
II MCA

Web Technologies

Unit IV

SOAP and WSDL

The SOAP Model;

 Web services are an instance of the service-oriented architecture pattern that use SOAP as the transport

mechanism for moving messages between services described by WSDL interfaces

 A SOAP message is encoded as an XML document, consisting of an <Envelope> element, which

contains an optional <Header> element, and a mandatory <Body> element. The <Fault> element,

contained in the <Body>, is used for reporting errors.

❖ The SOAP envelope

 The SOAP <Envelope> is the root element in every SOAP message.

 It contains two child elements, an optional <Header>, and a mandatory <Body>.

❖ The SOAP header

 The SOAP <Header> is an optional subelement of the SOAP envelope.

 It is used to pass application-related information that is to be processed by SOAP nodes along the

message path.

❖ The SOAP body

 The SOAP <Body> is a mandatory subelement of the SOAP envelope.

 It contains information intended for the ultimate recipient of the message.

❖ The SOAP fault

 The SOAP <Fault> is a subelement of the SOAP body, which is used for reporting errors.

 With the exception of the <Fault> element, which is contained in the <Body> of a SOAP message,

The architecture of a SOAP message

 XML elements in the <Header> and the <Body> are defined by the applications that make use of them.

An example of a SOAP 1.2 message

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <env:Header>

 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"

 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true">

 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>

 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

 </m:reservation>

 <n:passenger xmlns:n="http://mycompany.example.com/employees"

 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true">

 <n:name>Åke Jógvan Øyvind</n:name>

 </n:passenger>

 </env:Header>

 <env:Body>

 <p:itinerary

 xmlns:p="http://travelcompany.example.org/reservation/travel">

 <p:departure>

 <p:departing>New York</p:departing>

 <p:arriving>Los Angeles</p:arriving>

 <p:departureDate>2001-12-14</p:departureDate>

 <p:departureTime>late afternoon</p:departureTime>

 <p:seatPreference>aisle</p:seatPreference>

 </p:departure>

 <p:return>

 <p:departing>Los Angeles</p:departing>

 <p:arriving>New York</p:arriving>

 <p:departureDate>2001-12-20</p:departureDate>

 <p:departureTime>mid-morning</p:departureTime>

 <p:seatPreference/>

 </p:return>

 </p:itinerary>

 <q:lodging

 xmlns:q="http://travelcompany.example.org/reservation/hotels">

 <q:preference>none</q:preference>

 </q:lodging>

 </env:Body>

</env:Envelope>

SOAP Message

 A SOAP message is an ordinary XML document containing the following elements −

• Envelope − Defines the start and the end of the message. It is a mandatory element.

• Header − Contains any optional attributes of the message used in processing the message, either at an

intermediary point or at the ultimate end-point. It is an optional element.

• Body − Contains the XML data comprising the message being sent. It is a mandatory element.

• Fault − An optional Fault element that provides information about errors that occur while processing the

message.

 The following block depicts the general structure of a SOAP message −

<?xml version = "1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = "http://www.w3.org/2001/12/soap-encoding">

 <SOAP-ENV:Header>

 ...

 ...

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 ...

 ...

 <SOAP-ENV:Fault>

 ...

 ...

 </SOAP-ENV:Fault>

 ...

 </SOAP-ENV:Body>

</SOAP_ENV:Envelope>

SOAP Envelop

 The SOAP Envelop is the container structure for the SOAP message and is associated with the

namespace http://www.w3.org/2002/06/soap-envelop

 The SOAP <Envelope> is the root element in every SOAP message.

 It contains two child elements, an optional <Header> element, and a mandatory <Body> element.

<?xml version = "1.0"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = " http://www.w3.org/2001/12/soap-envelope">

 <SOAP-ENV:Header>

 </SOAP-ENV:Header>

 ... <SOAP-ENV:Body>

 </SOAP-ENV:BODY>

 ...

</SOAP-ENV:Envelope>

SOAP Header

 The optional Header element offers a flexible framework for specifying additional application-level

requirements.

 For example, the Header element can be used to specify a digital signature for password-protected

services.

 Likewise, it can be used to specify an account number for pay-per-use SOAP services.

 SOAP Header Attributes

1. A SOAP Header can have the following two attributes −\

▪ Actor attribute

▪ MustUnderstand attribute

 Actor attribute

1. The SOAP protocol defines a message path as a list of SOAP service nodes. Each of these

intermediate nodes can perform some processing and then forward the message to the next node

in the chain. By setting the Actor attribute, the client can specify the recipient of the SOAP

header.

 MustUnderstand attribute

1. It indicates whether a Header element is optional or mandatory. If set to true, the recipient must

understand and process the Header attribute according to its defined semantics, or return a fault.

The following example shows how to use a Header in a SOAP message.

<?xml version = "1.0"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = " http://www.w3.org/2001/12/soap-envelope"

 SOAP-ENV:encodingStyle = " http://www.w3.org/2001/12/soap-encoding">

 <SOAP-ENV:Header>

 <t:Transaction

 xmlns:t = "http://www.tutorialspoint.com/transaction/"

 SOAP-ENV:role=” http://www.w3.org/2001/12/soap-envolpe/role/ultimateReceiver”

 SOAP-ENV:mustUnderstand = "true">5

 </t:Transaction>

 </SOAP-ENV:Header>

 ...

 ...

</SOAP-ENV:Envelope>

 The encodingStyle Attribute

1. Is used to declare how the contents of a header block were created

2. Knowing this information allows a recipient of the header to decoder the information at it

contains

SOAP Body

The required SOAP Body element contains the actual SOAP message intended for the ultimate endpoint of the

message.

Immediate child elements of the SOAP Body element may be namespace-qualified.

