Ordinary Differential Equation, Partial Differential Equation, Lap Lace Transforms And Vector Analysis.

Section -A

UNIT – I

1.
$$x^2 p_2 + 3xyp + 2y^2 = 0$$

- 2. Find the particular integrands of $(D^2 + 16)y = \cos 4x$
- 3. Define: Linear differential equation.
- 4. Eliminate the arbitrary function. $z = f\left(\frac{xy}{z}\right)$
- 5. Find the particular integrals of $o + (D^2 + 16) y = e^{-3x}$
- 6. Define Clairaut's equation.
- 7. Find the PDE by eliminating the ordinary constant form $z = px + by + \frac{a}{b}$.
- 8. Solve xp + yq = x.

Section – B

- 1. Solve. $x yp = ap^2$
- 2. Solve. $(D^3 D^2 D + 1)y = 1 + x^2$
- 3. Solve. $(D^3 8D + 9)y = 8\sin 5x$
- 4. Solve. $(D^2 + 3D^2 4)y = e^x + \cos 3x$
- 5. Solve. $y = xp + x(1+p^2)^{1/2}$
- 6. Solve $x = P^2 + y$
- 7. Solve $x = \tan^{-1}(P) + \frac{P}{1 + P^2}$
- 8. $(D_2 6D + 5) y = e^{2x}$
- 9. Form the P.D.E by eliminating arbitrary constant of equt $z = ax + by + a^2 b^2$
- 10. Solve P + (1+q) = qz.
- 11. Solve $P^2 + q^2 = x + y$

Section-C

1. Solve.
$$(D^2 - 2D + 4)y = e^x \cos x$$

2. Solve.
$$(D^3 - 2D + 4) y = e^x \cos x$$

3. Solve.
$$(D^2 + 1)y = x^2e^{2x} + x\cos$$

- 4. Solve $P^2 + 2yp Cotx = y^2$.
- 5. Solve the equation $(D^2 + 5D + 4) y = x^2 + 7x + 9$.

UNIT -II

Section - A

- 1. Eliminate the arbitrary function from $z = f(x^2 + y^2)$ and find the partial differential equation.
- 2. Solve. $q = y^2 q^2$
- 3. Solve. $(d^3 3d^2 + 4)y = 0$
- 4. Write down claimant's form.
- 5. Solve. z = px + qy + pq
- 6. Define Lagrange's linear equation.
- $7. \qquad P(1+q) = qz$

Section - B

1. Solve.
$$(3z-4y)p+(4x-2z)q=2y-3x$$

2. Solve.
$$q(p-\sin x) = \cos y$$

3. Solve.
$$p(1-q^2) = q(z-1)$$

4. Solve.
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$

5. Solve.
$$pxy + pq + qy = y^2$$

$$6. \qquad \sqrt{p} + \sqrt{q} = 1$$

7. Solve
$$z = px + qy + 2(\sqrt{pq})$$
.

Section - C

- 1. Solve. (i) $z = p^2 + q^2$ (ii) $z = px + qy 2\sqrt{pq}$
- 2. Determine the surface which satisfies the differential equation $(x2-a2p)+(xy-az\tan\alpha)$ $q=xz-ay\cot\alpha$ and passes through the curve $x^2+y^2=a^2$, z=0
- 3. Obtain the complete solution of $xp^2 ypq + y^3q y^2z = 0$
- 4. Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.

UNIT – III

Section - A

- 1. Find $L\left(\frac{1-e^t}{t}\right)$
- 2. Find $L^{-1}\left(\frac{1}{s(s+a)}\right)$
- 3. Find $L(t^2 + 2t + 3)$
- 4. State final value theorem in Laplace transform.
- 5. Find $L(\cosh at)$

Section - B

- 1. Find $L^{-1}\left[\frac{s+2}{\left(s^2+4s+5\right)^2}\right]$
- 2. Find $L^{-1}\left[\frac{s}{s^2a^2+b^2}\right]$
- 3. Find $L\left(\frac{\sin^2 t}{t}\right)$
- 4. Evaluate $\int_{0}^{\infty} te^{-3t} \cos t dt$
- 5. Find $L \left[te^{-t} \sin t \right]$

Section - C

1. Using Leplace transform solve

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t, \ y(0) = 0 \text{ and } y'(0) = 0$$

