Some Basic Concepts In Industrial Chemistry

Dr. U. GAYATHRI ASST. PROF. & HEAD IN CHEMISTRY, S.T.E.T.WOMEN'S COLLEGE, MANNARGUDI.

Introduction

 Industrial chemistry deals with number of problems and theirsolutions through industrial processes such as environmental protection, biochemical processes, new sources of energy, new materials etc.

Definition and Explanation of Important Basic Terms Solution = solute + solvent Solution: - A solution is a homogeneous mixture of two or more substances. (A homogeneous mixture means its composition and properties are uniform throughout the mixture.) Solute: - The component of solution which is present in smaller proportion (quantity) is called solute. Solvent:- The component of solution which is present in larger proportion (quantity) is called solvent. **Binary solution:** A solution of two components is called binary solution.

•Dilute solution:- A solution in which the quantity of solute is very small as compared with the solvent is called dilute solution.

(A solution containing a relatively low concentration of solute is called dilute solution.)

•Concentrated solution:- A solution in which the quantity of solute is large as compared with the solvent is called concentrated solution.

(A solution containing a relatively high concentration of solute is called concentrated solution)

Aqueous solution: - Solution prepared in water.

•Non- Aqueous solution:- Solution prepared in solvent other than water.

Different Types of Solution

Type of solution	Solute	Solvent	Example	
Gaseous	Gas	Gas	Mixture of oxygen and nitrogen gases	
Solution				
	Liquid	Gas	Chloroform mixed with nitrogen gas	
	Solid	Gas	Camphor in nitrogen gas	
Liquid solution	Gas	Liquid	Oxygen dissolved in water	
	Liquid	Liquid	Ethanol dissolved in water	
	Solid	Liquid	Glucose dissolved in water	
Solid solution	Gas	Solid	Solution of hydrogen in palladium	
	Liquid	Solid	Amalgam of mercury with sodium	
	Solid	Solid	Copper dissolved in gold	

Solvents are classified as

- 1. Polar solvent:-
- The solvent whose molecules have a net permanent dipole ($\mu \neq o$) are called polar solvent.
- Eg. Water, ethyl alcohol, HCl etc. ($\varepsilon \ge 15$)
- 2. Non-Polarsolvent:-

The solvent whose molecules have no net permanent dipole ($\mu = o$) are called non-polar solvent. ($\varepsilon < 15$) Eg. Benzene, CCl₄, keroseneetc.

Note

Solvents are also classified as **1. Protic solvent:-**

The solvent which contain hydrogen attached to an electronegative atom (N, O) is termed as Protic solvent.

- Eg. H-O-H, R-O-H, R-CO- NH₂ etc.
- 2. Aprotic solvent:-

The solvent in which hydrogen is not attached to an electronegative atom (N, O) is termed as aprotic solvent.

Eg. CHCl₃, CH₃ O CH₃, CH₃NO₂ etc.

Saturated, Unsaturated and

Depending upon the amoust of equiperated the given volume of solvent, the solution is classified into three Solution categories.

- **1.Saturated Solution:-** *The solution which contain maximum amount of solute at given temperature and pressure is called saturated solution.*
- **2.Unsaturated Solution:-** The solution which contains less solute than saturated solution is called unsaturated solution.
- **3.Super Saturated Solution:-** The solution which contains more solute than saturated solution is called supersaturated solution.

Equivalent Weight

"Equivalent Weight of a substance is defined as that weight of the substance which combines with or displaces 1 part by weight of hydrogen or 8 parts by weight of oxygen or 35.5 part by weight of chlorine."

1. $C + 2H_2 \rightarrow CH_4$

4 part by weight of hydrogen combine with 12 part by weight of carbon. Therefore 1 part by weight of hydrogen will combine with

= 3 part by weight of carbon.

Hence equivalent weight of Carbon will be 3.

12 × 1

2. $2Cu + O_2 \rightarrow 2CuO$

32 part by weight of Oxygen combine with 127 part by weight of Copper. Therefore 8 part by weight of Oxygen will combine with

= 31.75 part by weight of Copper

Hence equivalent weight of *Copper* will be 31.75.

3. Mg + Cl₂ \rightarrow 2MgCl₂

71 part by weight of Chlorine combine with 24 part by weight of Magnesium. Therefore 35.5 part by weight of Chlorine will combine with

= 12 part by weight of Magnesium.