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

 <m:GetPrice xmlns:m="http://www.w3schools.com/prices">

 <m:Item>Apples</m:Item>

 </m:GetPrice>

</soap:Body>

</soap:Envelope>

The example above requests the price of apples. Note that the m:GetPrice and the Item elements above are

application-specific elements. They are not a part of the SOAP namespace.

A SOAP response could look something like this:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

 <m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">

 <m:Price>1.90</m:Price>

 </m:GetPriceResponse>

</soap:Body>

</soap:Envelope>

SOAP Fault

The optional SOAP Fault element is used to indicate error messages.

If a Fault element is present, it must appear as a child element of the Body element. A Fault element can only

appear once in a SOAP message.

The SOAP Fault element has the following sub elements:

Sub Element Description

<faultcode> A code for identifying the fault

<faultstring> A human readable explanation of the fault

<faultactor> Information about who caused the fault to happen

<detail> Holds application specific error information related to the Body element

SOAP Fault Codes

The faultcode values defined below must be used in the faultcode element when describing faults:

Error Description

VersionMismatch Found an invalid namespace for the SOAP Envelope element

MustUnderstand An immediate child element of the Header element, with the mustUnderstand

attribute set to "1", was not understood

Client The message was incorrectly formed or contained incorrect information

Server There was a problem with the server so the message could not proceed

SOAP RPC

 SOAP RPC provides toolkits with a convention for packaging SOAP-encoded messages so they can be

easily mapped onto procedure calls in programming languages. To illustrate, let's return to our banking

scenario and see how SOAP RPC might be used to expose account management facilities to users. Bear

in mind throughout this simple example that it is an utterly insecure instance whose purpose is to

demonstrate SOAP RPC only.

 Figure 3-16 shows a simple interaction between a Web service that offers the facility to open bank

accounts and a client that consumes this functionality on behalf of a user. The Web service supports an

operation called openAccount(…) which it exposes through a SOAP server and advertises as being

accessible via SOAP RPC (SOAP does not itself provide a means of describing interfaces, but as we shall

see later in the chapter, WSDL does). The client interacts with this service through a stub or proxy class

called Bank which is toolkit-generated (though masochists are free to generate their own stubs) and deals

with the marshalling and un-marshalling of local variables into SOAP RPC messages.

Figure 3-17. A SOAP RPC request.

 <?xml version="1.0" encoding="UTF-8"?> <env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-

envelope"> <env:Body> <bank:openAccount env:encodingStyle=

"http://www.w3.org/2002/06/soap-encoding" xmlns:bank="http://bank.example.org/account"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"> <bank:title xsi:type="xs:string"> Mr </bank:title> <bank:surname

xsi:type="xs:string"> Bond </bank:surname> <bank:firstname xsi:type="xs:string">

James </bank:firstname> <bank:postcode xsi:type="xs:string"> S1 3AZ

</bank:postcode> <bank:telephone xsi:type="xs:string"> 09876 123456

</bank:telephone> </bank:openAccount> </env:Body> </env:Envelope>

Figure 3-18. A SOAP RPC response.

 <?xml version="1.0" encoding="UTF-8"?> <env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-

envelope"> <env:Body> <bank:openAccountResponse env:encodingStyle=

"http://www.w3.org/2002/06/soap-encoding" xmlns:rpc= "http://www.w3.org/2002/06/soap-rpc"

xmlns:bank= "http://bank.example.org/account" xmlns:xs= "http://www.w3.org/2001/XMLSchema"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance">

<rpc:result>bank:accountNo</rpc:result> <bank:accountNo xsi:type="xsd:int"> 10000014

</bank:accountNo> </bank:openAccountResponse> </env:Body> </env:Envelope>

Figure 3-19. SOAP RPC faults.

Fault SOAP Encoding for Fault

Transient fault at receiver (e.g. out of memory

error).

Fault with value of env:Receiver should be generated.

Receiver does not understand data encoding (e.g.

encoding mechanism substantially different at

sender and receiver.

A fault with a Value of env:DataEncodingUnknown for

Code should be generated.

The service being invoked does not expose a

method matching the name of the RPC element.

A fault with a Value of env:Sender for Code and a Value

of rpc:ProcedureNotPresent for Subcode may be

generated.

The reciever cannot parse the arguments sent. There

may be too many or too few arguments, or there

may be type mismatches.

A fault with a Value of env:Sender for Code and a Value

of rpc:BadArguments for Subcode must be generated.

Figure 3-20. A SOAP RPC fault.

 <?xml version="1.0"?> <env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope"

xmlns:rpc="http://www.w3.org/2002/06/soap-rpc"> <env:Body> <env:Fault> <env:Code>

<env:Value>env:Sender</env:Value> <env:Subcode>

<env:Value>rpc:BadArguments</env:Value> </env:Subcode> </env:Code>

<env:Reason> Missing surname parameter </env:Reason> </env:Fault> </env:Body>

</env:Envelope>

Document, RPC, Literal, Encoded

• Document style: The SOAP Body contains one or more child elements called parts. There are no SOAP

formatting rules for what the body contains; it contains whatever the sender and the receiver agrees upon.

• RPC style: RPC implies that SOAP body contains an element with the name of the method or operation

being invoked. This element in turn contains an element for each parameter of that method/operation.

• SOAP Encoding: SOAP encoding is a set of serialization. The rules specify how objects, structures,

arrays, and object graphs should be serialized. Generally speaking, an application using SOAP encoding

is focused on remote procedure calls and will likely use RPC message style. When SOAP encoding is

used, the SOAP message contains data type information within the SOAP message. This makes

serialization (data translation) easier since the data type of each parameter is denoted with the parameter.

• Literal: Data is serialized according to a schema. In practice, this schema is usually expressed using

W3C XML Schema. The SOAP message does not directly contain any data type information, just a

reference (namespace) to the schema that is used. To perform proper serialization (data translation) both,

the sender and the receiver, must know the schema and must use the same rules for translating data.

