

Sengamala Thayaar Educational Trust Women’s College

 (Affiliated to Bharathidasan University)

 (Accredited with ‘A’ Grade {3.45/4.00} By NAAC)

 (An ISO 9001:2015 Certified Institution)

 Sundarakkottai, Mannargudi-614 016.

 Thiruvarur (Dt.), Tamil Nadu, India

 WIRELESS SENSOR NETWORK

P16CS42

 A.Srilekha

 Assistant Professor

 PG & Research Department of Computer Science

 S.T.E.T Women’s college, Mannargudi.

UNIT 5

SENSOR NETWORK PLATFORMS

AND TOOLS

 INTRODUCTION

 A real-world sensor network application is likely to incorporate all the

functionalities like sensing and estimation, networking, infrastructure services,

sensor tasking, data storage and query. This makes sensor network application

development quite different from traditional distributed system development or

database programming. With ad hoc deployment and frequently changing

network topology, a sensor network application can hardly assume an always-on

infrastructure that provides reliable services such as optimal routing, global

directories, or service discovery.

 There are two types of programming for sensor networks, those carried out

by end users and those performed by application developers. An end user may

view a sensor network as a pool of data and interact with the network via queries.

Just as with query languages for database systems like SQL, a good sensor

network programming language should be expressive enough to encode

application logic at a high level of abstraction, and at the same time be structured

enough to allow efficient execution on the distributed platform. On the other

hand, an application developer must provide end users a sensor network with the

capabilities of data acquisition, processing, and storage. Unlike general

distributed or database systems, collaborative signal and information processing

(CSIP)software comprise reactive, concurrent, distributed programs running on

ad hoc resource-constrained, unreliable computation and communication

platforms. For example, signals are noisy, events can happen at the same time,

communication and computation take time, communications may be unreliable,

battery life is limited, and so on.

 SENSOR NODE HARDWARE

Sensor node hardware can be grouped into three categories, each of which entails

a different trade-off in the design choices.

• Augmented general-purpose computers: Examples include low-power

PCs, embedded PCs (e.g. PC104), custom-designed PCs, (e.g. Sensoria

WINS NG nodes), and various personal digital assistants (PDA). These

nodes typically run –ff-the-shelf operating systems such as WinCE, Linux,

or real-time operating systems and use standard wireless communication

protocols such as IEEE 802.11, Bluetooth, Zigbee etc. Because of their

relatively higher processing capability, they can accommodate wide

variety of sensors, ranging from simple microphones to more sophisticated

video cameras.

• Dedicated embedded sensor nodes: Examples include the Berkeley mote

family the UCLA Medusa family, Ember nodes and MIT µAMP. These

platforms typically use commercial off-the-shelf (COTS) chip sets with

emphasis on small formfactor, low power processing and communication,

and simple sensor interfaces. Because of their COTS CPU, these platforms

typically support at least one programming language, such as C. However,

in order to keep the program footprint small to accommodate their small

memory size, programmers of these platforms are given full access to

hardware but rarely any operating system support. A classic example is the

TinyOS platform and its companion programming language, nesC.

• System on-chip (SoC) nodes: Examples of SoC hardware include smart

dust, the BWRC picoradio node [5], and the PASTA node [6]. Designers

of these platforms tryto push the hardware limits by fundamentally

rethinking the hardware architecture trade-offs for a sensor node at the chip

design level. The goal is to find new ways of integrating CMOS, MEMS,

and RF technologies to build extremely low power and small footprint

sensor nodes that still provide certain sensing, computation, and

communication capabilities. Among these hardware platforms, the

Berkeley motes, due to their small form factor, open source software

development, and commercial availability, have gained wide popularity in

the sensor network research.

 SENSOR NETWORK PROGRAMMING CHALLENGES

Traditional programming technologies rely on operating systems to provide

abstraction for processing, I/O, networking, and user interaction hardware. When

applying such a model to programming networked embedded systems, such as

sensor networks, the application programmers need to explicitly deal with

message passing, event sync hronization, interrupt handling, and sensor reading.

As a result, an application is typically implemented as a finite state machine

(FSM) that covers all extreme cases: unreliable communication channels, long

delays, irregular arrival of messages, simultaneous events etc. For resource-

constrained embedded systems with real-time requirements, several mechanisms

are used in embedded operating systems to reduce code size, improve response

time, and reduce energy consumption. Microkernel technologies modularize the

operating system so that only the necessary parts are deployed with the

application. Real-time scheduling [8] allocates resources to more urgent tasks so

that they can be finished early. Event-driven execution allows the system to fall

into low-power sleep mode when no interesting events need to be processed. At

the extreme, embedded operating systems tend to expose more hardware controls

to the programmers, who now must directly face device drivers and scheduling

algorithms, and optimize code at the assembly level. Although these techniques

may work well for small, stand-alone embedded systems, they do not scale up for

the programming of sensor networks for two reasons:

Sensor networks are large-scale distributed systems, where global properties are

derivable from program execution in a massive number of distributed nodes.

Distributed algorithms themselves are hard to implement, especially when

infrastructure support is limited due to the ad hoc formation of the system and

constrained power, memory, and bandwidth resources.