Hence equivalent weight of *Magnesium* will be 12.

Gram Equivalent Weight Equivalent Weight expressed in grams is called gram Equivalent Weight. **Eq.** Equivalent weight of Chlorine is 35.5 hence it's gram Equivalent Weight is 35.5 g 11.2 dm³ of hydrogen at STP weighs 1.008g Hence, weight in grams of element combine with Or displaces 11.2 dm³ of hydrogen at **STP**, is the gram Equivalent Weight of the element.

Molecular Weight

"Molecular weight of a substance is defined as the average relative weight of its one molecule obtained by comparing it with (1/12)th weight of ¹²C atom having its isotopic mass 12."

Average Wt. of one molecule of the substance. Mol. Wt. = -----

(1/12)th weight of one atom ¹²C

Molecular weight is unitless quantity.

Gram Molecular Weight

Molecular Weight expressed in grams is called gram molecular Weight.

Eg. Molecular weight of Carbon Monoxide (CO) is 28 hence it's gram Molecular Weight is 28 g.

It is also called "one molemolecule" which refers to Avogadro's number of molecule.

Basicity Of Acid

The number of ionisable hydrogenatoms (H+ Ion) present in a molecule of an acid is known as basicity of acid.

Example:-

- 1. HCl, HNO₃, CH₃COOH are monobasic acids. (Basicity = 1)
- 2. H_2SO_4 , $H_2C_2O_4$ are dibasic acids. (Basicity = 2)
- 3. H₃PO₄, H₃AsO₄ are tribasic acids. (Basicity = 3)

Acidity Of Base

The number of ionisable hydroxyl radicals (OH+ Ion) present in a molecule of a base is known as acidity of base.

Example:-

- 1. NaOH, KOH are monoacidic bases.
 (Acidity = 1)
- 2. Ca(OH)₂, Ba(OH)₂ are diacidic bases. (Acidity = 2)
- 3. Al(OH)₃, Fe(OH)₃ are triacidic bases. (Acidity = 3)

Ways of Expressing Concentration of solution Concentration of solution= > Amount of solution dissolved in a specific amount (1 m³ or dm³)ofsolution.

Amount of solute

Concentration =

Volume of solvent or solution

It expressed in various ways or units.

Ie. N, M, m, W/W, V/V, W/V etc.

Normality

Normality (N) is defined as the number of gram equivalents of solute present in 1 dm³ (litre) of solution.

If X gram equivalents of solute are presentin Y dm³ of solution, then normality of solution will be given by N = X / Y.

no. of gram equivalents of solute X Normality (N) = ------

Volume of solution Y dm³

* gram Equivalent Weight is also called Equivalent weight

Eg. Normality of solution containing 4.9 g of H₂SO₄ In 1 dm³ of solution:-

N = ----- × ----- = 0.1 N H₂ SO₄ 49 1 Since, Eq. Wt. of H₂SO₄ = $\frac{Molecular Wt. of H_2SO_4}{Molecular Wt. of H_2SO_4} = \frac{98}{8}$ Basicity of H₂SO₄ = 2

Eg. Calculate the Normality of 5.6 g of KOH is alstigen Whath of solution. **Solution:- Given** Wt.of the KOH = W = 5.6 g, Vol. of solution Y dm³ Molecular Wt. of KOH 56 Eq. Wt. of KOH= ----- = 56 **Acidity of KOH** 1 FormulWat. of the substance (Ws) 1 **N**= ----- X g. Eq. Wt. of the substance (Es) Vol. of solution Y dm³ 5.6 1 × ----- = 0.1 N KOH 56

Molarity (M):-

Molarity (M) is defined as number of moles of solute present in 1 dm³ (litre) of solution.

 molar NaOH solution means 1 mol (40 g) of NaOH is dissolved in 1 litre (1 dm³) of water.
 * Molarity depends upon temperature.

The number of moles substance (solute) & for the substance (ws) No. of moles X = -calculated as, Mol. Wt. of the substance (Ms)

Hence,

solution containing 4 g of NaOH in 2 dm³solution. Solution:-Ws = 4, Ms = 40(Na = 23, H = 1, O = 16)Y = 2 dm³ (23+1+16=40)= ----- × ----Ms Y(dm³) 4 1 = ----- × ----- = 0.05 M NaOH 40 2

Ex. Calculate the molarity of a 3.65 g of HCl is a a solution. Solution:-

Eg. Calculate Normality & Molarity of solution containing 9.8 g of H₂SO₄ In 1 Ws = 9.8 g, Vol difiol(1) of .dm³

Eq. Wt. of Hasoin? 53 tothen Magine March & M =?

