ 2?sin(1/z) dz.
|z[=1

Solution: Let
f(z) = 2%sin(1/z).

| hasjan isolated singularity at z = 0. Using the Taylor series for sin(w) we get

1 1 1
2 _ 2 —
z%sin(1/z) = 2 (Z—3!23+5!25—...)z— . +

So, Res(f,0) = b; = —1/6. Thus the residue theorem gives

/ 2?sin(1/2) dz = 2mi Res(f,0) = ——.
|z|=1
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Example 8.21. Compute

dz
d
/c 2z -2
where, C': |z —2| = 1.
[./"'“'};I-
Y,
Solution: Let 1

f(Z):m-

14

The singularity at z = 0 is outside the contour of integration so it doesn’t @entribute to the

integral.

To use the residue theorem we need to find the residue of f at z = 2. Thefe are a number

of ways to do this. Here’s one:

1 1
z 24(2-2)
1 1
2 1+(2-2)/2
1 z2—2 (2 22)N (z—2)3
= (1- N\
2< > 4 g
This is valid on 0 < |z — 2| < 2. So,
1 1 1 1 1

f(z):m?:ﬂz—m‘*_4(z—2)3+8(z—2)2_

Thus, Res(f,2) = —1/16 and

)

/ f(2)dz = 2miRes(f,2) = ——.
c 8

Example 8.22. Compute

/C sinl(z) dz

over the contour C shown.

16(z — 2)
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Solution: Let

f(z) = 1/sin(z).
There are 3 poles of f inside C' at 0, m and 27w. We can find the residues by taking the limit
of (z — z0) f(2). Each of the limits is computed using L’Hospital’s rule. (This is valid, since
the rule is just a statement about power series. We could also have used Property 5 from
the section on residues of simple poles above.)

At z =0:

1
lim —— = lim —— =
z—0sin(z)  2—0 cos(z)

Since the limit exists, z = 0 is a simple pole and

Res(f,0) = 1.

At z =
. z—T . 1
lim —— = lim —— = —
z=msin(z)  z—7 cos(z)

Since the limit exists, z = 7 is a simple pole and

Res(f,m) = —1.

At z = 2m: The same argument shows
Res(f,2m) =ul.

Now, by the residue theorem

/Cf(z) dz = 2mi [Res(fT00F Res(f, ) + Res(f, 2m)] = 2.

8.6 Residue at oo

The residue at oo is a clevendeyice that can sometimes allow us to replace the computation
of many residues with thé*eemputation of a single residue.

Suppose that f is analytic’ in C except for a finite number of singularities. Let C' be a
positively oriented cutve that is large enough to contain all the singularities.

(__Jr— m ;—7

&

All the poles of f are inside C'
Definition. We define the residue of f at infinity by

2mi

Res(f, ) = ! /Cf(z)dz
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We should first explain the idea here. The interior of a simple closed curve is everything
to left as you traverse the curve. The curve C' is oriented counterclockwise, so its interior
contains all the poles of f. The residue theorem says the integral over C' is determined by
the residues of these poles.

On the other hand, the interior of the curve —C' is everything outside of C'. There are no
poles of f in that region. If we want the residue theorem to hold (which we do —it’s that
important) then the only option is to have a residue at co and define it as we did.

The definition of the residue at infinity assumes all the poles of f are inside C. Therefore
the residue theorem implies

Res(f, 00) Z the residues of f.

To make this useful we need a way to compute the residue directly. This is given by the
following theorem.

Theorem. If f is analytic in C except for a finite number of singularitiés then
1
Res(f, 00 )——Res< f(1/w), >
w?

Proof. The proof is just a change of variables: w = 1/z.

w::—li'

>

Tm

e
i{:! I /52.

Chartige-of variable: w =1/z
First note that z = 1/w and
dz = —(1/w?) dw

Next, note that the mapww = 1/z carries the positively oriented z-circle of radius R to the
negatively oriented w-citele of radius 1/R. (To see the orientiation, follow the circled points
1, 2, 3,4 on C in the'z-plane as they are mapped to points on C' in the w-plane.) Thus,

Res(f,0) = 27m/f dz—/f 1/w

Finally, note that z = 1/w maps all the poles inside the circle C' to points outside the circle
C#8p the only possible pole of (1/w?)f(1/w) that is inside C is at w = 0. Now, since C is
oriented clockwise, the residue theorem says

ar [ /) Jy du = Res( 3 701/0),0)

Comparing this with the equation just above finishes the proof.

Example 8.23. Let
52 — 2

f(z):m~



8 RESIDUE THEOREM 17

Earlier we computed

f(z)dz = 10mi
|z|=2

by computing residues at z = 0 and z = 1. Recompute this integral by computing a single
residue at infinity.

Solution: ) ) 5w — 2 I
w2V = e A e =1~ wi—w)

We easily compute that AV

Res(f,00) = — Res (% f(l/w),O) ~ s,

Since |z| = 2 contains all the singularities of f we have @V

/ f(z)dz = —2miRes(f, 00) = 107i.
|z|=2

This is the same answer we got before! E v
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