The following SOAP message uses RPC style and SOAP encoding:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x xsi:type="xsd:int">5</x>

 <y xsi:type="xsd:float">5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

The following SOAP message uses RPC style and literal:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x>5</x>

 <y>5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

The following SOAP message uses document style and literal:

<soap:envelope>

 <soap:body>

 <x>5</x>

 <y>5.0</y>

 </soap:body>

</soap:envelope>

The following SOAP message uses document style and literal wrapped:

<soap:envelope>

 <soap:body>

 <myMethod>

 <x>5</x>

 <y>5.0</y>

 </myMethod>

 </soap:body>

</soap:envelope>

SOAP, Web Services, and the REST Architecture

 SOAP (Simple Object Access Protocol) is a standards-based web services access protocol that has been

around for a long time. Originally developed by Microsoft, SOAP isn’t as simple as the acronym would

suggest.s

 REST (Representational State Transfer) is another standard, made in response to SOAP’s

shortcomings. It seeks to fix the problems with SOAP and provide a simpler method of accessing web

services.

Below are the main differences between SOAP and REST

SOAP REST

• SOAP stands for Simple Object Access

Protocol
• REST stands for Representational State Transfer

• SOAP is a protocol. SOAP was designed

with a specification. It includes a WSDL

file which has the required information

on what the web service does in addition

to the location of the web service.

• REST is an Architectural style in which a web service

can only be treated as a RESTful service if it follows

the constraints of being

1. Client Server

2. Stateless

3. Cacheable

4. Layered System

5. Uniform Interface

• SOAP cannot make use of REST since

SOAP is a protocol and REST is an

architectural pattern.

• REST can make use of SOAP as the underlying

protocol for web services, because in the end it is just

an architectural pattern.

• SOAP uses service interfaces to expose

its functionality to client applications. In

SOAP, the WSDL file provides the client

with the necessary information which can

be used to understand what services the

web service can offer.

• REST use Uniform Service locators to access to the

components on the hardware device. For example, if

there is an object which represents the data of an

employee hosted on a URL as http://demo.guru99 , the

below are some of URI that can exist to access them

http://demo.guru99.com/Employee

http://demo.guru99.com/Employee/1

• SOAP requires more bandwidth for its

usage. Since SOAP Messages contain a

lot of information inside of it, the amount

of data transfer using SOAP is generally

a lot.

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV

="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle

=" http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

 <Demo.guru99WebService

 xmlns="http://tempuri.org/">

 <EmployeeID>int</EmployeeID>

 </Demo.guru99WebService>

 </soap:Body>

</SOAP-ENV:Envelope>

• REST does not need much bandwidth when requests

are sent to the server. REST messages mostly just

consist of JSON messages. Below is an example of a

JSON message passed to a web server. You can see

that the size of the message is comparatively smaller to

SOAP.

{"city":"Mumbai","state":"Maharastra"}

• SOAP can only work with XML format.

As seen from SOAP messages, all data

passed is in XML format.

• REST permits different data format such as Plain text,

HTML, XML, JSON, etc. But the most preferred

format for transferring data is JSON.

Syntactic Differences between SOAP 1.2 and SOAP 1.1

Changes to SOAP RPC – SOAP Encoding

WSDL

• WSDL stands for Web Services Description Language

• WSDL is used to describe web services

• WSDL is written in XML

• WSDL is a W3C recommendation from 26. June 2007

WSDL Structure

 Web Services Description Language (WSDL) is an XML grammar for describing network services as

collections of communication endpoints capable of exchanging messages.

 The diagram below illustrates the elements that are present in a WSDL document, and indicates their

relationships

❖ WSDL Document Elements

 A WSDL document has a definitions element that contains the other five elements, types, message,

portType, binding and service. The following sections describe the features of the generated client code.

 WSDL supports the XML Schemas specification (XSD) as its type system.

❖ definitions

Contains the definition of one or more services. JDeveloper generates the following attribute declarations

for this section:

• name is optional.

• targetNamespace is the logical namespace for information about this service. WSDL documents

can import other WSDL documents, and setting targetNamespace to a unique value ensures that

the namespaces do not clash.

• xmlns is the default namespace of the WSDL document, and it is set to

http://schemas.xmlsoap.org/wsdl/.

• All the WSDL elements, such as <definitions>, <types> and <message> reside in this namespace.

• xmlns:xsd and xmlns:soap are standard namespace definitions that are used for specifying SOAP-

specific information as well as data types.

• xmlns:tns stands for this namespace.

• xmlns:ns1 is set to the value of the schema targetNamespace, in the <types> section.

Notice that the default of http://tempuri.org in namespaces to ensure that the namespaces are unique.

❖ types

Provides information about any complex data types used in the WSDL document. When simple types are

used the document does not need to have a types section.

❖ message

An abstract definition of the data being communicated. In the example, the message contains just one

part, response, which is of type string, where string is defined by the XML Schema.

❖ operation

An abstract description of the action supported by the service.

❖ portType

An abstract set of operations supported by one or more endpoints.

❖ binding

Describes how the operation is invoked by specifying concrete protocol and data format specifications for

the operations and messages.

❖ port

Specifies a single endpoint as an address for the binding, thus defining a single communication endpoint.

❖ service

Specifies the port address(es) of the binding. The service is a collection of network endpoints or ports.

❖ WSDL Documents

An WSDL document describes a web service. It specifies the location of the service, and the methods of the

service, using these major elements:

Element Description

<types> Defines the (XML Schema) data types used by the web service

<message> Defines the data elements for each operation

<portType> Describes the operations that can be performed and the messages involved.

<binding> Defines the protocol and data format for each port type

The main structure of a WSDL document looks like this:

<definitions>

<types>

 data type definitions........

</types>

<message>

 definition of the data being communicated....

</message>

<portType>

 set of operations......

</portType>

<binding>

 protocol and data format specification....