9.8 1
N = ----- × ----- = 0.1 M
$$H_2SO_4$$

98 1

Molality (m):-

Molality (m) is defined as number of moles of solute present in 1000 g (1 Kg) of solution.

Number of moles of soluteMolality (m) =× 1000Mass of solvent in gram

 molal KCl solution means 1 mol (74.5 g) of KCl is dissolved in 1 Kg of water.
 * Molality dose not depends upon temperature.

The number of moles substance (solute) X can be No. of moles X = -calculated as; Mol. Wt. of the substance (Ms)

Hence,

Ex. Calculate molality of 2.5 g of ethanoic acid (CH₃COOH) in 75 g of Solution:- Molecular weight of $C_2H_4O_2$: $12 \times 2 + 1 \times 4 + 16 \times 2 = 60 \text{ g mol}^{-1}$ Ws 1000 2.5 × 1000 ----- × ----- = ----- = 0.556 m Ms Yg 60 × 75

4 g of NaOH is dissolved in 100 g of water. Solution:- Molecular weight of NaOH: 23 + 16 + 1 =Wt. of the substance (Ws) 40 g mol-1 1000 Mol. Wt. of the substance (Ms) Mass of solvent in gram (Y) 1000 4 ---- × ----- = 1 m NaOH

100 g

40

sodium carbonate containing 25 g Na₂CO₃.10H₂O in water. The volume of resulting solution is 200 ml and it's density is 1.04g/ml. Solution: Ws = 25 g, Ms = 286 g, Y = 200 mlWt. of the substance (Ws) 3 1 Mol. Wt. of the substance (Ms) Vol. of solution in dm³ (Y) Ws 1 1 25 M = ----- = 0.437 N ----- × -----Ms Y (dm³) 286 0.2

208 = **25** + Mass of solvent(Water) Y Mass of solvent(Water) (Y) = **208** - **25** = **183**

Hence molality

Molarity of Mixed Solution A mixture of different solutions of same or different substances or solutes (acids, bases, salt) has the molarity as given by the relation, $M_1 V_1 + M_2 V_2 + M_3 V_3 + \dots = M_m V_m$

Where,

 $M_1, M_2, M_3 \dots$ Are the molarities of different components of the mixture. And

 $V_1, V_2, V_3 \dots$ Are their volumes in the mixture.

 $M_m \& V_m$ are the molarity and volume of resultant mixure. $(V_m = V_1 + V_2 + V_3 +)$

Similarly, we can determine the normality of mixed solution as,

 $N_1 V_1 + N_2 V_2 + N_3 V_3 + \dots = N_m V_m$

$$(V_m = V_1 + V_2 + V_3 + \dots)$$

 $N_m \& V_m$ are the Normality and volume of resultant mixture.

Eg. Compare the molarity of a solution obtained by mixing 10 ml M/5 HCl and 30 ml M/10 Hcl. Solution:-

 $M_1 = M/5 = 0.2$ $V_1 = 10$ $M_2 = M/10 = 0.1$ $V_2 = 30$ $V_m = V_1 + V_2 = 10 + 30 = 40 \text{ ml}$ $M_m = ?$ $M_1 V_1 + M_2 V_2 = M_m V_m$ $(0.2 \times 10) + (0.1 \times 30) = M_m \times 40$ $2 + 3 = M_m \times 40 \rightarrow M_m = 5/40 = 0.125 M$ Hence, Molarity of resultant mixture is 0.125 M

Eg. Compare the molarity of mixtue containing 40 ml 0.05M HCl, 50 ml 0.1M H₂SO₄ and 10 ml 0.1 M HNO₃. Solution:- $M_1 = 0.05 M$, $V_1 = 40$ $M_2 = 0.1 M V_2 = 50 M_3 = 0.1 M V_3 = 10$ $V_m = V_1 + V_2 + V_3 = 40 + 50 + 10 = 100 \text{ ml} M_m = ?$ $M_1 V_1 + M_2 V_2 + M_3 V_3 + = M_m V_m$ $(0.05 \times 40) + (0.1 \times 50) + (0.1 \times 10) = M_m \times 100$ $2+5+1 = M_m \times 100 \rightarrow M_m = 8/100 = 0.08M$ Hence, Molarity of resultant mixture is 0.08 M

Eg. 25 cm³ of a decinormal solution of HCl exactly neutralised 20 cm³ of a base containing 4.8 g/litre of the base. Find the normality& equivalent weight of base.

