
OOAD AND UML

UNIT -5

TWO MARKS

1. Responsibilities:

 * A responsibility is a contract or an obligation of a class. When you

create a class, you are making a statement that all objects of that class

have the same kind of state and same kind of behavior.

2. Relationships:

 *When you model a system, not only must you identify the things that

form the vocabulary of your system, you must also model how these

things stand in relation to one another.

 *There are three kinds of relationships: They are

 1. Dependencies: In which represent using relationships among

classes.

 2. Generalization: In which link generalized classes to their

specializations.

 3. Association: In which represent structural relationships among

objects.

Responsibilities

-determine the risk

of a customer

order

-handle customer

specific criteria for

fraud.

3. Dependency:

 *A dependency is a connection among things.

 *A dependency is a using relationship that states that a change in

specification of one thing may affect another thing that uses it the

reverse.

 *A dependency is rendered as a dashed directed line, directed to the

thing being depended on. Use dependencies when you want to show one

thing using another.

 dependency

4. Generalization:

 *A generalization is a relationship between a general thing and a more

specific kind of that thing.

 *A generalization means that objects of the child may be used

anywhere the parent may appear, but not the reverse.

 Flimclip

playOn()

Start()

Stop()

Reset()

Channel

Shape

Rectangle Circle Polygon

5. Association:

 *An association is structural relationship that specifies that objects of

one thing are connected to objects of another.

 *Given an association connecting two classes, you can navigate from

an object of one class to an object of the other class.

 works for

6. Notes:

 *A note may contain any combination of text or graphics.

 *A note is a graphical symbol for rendering constraints or comments

attached to an element or a collection of elements.

 *Graphically, a note is rendered as a rectangle with a dog-eared corner,

together with a textual or graphical comment.

7. Stereotypes:

 *A Stereotype is an extension of the vocabulary of the UML, allowing

you to create new kinds of building blocks similar to existing ones but

specific to your problem.

 *Graphically, a stereotype is rendered as a name enclosed by

guillemets and place above the name of another element.

 *The stereotype element may be rendered by using a new icon

associated with that stereotype.

Person Company

8. Tagged values:

 *A Tagged values is an extension of the properties of a UML element,

allowing you to create new information in that element’s specification.

 *Graphically a tagged value is rendered as a string enclosed by

brackets and placed below the name of another element.

9. Constraint:

 *A constraint is an extension of the semantics of a UML element,

allowing you to add new rules or to modify existing ones.

 *Graphically, a constraint is rendered as a string enclosed by brackets

and placed near the associated element or connected to that element or

elements by dependency relationships.

10. System:

 * A system is a collection of subsystems organized to accomplish a

purpose and described by a set of models, possibly from different

viewpoint.

11. Subsystem:

 *A subsystem is a grouping of elements of which some constitute a

specification of the behavior offered by the other contained elements.

12. Model:

 *A model is a semantically closed abstraction of a system, meaning

that it represents a complete and self- consistent simplification of reality,

created in order to better understand the system.

13. View:

 *A view is a projection into the organization and structure of a

system’s model, focused on once aspect of that system.

14. Diagram:

 *A diagram is the graphical presentation of a set of elements, most

often rendered as a connected graph of vertices and arcs.

15. Class diagram:

 *A class diagram shows a set of classes, interfaces and collaborations

and their relationships. Class diagrams are most common diagrams

found in modeling object oriented systems.

 *This class diagrams illustrate the static design view of a system.

 16. Object diagram:

 *An object diagram shows set of objects and their relationships.

 *Object diagrams address the static design view or static process

view of a system but from the perspective of real or prototypical cases.

17. Component diagram:

 *A component diagram shows a set of components and their

relationships.

 *Component diagrams are related to class diagrams in that a component

typically maps to one or more classes, interfaces or collaborations.

18. Deployment diagrams:

 *A deployment diagram shows a set of nodes and their relationships.

 *Deployment diagrams are related to components diagrams in that a

node typically encloses one or more components.

19. Use case diagram:

 *A use case diagram shows a set of use cases and actors and their

relationships.

 *Use case diagrams are especially important in organizing and

modeling the behaviors of a system.

20. Interaction diagrams:

 *Interaction diagram is the collective name given to sequence

diagrams and collaboration diagrams.

 *All sequence diagrams and collaborations are interaction diagrams

and it is either a sequence diagrams and collaboration diagram.

21. Sequence diagram:

 *A sequence diagram is an interaction diagram that emphasizes the

time ordering of messages.

 *It shows a set of objects and the messages sent and received by

those objects.

22. Collaboration diagram:

 *A collaboration diagram is an interaction diagram that emphasizes

the structural organization of the objects that send and receive messages.

 *It shows a set of objects, links among those objects, and messages

sent and received by those objects.

23. Statechart diagram:

 *A statechart diagram shows a state machine, consisting of states,

transitions, events and activities.

 *Statechart diagrams emphasize the event ordered behavior of an

object, which is especially useful in modeling reactive systems.

24. Activity diagram:

 *An activity diagram shows the flow from activity to activity within

a system. An activity shows a set of activities, the sequential or

branching flow from activity to activity, and objects that act and are

acted upon.

 *Activity diagram emphasize the flow of control among objects.

25. Forward engineering:

 *Forward engineering is the process of transforming a model into

code through a mapping to an implementation language.

 *It results in a loss of information, because models in the UML

semantically richer than any current object oriented programming

languages.

 26. Reverse engineering:

 *Reverse engineering is the process of transforming a code into a

model through mapping from a specific implementation language.

 *It results in a flood of information some of which is at lower level of

detail than you will need to build useful models.