</binding>

</definitions>

❖ WSDL Example

This is a simplified fraction of a WSDL document:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

The stock quote WSDL interface,

❖ Defintions

 It is the root element of all WSDL documents. It defines the name of the web service, declares multiple

namespaces used throughout the remainder of the document, and contains all the service elements

described here.

<definitions name="HelloService"

 targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.examples.com/wsdl/HelloService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ..

</definitions>

❖ The Types Elements

 A web service needs to define its inputs and outputs and how they are mapped into and out of the

services.

 WSDL <types> element takes care of defining the data types that are used by the web service. Types are

XML documents, or document parts.

• The types element describes all the data types used between the client and the server.

• WSDL is not tied exclusively to a specific typing system.

• WSDL uses the W3C XML Schema specification as its default choice to define data types.

• If the service uses only XML Schema built-in simple types, such as strings and integers, then

types element is not required.

• WSDL allows the types to be defined in separate elements so that the types are reusable with

multiple web services.

a types element can be used within a WSDL.

<types>

 <schema targetNamespace = "http://example.com/stockquote.xsd"

 xmlns = "http://www.w3.org/2000/10/XMLSchema">

 <element name = "TradePriceRequest">

 <complexType>

 <all>

 <element name = "tickerSymbol" type = "string"/>

 </all>

 </complexType>

 </element>

 <element name = "TradePrice">

 <complexType>

 <all>

 <element name = "price" type = "float"/>

 </all>

 </complexType>

 </element>

 </schema>

</types>

❖ Message Elements

 The <message> element describes the data being exchanged between the web service providers and the

consumers.

• Each Web Service has two messages: input and output.

• The input describes the parameters for the web service and the output describes the return data

from the web service.

• Each message contains zero or more <part> parameters, one for each parameter of the web

service function.

• Each <part> parameter associates with a concrete type defined in the <types> container element.

Let us take a piece of code from the WSDL Example

<message name = "SayHelloRequest">

 <part name = "firstName" type = "xsd:string"/>

</message>

<message name = "SayHelloResponse">

 <part name = "greeting" type = "xsd:string"/>

</message>

❖ PortType Elements

 The <portType> element defines a web service, the operations that can be performed, and the messages

that are involved.

The request-response type is the most common operation type, but WSDL defines four types:

Type Definition

One-way The operation can receive a message but will not return a response

Request-response The operation can receive a request and will return a response

Solicit-response The operation can send a request and will wait for a response

Notification The operation can send a message but will not wait for a response

WSDL One-Way Operation

A one-way operation example:

<message name="newTermValues">

 <part name="term" type="xs:string"/>

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="setTerm">

 <input name="newTerm" message="newTermValues"/>

 </operation>

</portType >

In the example above, the portType "glossaryTerms" defines a one-way operation called "setTerm".

The "setTerm" operation allows input of new glossary terms messages using a "newTermValues" message with

the input parameters "term" and "value". However, no output is defined for the operation.

WSDL Request-Response Operation

A request-response operation example:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

Bindings

 The <binding> element provides specific details on how a portType operation will actually be

transmitted over the wire.

• The bindings can be made available via multiple transports including HTTP GET, HTTP POST,

or SOAP.

• The bindings provide concrete information on what protocol is being used to transfer portType

operations.

• The bindings provide information where the service is located.

• For SOAP protocol, the binding is <soap:binding>, and the transport is SOAP messages on top

of HTTP protocol.

• You can specify multiple bindings for a single portType.

 The binding element has two attributes : name and type attribute.

<binding name = "Hello_Binding" type = "tns:Hello_PortType">

 The name attribute defines the name of the binding, and the type attribute points to the port for the

binding, in this case the "tns:Hello_PortType" port.

SOAP Binding

 WSDL 1.1 includes built-in extensions for SOAP 1.1. It allows you to specify SOAP specific details

including SOAP headers,

 SOAP encoding styles, and the SOAPAction HTTP header. The SOAP extension elements include the

following −

• soap:binding

• soap:operation

• soap:body

❖ soap:binding

 This element indicates that the binding will be made available via SOAP. The style attribute indicates the

overall style of the SOAP message format. A style value of rpc specifies an RPC format.

 The transport attribute indicates the transport of the SOAP messages.

 The value http://schemas.xmlsoap.org/soap/http indicates the SOAP HTTP transport, whereas

http://schemas.xmlsoap.org/soap/smtp indicates the SOAP SMTP transport.

❖ soap:operation

 This element indicates the binding of a specific operation to a specific SOAP implementation. The

soapAction attribute specifies that the SOAPAction HTTP header be used for identifying the service.

❖ soap:body

 This element enables you to specify the details of the input and output messages. In the case of

HelloWorld, the body element specifies the SOAP encoding style and the namespace URN associated

with the specified service.

Here is the piece of code

<binding name = "Hello_Binding" type = "tns:Hello_PortType">

 <soap:binding style = "rpc" transport = "http://schemas.xmlsoap.org/soap/http"/>

 <operation name = "sayHello">

 <soap:operation soapAction = "sayHello"/>

 <input>

 <soap:body

 encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/"

 namespace = "urn:examples:helloservice" use = "encoded"/>

 </input>

 <output>

 <soap:body

 encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/"

 namespace = "urn:examples:helloservice" use = "encoded"/>

 </output>

 </operation>

</binding>

Services

 The <service> element defines the ports supported by the web service. For each of the supported

protocols, there is one port element. The service element is a collection of ports.

• Web service clients can learn the following from the service element −

o where to access the service,

o through which port to access the web service, and

o how the communication messages are defined.

• The service element includes a documentation element to provide human-readable

documentation.