Solution:-

 $N_{1} = 0.1 \text{ N } V_{1} = 25 \text{ dm}^{3} V_{2} = 20 \text{ dm}^{3} N_{2} = ?$ $N_{1} V_{1} = N_{2} V_{2}$ $N_{1} = 0.1 \times 20$ $N_{1} = 0.1 \times 20$ $N_{1} = 0.125 \text{ N}$ $V_{1} = 0.125 \text{ N}$

Normality= 0.125 N & Strength = 4.8 g/ml

For Mith of a Dasa	Strength of Base	4.8
Eq. Wt. of a Base	Normality of Base	0.125

Mole fraction(x):-

"The ratio of number of moles of the substance to the total number of moles of all the substances present in the solution."

For binary solution, If

 n_A = Number of moles of component A and n_B = Number of moles of component B then,

n = M/W

Further, the sum of mole n_A n_B $n_A + n_B$ $x_A + x_B = and solven \pm i_S$ $n_A + n_B$ $n_A + n_B$ $n_A + n_B$

Hence, sum of mole fraction of all the component of solution is always**unity**. **Note:-** *1. Mole fraction is temperature independent quantity.*

2. Mole fraction is unit less quantity.

Molecular wt. of H $_2O = 18$, $n_A(H_2O) = 25/18 = 1.38$

Molecular wt. of $C_2H_5OH = 46$, $n_B(C_2H_5OH) = 25/46 = 0.54$

Molecular wt. of $CH_3COOH = 60$, $n_C(CH_3COOH) = 50/60 = 0.83$

Eg. Calculate mole fraction of HCl in a solution of hydrochloric acid in water containing 36%(w/w). Solⁿ :- Solution contain 36 g HCl & 64 g H₂O Mol. wt. of HCl = 36.5, n_A(HCl) = 36/36.5 = 0.99 Mol. wt. of H₂O = 18, n_B(H₂O) = 64/18 = 3.55

Weight fraction

"The ratio of weight of the substance to the total weight of all the substances present in the solution."

For binary solution, If W_A = Weight of component A and

 W_B = Weight of component B then,

 $W_{A} = W_{A}$ Weight fraction of A = \dots $W_{A} + W_{B}$ Weight fraction of B = \dots $W_{A} + W_{B}$

Wt. of solute

Weight fraction of solute =

Wt.of (Solute + solvent)

Weight fraction of solvent =Wt. of solventWt. of (Solute + solvent)

Percentage of Solution

Percentage of Solution is nothing but parts of solute present in 100 parts of solution.

It is also designated as Percentage composition of Solution.

- It described in different formsas,
- Percentage composition by weight (W/W)
- Percentage composition by volume(V/V)
- •Percentage composition by weightand volume (W/V)

Percentage composition by weight (W/W):-"The weight of solute in gram dissolved in solvent to form 100 gram of solution is called Percentage composition by weight(weight%)." Wt. of solute

Percentage composition by weight = ------ × 100 Total Wt. of solution

Wt. of solute

Eg. 10% glucose in water means 10 g of glucose *dissolved in 90 g of water resulting in 100 g solution.*

Percentage composition by volume (V/V):-"The volume of the solute per 100 parts by volume of the solution is known as volume percentage."

Eg. 10 % ethanol in water means 10 ml of ethanol is dissolved in water such that the total volume of the solution is 100 ml.

Note:-

- 1. Volume is temperature dependence quantity; hence percentage by volume changes with temperature.
- 2. Total volume of the solution ≠ (volume of the solute + volume of the solvent)
 - Because, solute particle may occupy empty space (ie. voids) present in the structure of liquids.
- 3. Percentage by volume unite is used when both the component ie solute and solvent are liquids.

"The mass of solute dissolved in 100 Mi of the solution is known as and is by volume):percentage."

Wt. of solute % composition by weight and volume = ------ × 100 Total Vol. of solution

This unit is commonly used in medicine and pharmacy.

ppm, ppb and ppt solutions When a solute is present in **trace** quantities, it is convenient to express concentration in **ppm**, **ppb and ppt**.