- 2. Evaluate the following integrads $(a) \int_{0}^{\infty} \frac{e^{-3t} e^{bt}}{t} dt$ $(b) \int_{0}^{\infty} \frac{e^{-t} \sin^{2t}}{t} dt$
- 3. Using Leplace transform solve y''-2y'+y=(t+1)2, y(0)=4 and y'(0)=-2

UNIT-IV

Section – A

- 1. Prove that $div \dot{\gamma} = 3$
- 2. If \overline{f} and \overline{g} are irrotational, show that $\overline{f} \times \overline{g}$ is solenoidal.
- 3. Find $L^{-1}\left(\frac{1}{(s+2)^2+16}\right)$
- 4. Find $L^{-1}\left(\frac{s}{(s+2)^2}\right)$
- 5. Find $\nabla \phi$ if $\phi = xy^2 + yz^3$

Section – B

- 1. Find the directional derivative of $\phi = xy + yz + zx$ at (1, 2, 0) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$
- 2. Prove that $div(\overline{u}\times\overline{v}) = \overline{v}.cur/\overline{u} \overline{u}.cur/\overline{v}$
- 3. Find $L^{-1} \left[\frac{1}{(s+1)(s^2+2s+2)} \right]$
- 4. Find $L^{-1} \left[\frac{2(s+1)}{(s^2+2s+2)^2} \right]$
- 5. Prove that $div(\bar{r} + \bar{a}) = o$ where \bar{a} is a constant vector.

Section - C

- 1. Prove that $(i) div \text{ grad } r^n = n(n+1)r^{n-2}$ $(ii) curl \text{ grad } r^n = 0$
- 2. Solve the differential equation $\frac{d^2y}{dx^2} 10\frac{dy}{dx} + 24y = 24x$ given that $y = \frac{dy}{dx} = 0$ when x = 0
- 3. Prove that $div(r^n\vec{r}) = (n+3)r^n$. Deduce that $r^n\vec{r}$ is solenoidal if and only if n = -3

UNIT - V

Section - A

- 1. State stoke's Theorem.
- 2. Define line Integral.
- 3. Find the unit normal to the surface $x^3 + xyz + z^3 = 1$ at (1,-1,1)
- 4. If $\phi = x^2z + e^{y/x}$ and $\psi = 2z^2y xy^2$ find $\nabla(\phi + \psi)$
- 5. Evaluate $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$

Section – B

- 1. $\overline{f} = (3x^2 + 6y)\overline{i} 14yz\overline{j} + 20xz^2k$, Evaluate along the path from (0, 0, 0) to $(1, 1, 1) \int_{C} \overline{f} . d\overline{r}$ along the path x = t, $y = t^2$, $z = t^3$
- 2. Evaluate $\int_{c} \overline{f}.\overline{n}$ where $\overline{F} = 18z\overline{i} 12\overline{j} + 3y\overline{k}$ and S is the surface of the plane. 2x+3y+6z=12 in the first octant.
- 3. Find div f and Curl f for $f = (y^2 z^2 + 3yz 2x)i + (3xz + 2xy)j + (3xy 2xz + 2z)k$
- 4. If $\phi = \log r$, where $r = x\overline{i} + y\overline{i} + z\overline{k}$, Prove that $\nabla^2 (\log r) = \frac{1}{r^2}$
- 5. (i) Define surface integral.
 - (ii) If $f = x^2 \vec{i} xy \vec{j}$ and C is the straight line joining the points (0, 0) and (1, 1) find $\int_C \vec{f} . d\vec{r}$

Section-C

- 1. Verify Gauss divergence theorem for $\overline{F} = 4x\overline{i} 2y^2\overline{j} + z^2\overline{k}$ taken over the region bounded by $x^2 + y^2 = 4$, z=0 and z=3.
- 2. Prove that $(a)(r^n\overline{r}) = (n+3)rn(b)Curl(r^n\overline{r}) = 0$
- 3. Verify stake's theorem for $\vec{f} = y^2z\vec{i} + z^2x\vec{y} + x^2y\vec{k}$ where S is the open surface of the cube forward by the planes $x = \pm a$, $y = \pm a$ and $z = \pm a$, in which the plane Z=-a is cut.