Here is a piece of code

<service name = "Hello_Service">

 <documentation>WSDL File for HelloService</documentation>

 <port binding = "tns:Hello_Binding" name = "Hello_Port">

 <soap:address

 location = "http://www.examples.com/SayHello/">

 </port>

</service>

 The binding attributes of port element associate the address of the service with a binding element defined

in the web service. In this example, this is Hello_Binding

<binding name =" Hello_Binding" type = "tns:Hello_PortType">

 <soap:binding style = "rpc"

 transport = "http://schemas.xmlsoap.org/soap/http"/>

 <operation name = "sayHello">

 <soap:operation soapAction = "sayHello"/>

 <input>

 <soap:body

 encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/"

 namespace = "urn:examples:helloservice" use = "encoded"/>

 </input>

 <output>

 <soap:body

 encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/"

 namespace = "urn:examples:helloservice" use = "encoded"/>

 </output>

 </operation>

</binding>

Managing WSDL Descriptions

Extending WSDL

Using SOAP WSDL

Unit V

UDDI

UDDI at a Glance

 UDDI is an acronym for Universal Description, Discovery and Integration.

 The UDDI is a registry and a protocol for publishing and discovering Web services.

 UDDI is the associated standards-based, open, and platform-independent means of publishing and

locating these services.

 UDDI is a XML based framework for describing, discovering and integrating web services.

 UDDI is a directory of web service interfaces described by WSDL, containing information about web

services.

 UDDI communicate via SOAP

 UDDI is built into Microsoft.et platform

 UDDI uses WSDL to describe interfaces to web services

 UDDI uses World Web Consortium (W3C) and Internet Engineering Task Force (IETF) Internet

standard such as XML, HTTP and DNS protocol

Analogies with Telephone Directories

 UDDI is a directory of web services that are available from different vendors

 UDDI provides a means of adding new services, removing existing services and changing the contact

(endpoint) information for services

 Both telephone directories and UDDI registries provide a means to locate a vendor or provider of a

particular service.

 For telephone directories, contact information is basically a phone number and perhaps may also include

an address. Contact information in a UDDI registry consists of information about the service provider as

well as technical information about the Web service itself.

 Conceptually, the information available in an UDDI registry is similar to that in the white, green, and

yellow pages of the phone book. In UDDI, the segmentation of information that is available and

searchable can be thought of as follows:

➢ White Pages:

o Contact information about the service provider company. This information includes the

business or entity name, address, contact information, other short descriptive information

about the service provider, and unique identifiers with which to facilitate locating this

business.

➢ Yellow Pages:

o Categories (taxonomies) under which Web services implementing functionalities within those

categories can be found.

➢ Green Pages:

o Technical information about the capabilities and behavioral grouping of Web services.

Similarities between (a) telephone directory books and (b) UDDI registries

The typical roles played while interacting with an UDDI registry

The UDDI Business Registry (UBR)

 The UDDI Business Registry (UBR) is a global implementation of the UDDI specification.

 The UBR is a single registry for Web services.

 A group of companies operate and host UBR nodes, each of which is an identical copy of all other nodes

 New entries or updates are entered into a single node, but are propagated to all other nodes.

 The UBR is a key element of the deployment of Web services and provides the following capabilities:

• A centralized registration facility at which to publish and make others aware of the Web services

a company makes available.

• A centralized search facility at which companies that require a particular service can locate

businesses that provide that service as well as relevant information about that service.

 A small group of companies operate and manage a set of UBR nodes.

1. In July 2002, the UBR was updated to support version 2 of the UDDI specification. Initially,

IBM, Microsoft, and SAP comprised the UBR V2, operating 3 UBR nodes.

2. NTT Communications later launched an UBR node to become the fourth UBR V2 node.

3. More than 10,000 businesses are registered with the initial three UBR nodes, publishing over

7,000 Web services.

4. NTT expects to add another 1,000 businesses within the first operational year of the fourth UBR

node.

depicts some typical means of accessing and interacting with an UDDI registry.

The various means of accessing an UDDI registry.

UDDI Under the Covers

❖ The UDDI Specification

 Version 3 is the most recent incarnation of the UDDI specification.

 Version 3 builds on and expands the foundations laid by versions 1 and 2 of the UDDI specification, and

presents a blueprint for flexible and interoperable Web services registries. Version 3 also includes a rich

set of enhancements as well as additional features, including improved security and new APIs.

The major documents of the UDDI Specification version 3.

UDDI Version 3 Specification

Documents
Synopsis

Features List Brief overview of the key features in version 3.

Specification The actual specification document.

XML Schemas A set of XML Schema files that formally describe UDDI data

structures.

WSDL Service Interface Descriptions A set of files that describe the UDDI Version 3 WSDL interface

definitions.

❖ UDDI Core Data Structures

 Information representation within UDDI consists of instances of persistent data structures that are

expressed in XML.

 It is these data structures that are persistently stored and managed by UDDI nodes.

The different entity types defined by the UDDI Information Model.

Entity Type

Name

Description

businessEntity A business that provides a Web service.

businessService A collection of related services offered by a business.

bindingTemplate Technical information about a particular Web service.

tModel Technical model information about a Web service that is used to determine whether a

service is compatible with the client's needs.

The interrelationship between the UDDI core data structures.

\

❖ <businessEntity>

 The businessEntity entity type represents information about service providers within UDDI.

 This information includes detailed data about the name of the provider, contact information, and some

other short descriptions of the provider.

 This information may also be provided in multiple languages.

 One or more of the businessService entity types are contained within a businessEntity structure and

represents information about the services offered by that businessEntity.

❖ <businessService>

 The businessService entity type is a logical grouping of Web services and provides information about the

bundled purpose of a set of contained Web services.

 One or more of the bindingTemplate entity types are contained within a businessService structure and

provides technical information about a particular Web service.

❖ <bindingTemplate>

 The bindingTemplate structure directly or indirectly provides descriptive technical information about an

instance of a Web service, and includes a network location or endpoint of the service.