27. Objects and roles:

 *The objects that participate in an interaction are either concrete

things or prototypical things.

 *As a concrete thing, an object represents something in the real

world.

28. Links:

 *A link is a semantic connection among objects. A link is an instance

of an association.

 *A class has an association to another class, there may be a link

between the instances of the two classes, wherever there is a link

between two objects, one object can send a message to the other objects.

29. Messages:

 *A message is the specification of a communication among object

that conveys information with the expectation that activity will ensue.

 *The receipt of a message instance may be considered an instance of

an event.

30. Sequencing:

 *When an object passes a message to another object, the receiving

object might in turn send a message to another object, which might send

a message to yet a different object, and so on.

 *This stream of messages forms a sequence. Any sequence must

have a beginning; the start of every sequence is rooted in some process

or thread.

31. Use case:

 * A use case describes a set of sequencies, in which each sequence

represents the interaction of the things outside the system with the

system itself.

 *These behaviors are in effect system level functions use to visualize,

specify, construct, and document the intended behaviors of your system

during requirements capture and analysis.

32. Actors:

 *An Actor represents a coherent set of roles that users of use cases

play when interacting with these use cases.

 *An actor represents a role that a human, a hardware device, or even

another system plays with a system.

33. Action states:

 *Action states cannot be decomposed.

 *These states are atomic meaning that events may occur, but the

work of the action state is not interrupted,

 *The work of an action state is generally considered to take

insignificant execution time.

34. Activity states:

 *Activity states can be decomposed.

 *These states are not atomic meaning that they may be interrupted and

general are considered to take some duration to complete.

35. Transitions:

 *When the action or activity of a state completes, flow of control

passes immediately to the next action or activity state.

 *You specify this flow by using transitions to show the path from one

action or activity state to the next action or activity state.

36. Branching:

 *A branch may have one incoming transition and two or more

outgoing ones.

 *On each outgoing transition, you place a Boolean expression, which

is evaluated only should not overlap, but should cover all.

37. Forking:

 *A Forking represent the splitting of a single flow of control into two

or more concurrent flows of control.

 *A Fork may have one incoming transition and two or more outgoing

transitions, each of which represents an independent flow of control.

38. Joining:

 *A Joining represents the synchronization of two or more concurrent

flows of control.

 *A Join may have two or more incoming transitions and one outgoing

transitions. Above the join, the activities associated with each of these

paths continues in parallel.

39. Swimlanes:

 *When you modeling workflows of business processes, to partition

the activity states on an activity diagram into groups, each representing

the business organization responsible for those activities.

 *In UML, each group is called a swimlane because, visually, each

group is divided from its neighbor by a vertical solid line.

40. Components and classes:

 *Classes represent logical abstractions; components represent

physical things that live in the world of bits.

 *Components represent the physical packaging of otherwise logical

components and are at different level of abstraction.

 *Classes may have attributes and operation directly; components

only have operations that are reachable only through their interfaces.

41. Components and interfaces:

 *The component that realizes the interface is connected to the

interface using a full realization relationship.

 *An interface that a component realizes is called an export interface,

meaning interface that the component provides as a service to other

components.

 *The interface that a components uses is called an import interfaces,

meaning interface that component conforms to and so builds on.

42. Types of components:

 *Three kinds of components:

 1. Deployment components: These are the components necessary

and sufficient to form an executable system, such as dynamic libraries

and executable.

 2. Work product components: These components are essentially

the residue of development process, consisting of things such as source

code files and data files from which deployment components are created.

 3. Execution components: These components are created as a

consequence of an executing system, such as a COM+ object.

43. UML standard elements:

 The UML defines five standard stereotypes that apply to components:

 1. executable- specifies a component that may be executed on a

node.

 2. library- specifies a static or dynamic object library.

 3. table- specifies a component that represents a database table.

 4. file- specifies a component that represents a document contain

source code.

 5. document- specifies a component that represents a document.

44. Nodes and components:

 *Components are things that participate in the execution of a

system; nodes are things that execute components.

 *Components represent the physical packaging of otherwise logical

elements; nodes represent the physical deployment of components.

45. Pattern:

 *A pattern is a common solution to a common problem in a given

context.

 *Patterns are part of the UML because patterns are important parts of

developer’s vocabulary.

 *Patterns helps to visualize, specify, construct, and document the

artifacts of a software-intensive system.

46. Mechanisms or design patterns:

 *A mechanism is another name for a design pattern that applies to a

society of classes.

 *A mechanism simply names a set of abstractions that work together

to carry out some common and interesting behavior.

 *A mechanism names a template for a set of abstractions that work

together to carry out some common and interesting behavior.

47. Frameworks or architectural pattern:

 *A framework is an architectural pattern that provides an extensible

template for applications within a domain.

 *A framework is bigger than a mechanism. When you specify a

framework, you specify the skeleton of an architecture, together with the

slots, tabs, knobs and dials that you expose to users who want to adapt

that framework to their own context.

 48. CRUD:

 *For simple CRUD is Create, Read, Update, Delete Operations,

implement them with standard SQL or ODBC calls.

 *It is the process of operations used in component diagrams for

modeling the physical databases.

49. Trace relationships:

 *A trace is represented as a stereotyped dependency.

 *You can model the conceptual relationship among elements that

live in different models by using a trace relationship; a trace may not be

applied among elements in the same model.

50. Adornments:

 *Adornments are textual or graphical items that are added to an

element’s basic notation and are used to visualize details from the

element’s specification.

 *Most adornments are rendered by placing text near the elements of

interest or by adding a graphic symbol to the basic notation.