1. Parts per million (ppm):-

It is defined as,

Weight of substance

× 10⁶

Parts per million =

Total Weight of solution

2. Parts per billion (ppb):-It is defined as,

Weight of substance

Parts per billion =

----- × 10⁹

Total Weight of solution

3. Parts per trillion (ppt):-

It is defined as,

Weight of substance

 10^{12}

Parts per trillion

Total Weight of solution

the substance in 1 Kg of solution in What will be its concentration in ppm?

• Solution:- Wt. of substance = 0.008 g

• Wt. of solution = 1000 g

Weight of substance

Parts per million =

10⁶

X

• Total Weight of solution

Eg. 25 cm³ of caustic soda of unknown strength were found by titration to neutralise 24 cm³ of 0.1 N HCl solution. Find the normality of caustic soda (NaOH)& strength in Kg perdm³. Solution:-

$$\begin{split} N_1 &= 0.1 \ N \ V_1 = 24 \ dm^3 \ V_2 = 25 \ dm^3 \ N_2 = ? \\ N_1 \ V_1 &= N_2 \ V_2 \\ N_1 &= ---- = 0.096 \ N \\ V_1 &= 25 \end{split}$$

Normality= 0.096 N Strength = ? kg/dm³

Eq. Wt. = Strength Normality Strength = Normality × Eq. Wt.

Strength = Normality × Eq. Wt. = 0.096 × 40 × 10⁻³ = 3.84 × 10⁻³ Kg/dm³ **Eg. Determine the molar and normal concentration of a 40 % solution of H₂SO₄ having relative density 1.307.** (5.33, 10.66) Eg. A solution is prepared by mixing 46 galcohol (C₂H₅OH) & Solution 9 water (H₂O). Calculate mole fraction

 $\begin{array}{c} n_A \\ \text{Mole fraction of } A(\mathbf{x}_A) = \cdots \\ n_A + n_B \end{array} \begin{array}{c} \text{e solution!} \\ n = \cdots \\ W \end{array}$

Mole. wt. of H $_2$ O = 18, $n_A(H_2O) = 18/18 = 1$ Mole. wt. of C $_2H_5OH = 46$, $n_B(C_2H_5OH) = 46/46 =$

 $\begin{array}{ccc} n_{A} & 1 \\ x_{A}(H_{2}O) = & ----- = & ---- = & 0.5 \\ n_{A} + n_{B} & 1 + 1 \end{array} \begin{array}{c} n_{B} & 1 \\ x_{B}(C_{2}H_{5}OH) = & ----- & ---- = & ---- = & 0.5 \\ n_{A} + n_{B} & 1 + 1 \end{array}$

1000 g of water, gave a solution of specific gravity 0.992, find the molarity of solution and mole fraction of water, sand ethylalcohol.

Mass of solutionMass of (solute + solvent)Vol. of sol=DensityDensity46 + 10001046

Vol. of solⁿ = ----- = ----- = 1054 ml = 1.054 dm³

Density 0.992

Molarity(M)

M

Wt. of the substance (Ws) 1 Mol. Wt. of the substance (Ms) Vol. of solution in dm³ (Y)

Mole fraction

of water. The defisity of the resulting solution was found to be 0.997 cm³. Calculate molarity & molality of NaCl solution. Solution: Ws = 5 g, Ms = 58.5 g, **m = ?** Volume of solvent = 1.1 Kg M 1000 Mol. Wt. of the substance (Ms) Mass of solvent in gram (Y) Ws 1 5 1000 ----- × ----- = ----- × ----- = 0.8547 m Ms Yg 58.5 1100

Eg. What is the Normality of solution of NaCl containing 10 × 10-3 Kg of it dissolved in 2 dm³ of water. **Solution:** $Ws = 10 \times 10^{-3} Kg = 10 g Y = 2 dm^{-3}$ Wt. of the substance (Ws) 1 N= ----- × -----g. Eq. Wt. of the substance (Es) Vol. of solution Y dm³ Molecular Wt. of NaOH 40 Eq. Wt. of NaOH = ----- = 40 Acidity of NaOH 1 Ws 1 10 1 = ----- × ----- = 0.125 N NaOH Es Y dm³ 40 2

THANK YOU

0