 The network location (access point) is usually a URL, but can be other network access points such as

email addresses.

 The bindingTemplate structure also includes information about the type of Web service located at that

access point through references to tModel entities as well as other parameters.

❖ <tModels>

 tModels, which are short for technical models, provide more detailed information about a Web service.

 tModels are reusable entities that are referenced from bindingTemplate structures and denote compliance

with a shared concept or design.

 The set of tModels that a bindingTemplate refers to makes up a Web service's technical fingerprint. The

actual documents and information identified by a tModel are not located within the UDDI registry itself,

but instead the tModel provides pointers to the location where such documents can be found.

 Two more UDDI entity types that are important are subscription and publisherAssertion.

 The subscription entity type describes the request to keep track of the evolution or changes to particular

entities.

 The publisherAssertion entity type describes the relationship between one businessEntity and another

businessEntity.

 There are many instances where multiple divisions within a large organization or a group of

organizations want to make the relationship between them known in order to facilitate discovery of the

services they provide.

 The individual divisions or organizations each have their own businessEntity, and the entity type

publisherAssertion describes the relationship between two businessEntity structures.

 It is important to note that two organizations must assert the same relationship through the

publisherAssertion for that relationship to be publicly available.

 This disallows the situation where one organization claims a relationship with another where in fact there

is none.

Accessing UDDI

 UDDI is itself a Web service and as such, applications can communicate with an UDDI registry by

sending and receiving XML messages.

 This makes the access both language and platform independent.

 Although it's possible, it is unlikely that programmers will deal with the low-level details of sending and

receiving XML messages.

 Instead, client-side packages for different languages and platforms will emerge that facilitate

programmatic access to UDDI.

 Two such packages are UDDI4J and Microsoft's UDDI SDK, which are client-side APIs for

communicating with UDDI from Java and .Net programs, respectively.

 UDDI4J was originally developed by IBM and released in early 2001 as an open source initiative. Later,

HP joined and contributed to the initiative, developing much of the version 2 release

How UDDI is Playing Out

 How UDDI will truly be used by companies will determine how, when, where, and why businesses will

register their Web services.

 UDDI has focused on its analogous behavior with standard telephone directory books: UDDI provides a

listing of businesses and the services each business offers as well as a means of searching and

discovering Web services to use within consuming applications.

 Since this usage of UDDI is during the design of applications, it can be referred to as the design-time use.

❖ UDDI and Lifecycle Management

 To understand the usefulness of UDDI at run time, consider the issues that developers and companies

have to grapple with after they have developed a Web service or an application that consumes Web

services.

The steps in this lifecycle management scenario proceed as follows:

1. Locate a Web service that fulfills the application's needs using whatever means that are useful, including

portals, service aggregators, or programmatically with an UDDI registry directly.

2. If the Web service was not initially discovered within an UDDI registry, locate the same service within

an UDDI registry and save (e.g., in a database) the bindingTemplate information.

3. Develop the application to consume the Web service using the information from the saved

bindingTemplate information.

4. If the Web service call fails or exceeds an application-specified time-out, query the UDDI registry for the

latest information on that Web service.

5. In case the original Web service call failed, compare the latest binding information for that Web service

with the saved information. If the latest binding information for the Web service is different from the

saved information, then save the new binding information, and retry the Web service call.

6. In the case that the original Web service call exceeded a time-out, compare the latest binding information

for that Web service with the saved information. If the information is different or newer access endpoints

are available, select another endpoint. The selection procedure may be manual in which the application

allows the user to manually choose, or it may be automatic.

. Retrying Web service invocations based on dynamic UDDI information.

 // The Web service invocation failed, so check to see

// whether new binding information is available. If so,

 // retry the Web service call.

BindingDetail bd = proxy.get_bindingDetail (bindingKey);

Vector btvect = bindingDetail.getBindingTemplateVector (); BindingTemplate bt = (BindingTemplate)

btvect.elementAt (0);

 newEndpoint = bt.getAccessPoint ().getText ();

if (thisEndpoint.equalsIgnoreCase (newEndpoint))

 {

 // In this case, the endpoint information has changed

// so we should retry the Web service invocation with

 // with the new endpoint

 thisEndpoint = newEndpoint;

 retry = true;

}

else {

 // In this case, the endpoint information has not

 // changed so there no reason to retry the Web

 // service invocation

 retry = false;

}

❖ UDDI and Dynamic Access Point Management

 Usually, this variety of service deployments is dynamic, that is, the Web service is initially deployed on a

single server.

 Later, as the service becomes more popular and demand increases, additional access points are deployed.

 These deployments may be a cluster of servers in close proximity to each other, a geographically

distributed set of servers, or both.\

 A client application that consumes the Web service may have been developed before the additional

access points were deployed. Or the best service at the time the application was developed is no longer

the best or the most appropriate.

 For example, the client application may have been developed in one country and later used in another

country.

The use of UDDI at both design time and run time.

Conversations Overview

Web Services Conversation Language (WSCL)

 Web Services Conversation Language (WSCL) allows the business level conversations or public

processes supported by a Web service to be defined.

 WSCL specifies the XML documents being exchanged, and the allowed sequencing of these document

exchanges.

 WSCL conversation definitions are themselves XML documents and can therefore be interpreted by Web

Services infrastructures and development tools.

 The rationale behind WSCL is that it captures the "time" dimension of Web services

conversations and allows Web services to declare the conversation pattern through which

they can be driven. WSCL is, at the time of writing, a W3C note submitted by the Hewlett-

Packard Company.

 In January 2003, along with the process modeling language WSCI,[1] WSCL became one of

the inputs for the W3C's Choreography working group.

❖ Consuming WSCL Interfaces

 Like WSDL, WSCL is an interface language designed to be consumed by Web services toolkits.

 Using both WSDL and WSCL, it is possible for toolkits to create proxies for Web services that not only

encapsulate the remote operations and SOAP serialization aspects, but also provide structured help on the

order in which operations should be invoked.

 That is, while WSDL provides message format and operation information, the WSCL description

supports the creation of a conversation state machine that can guide the consumer of a Web service

through its use.

 For example, consider the Java interfaces shown in

A "Static" interface

 public boolean login(String user, String pass);

public boolean buySong(String title, String artist);

 public File pay(CreditCard cc);

A more "Conversational" interface.

 public boolean login(String user, String pass);

public boolean buySong(String title, String artist)

 throws NotLoggedInException;

public File pay(CreditCard cc)

 throws NoSongBoughtException;

A simple WSCL-based proxy implementation.

 public boolean login(String user, String pass)

{

// Login to service... _

loggedIn = // The result of logging into the service

return _loggedIn;

}

 public boolean buySong(String title, String artist)

 throws NotLoggedInException

{

 if(!_loggedIn)

{

 throw new NotLoggedInException();

 }

 // Buy song logic

 _token = // The token from the remote service return true;

}

public File pay(CreditCard cc)

 throws NoSongBoughtException

{

 if(_token == null)

{

 throw new NoSongBoughtException();

}

// Retrieve the file

return file;

 }

WSCL Interface Components

 A WSCL interface is both complimentary and similar in spirit to its associated WSDL description.

 Like WSDL, a WSCL interface starts off simple and gradually builds up its description stage by stage

until a whole conversation pattern is formed, ready for consumption on the Web.

 Our example, we will start at the abstract sections of the WSCL interface and work our way through to a

full-fledged conversation.

❖ Interactions

 An interaction with a conversational Web service is modeled as an XML document exchange whose flow

is seen from the point of view of the service being invoked.

 WSCL supports four distinct message exchange patterns.

1. Send :- The service creates a one-way message that is sent to the consumer and expects no

correlated response from that consumer

2. Receive :- The service expects to receive a message from the consumer, while the consumer

expects no message back in return

3. SendReceive :- The service initiates a bilateral message exchange with the consumer, for which it

expects a conrrelated response

4. ReceiveSend :- The service expects to receive a message from the consumer to which it will

respond

Determining the interaction types of the conversation.

Defining the "Beer" schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

xmlns:b="http://drinks.example.org/beer"

targetNamespace=" ">

<xs:complexType name="beer">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="brewer" type="xs:string"/>

</xs:sequence>

<xs:attribute name="domestic" type="xs:boolean" use="required"/>

</xs:complexType>

<xs:element name="beer" type="b:beer"/>

 </xs:schema>

Defining the "Money" schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

xmlns:m="http://money.example.org" targetNamespace="http://money.example.org">

<xs:complexType name="money">

<xs:sequence>

 <xs:element name="currency" type="xs:string"/>

<xs:element name="value" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

 <xs:element name="money" type="m:money"/>

</xs:schema>

The CustomerGreetingMessage schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://conversations.example.org/bar/CustomerGreetingMessage"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="CustomerGreetingMessage">

<xs:simpleType> <xs:restriction base="xs:string">

<xs:enumeration value="Hello"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

</xs:schema>

The StaffGreetingMessage schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://conversations.example.org/bar/StaffGreetingMessage"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="StaffGreetingMessage">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Hello, how may I help you?"/>

</xs:restriction>

 </xs:simpleType>

</xs:element>

</xs:schema>

The CustomerOrderMessage schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://conversations.example.org/bar/CustomerOrderMessage"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:b="http://drinks.example.org/beer"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="CustomerOrderMessage" type="b:beer"/>

 </xs:schema>

The BillMessage schema.

 <?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://conversations.example.org/bar/BillMessage"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:m="http://money.example.org" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="BillMessage" type="m:money"/>

 </xs:schema>

The general form of a WSCL interaction.

 <Interaction interactionType="<send, receive, etc>" >

 <InboundXMLDocument hrefSchema="<schema URI>"/>

<OutboundXMLDocument hrefSchema="<schema URI>" />

</Interaction>

 The interactions between the endpoints are specified in terms of the message we previously defined.

Where in our human conversation we might expect the exchange along the lines of:

 Thirsty author: Hello. Friendly barman: Hello, what can I get you?

 We would now expect their (rather less personal) WSCL interaction equivalents:

 <Interaction interactionType="ReceiveSend" >

<InboundXMLDocument hrefSchema="http://conversations.example.org/bar/CustomerGreetingMessage" />

<OutboundXMLDocument hrefSchema="http://conversations.example.org/bar/StaffGreetingMessage" />

</Interaction>

 Similarly, instead of the human interaction:

 Friendly barman: That will be $3.00 please. Thirsty author: Cheers (passes money to barman)

 we have the WSCL interaction that captures this action:

 <Interaction interactionType="SendReceive" >

<OutboundXMLDocument hrefSchema="http://conversations.example.org/bar/BillMessage" />

<InboundXMLDocument hrefSchema="http://conversations.example.org/bar/BillPaymentMessage" />

</Interaction>

❖ Transitions

 Having implemented our conversation types, its message set and its set of interactions, we can now go

one stage further with our implementation and actually design the transitions that implement the state

machine for this conversation that is, actually get down to the business of ordering the interactions into a

full-fledged conversation.

 For this, we use the communication pattern derived from Figure, which we have redrawn for clarity as a

UML Activity Diagram

 The activity diagram shows the possible states of the conversation and highlights the message exchanges

at each state, along with the interaction patter.

A UML activity diagram for the bar conversation.

 Codifying such rules in WSCL is straightforward. Each Transition element in a WSCL document has the

following form:

 <Transition>

<SourceInteraction href="{some interaction}"/>

<DestinationInteraction href="{another interaction}"/>

<SourceInteractionCondition href="{some message}"/> ... more conditions

</Transition>

 Where the Transition element is a container for the following items:

• A previous interaction that has occurred referenced by a SourceInteraction element.

• The next interaction to occur references by the DestinationInteraction element.

• A number of SourceInteractionCondition elements that only allow this transition to occur if the

referenced message was the last document sent (by the Web service) during the interaction.

Guarding state transitions with SourceInteractionCondition elements.

❖ Conversations

 The Conversation part of the WSCL description draws together the messages, interactions, and

transitions into the final conversation description.

 Conversation part of WSCL begins with its endpoints, how conversations are begun and ended.

 The first and last interactions of the conversation are given special identifiers in the WSCL specification

such that a software agent consuming a WSCL interface can readily determine how to start a

conversation and figure out when it has finished.

 If we examine the conversation element that supports our bar example, we see the following

(abbreviated) opening tag for the Conversation element:

 <Conversation name="BarConversation" initialInteraction="Start" finalInteraction="End">

 <Interaction interactionType="Empty" />

 A possible conversation graph that shows this multiplexing behavior is presented in

Multiplexing endpoints with empty Start and End interactions.

The Conversation element.

 <wscl:Conversation

xmlns:wscl="http://www.w3.org/2002/02/wscl10"

name="BarConversation" initialInteraction="Start" finalInteraction="End"

targetNamespace="http://example.org/conversations/bar"

 description="Simple bar conversation" >

<!--The rest of the conversation omitted -->

</wscl:Conversation>

The Bar Scenario Conversation

Relationship Between WSCL and WSDL

 The three main aspects of a Web service's interface are:

• Abstract interfaces: The application payload (in the form of messages) being exchanged and the

order in which they are exchanged (which is known as choreography).

• Protocol bindings: The protocols used to enable the sending and receipt of messages.

• Services: The concrete service implementation that provides a network accessible address for a

particular protocol at which the given message set is understood—i.e., the location of an instance of

the Web service.

WSDL and WSDL Complimentary Features

Aspect Function WSDL WSCL

Abstract Interfaces Choreography N/A Transition

 Messages Operation Interaction

Protocol Bindings Binding N/A

Concrete Services Service N/A

Where WSDL and WSCL overlap, we can map the different terminology used as shown in following Table

 Mapping WSDL to WSCL

WSDL WSCL

Port Type Conversation

Operation

• One-way

• Request-response

• Solicit-response

• Notification

Interaction

• Receive

• ReceiveSend

• SendReceive

• Send

Input InboundXMLDocument

Output, Fault OutboundXMLDocument

Operation name ID attribute of Interaction element

Operation input ID attribute of InboundXMLDocument

Operation output ID attribute of OutboundXMLDocument

Message URI (which references an external schema)

 The WSCL specification suggests that there are three possible approaches for combining WSDL and

WSCL into a single Web service interface, depending on which stage the development of the Web

service interface has reached. These are:

1. Where only abstract aspects of the WSDL interface exist, a conversational binding can be added to the

WSDL interface.

2. Where existing portType declarations have been written, a cut-down WSCL description consisting of

transition elements which reference existing operations can be added.

3. If a fully-formed WSDL description has already been written, a separate, full WSCL interface can be

created which simply references the messages from the original WSDL document.

 WSDL binding to WSCL conversation.

 <?xml version="1.0" encoding="UTF-8"?>

<definitions name="BarService" xmlns="http://schemas.xmlsoap.org/wsdl/"

 targetNamespace=" http://example.org/wsdl/bar"

 xmlns:conv="http://example.org/conversations/bar" >

<binding name="BarServiceConversationBinding" type="conv:BarServiceConversation">

<soap:binding style="document"/>

 <operation name="conv:Greeting">

<soap:operation soapAction="Greeting">

 </operation>

<operation name="conv:Order">

<soap:operation soapAction="Order">

</operation> <! Other operations omitted -->

</binding>

<service name="BarService">

<port name="BarServicePort" binding="BarServiceConversationBinding">

<soap:Address location="http://example.org/bar"/>

</port>

</service>

</definitions>

Workflow Business Process Management

 The model of a business as the sum of its processes is a useful abstraction from which to begin

understanding a business

 For example, a supermarket is the summation of processes that buy and sell produce and a handful of

other processes that keep the shop running

 Similarly, but on a grander scale, an airline consists of processes for flight sales, plane maintenance, and

so on right down to the processes that ensure that passengers receive meals on board the aircraft

Workflow and Workflow Management Systems

Workflow management

 is creating and optimizing the paths for data in order to complete items in a given process.

 Workflow management includes finding redundant tasks, mapping out the workflow in an ideal state,

automating the process, and identifying bottlenecks or areas for improvement.

A workflow management system (WMS or WfMS)

 is a software tool designed to help streamline routine business processes for optimal efficiency.

Workflow management systems involve creating a form to hold data and automating a sequential path of

tasks for the data to follow until it is fully processed.

 WfMS may also be enhanced by using existing enterprise infrastructure such as Microsoft Outlook or

Office 365. A better solution would be to implement powerful workflow tools specific to building

flexible workflows.

 Tasks in workflows may be done by a human or by a system. With so many options and so many

products calling themselves a workflow tool, it’s hard to know what you will get.

Business Process Execution Language (BPEL)

Business Process Execution Language (BPEL)1 defines a notation for specifying business process behavior

based on Web Services. Business processes can be described in two ways:

• Executable business processes model actual behavior of a participant in a business interaction.

• Business protocols, in contrast, use process descriptions that specify the mutually visible message

exchange behavior of each of the parties involved in the protocol, without revealing their internal

behavior. The process descriptions for business protocols are called abstract processes.

BPEL is used to model the behavior of both executable and abstract processes. The scope includes:

• Sequencing of process activities, especially Web Service interactions

• Correlation of messages and process instances

• Recovery behavior in case of failures and exceptional conditions

• Bilateral Web Service based relationships between process roles