As sensor nodes deeply embed into the physical world, a sensor network should

be able to respond to multiple concurrent stimuli at the speed of changes of the

physical phenomena of interest. There no single universal design methodology

for all applications. Depending on the specific tasks of a sensor network and the

way the sensor nodes are organized, certain methodologies and platforms may be

better choices than others. For example, if the network is used for monitoring a

small set of phenomena and the sensor nodes are organized in a simple star

topology, then a client-server software model would be enough. If the network is

used for monitoring a large area from a single access point (i.e., the base station),

and if user queries can be decoupled into aggregations of sensor readings from a

subset of nodes, then a tree structure that is rooted at the base station is a better

choice. However, if the phenomena to be monitored are moving targets, as in the

target tracking, then neither the simple client-server model nor the tree

organization is optimal. More sophisticated design and methodologies and

platforms are required.

NODE-LEVEL SOFTWARE PLATFORMS

Most design methodologies for sensor network software are node-centric, where

programmers think in terms of how a node should behave in the environment. A

node-level platform can be node-centric operating system, which provides

hardware and networking abstractions of a sensor node to programmers, or it can

be a language platform, which provides a library of components to programmers.

A typical operating system abstracts the hardware platform by providing a set of

services for applications, including file management, memory allocation, task

scheduling, peripheral device drivers, and networking. For embedded systems,

due to their highly specialized applications and limited resources, their operating

systems make different trade-offs when providing these services. For example, if

there is no file management requirement, then a file system is obviously not

needed. If there is no dynamic memory allocation, then memory management can

be simplified. If prioritization among tasks is critical, then a more elaborate

priority scheduling mechanism may be added.

 Operating System: TinyOS

Tiny OS aims at supporting sensor network applications on resource-constrained

hardware platforms, such as the Berkeley motes.

To ensure that an application code has an extremely small footprint, TinyOS

chooses to have no file system, supports only static memory allocation,

implements a simple task model, and provides minimal device and networking

abstractions. Furthermore, it takes a language-based application development

approach so that only the necessary parts of the operating system are compiled

with the application. To a certain extent, each TinyOS application is built into the

operating system. Like many operating systems, TinyOS organizes components

into layers. Intuitively, the lower a layer is, the ‘closer’ it is to the hardware; the

higher a layer is, the closer it is to the application. In addition to the layers,

TinyOS has a unique component architecture and provides as a library a set of

system software components. A components specification is independent of the

component’s implementation. Although most components encapsulate software

functionalities, some are just thin wrappers around hardware. An application,

typically developed in the nesC language, wires these components together with

other application-specific components. A program executed in TinyOS has two

contexts, tasks and events, which provide two sources of concurrency. Tasks are

created (also called posted) by components to a task scheduler. The default

implementation of the TinyOS scheduler maintains a task queue and invokes

tasks according to the order in which they were posted. Thus, tasks are deferred

computation mechanisms. Tasks always run to completion without pre-empting

or being pre-empted by other tasks. Thus, tasks are non-pre-emptive. The

scheduler invokes a new task from the task queue only when the current task has

completed. When no tasks are available in the task queue, the scheduler puts the

CPU into the sleep mode to save energy. The ultimate sources of triggered

execution are events from hardware: clock, digital inputs, or other kinds of

interrupts. The execution of an interrupt handler is called an event context. The

processing of events also runs to completion, but it pre-empts tasks and can be

pre-empted by other events. Because there is no pre-emption mechanism among

tasks and because events always pre-empt tasks, programmers are required to

chop their code, especially the code in the event contexts, into small execution

pieces, so that it will not block other tasks for too long. Another trade-off between

non-pre-emptive task execution and program reactiveness isthe design of split-

phase operations in TinyOS. Like the notion of asynchronous method calls in

distributed computing, a split-phase operation separates the initiation of a method

call from the return of the call. A call to split-phase operation returns

immediately, without performing the body of the operation. The true execution

of the operation is scheduled later; when the execution of the body finishes, the

operation notifies the original caller through a separate method call. In TinyOS,

resource contention is typically handled through explicit rejection of concurrent

requests. All split-phase operations return Boolean values indicating whethera

request to perform the operation is accepted.

In summary, many design decisions in TinyOS are made to ensure that it is

extremely lightweight. Using a component architecture that contains all variables

inside the components and disallowing dynamic memory allocation reduces the

memory management overhead and makes the data memory usage statically

analyzable. The simple concurrency model allows high concurrency with low

thread maintenance overhead. However, the advantage of being lightweight is not

without cost. Many hardware idiosyncrasies and complexities of concurrency

management are left for the application programmers to handle. Several tools

have been developed to give programmers language-level support for improving

programming productivity and code robustness.

Imperative Language: nesC

 nesC is an extension of C to support and reflect the design of TinyOS. It

provides a set of language constructs and restrictions to implement TinyOS

components and applications. A component in nesC has an interface specification

and an implementation. To reflect the layered structure of TinyOS, interfaces of

a nesC component are classified as provides or uses interfaces. A provides

interface is a set of method calls exposed to the upper layers,while a user interface

is a set of method calls hiding the lower layer components. Methods in the

interfaces can be grouped and named. Although they have the same method call

semantics, nesC distinguishes the directions of the interface calls between layers

as event calls and command calls. An event call is a method call from a lower

layer component to a higher layer component, while a command is the opposite.

The separation of interface type definitions from how they are used in the

components promotes the reusability of standard interfaces. A component can

provide and use the same interface type, so that it can act as a filter interposed

between a client and a service. A component may even use or provide the same

interface multiple times.

COMPONENT IMPLEMENTATION

 There are two types of components in nesC, depending on how they are

implemented: modules and configurations. Modules are implemented by

application code (written in a C-like syntax). Configurations are implemented by

connecting interfaces of existing components. nesC also supports the creation of

several instances of a component by declaring.

ABSTRACT COMPONENTS

With optional parameters. Abstract components are created at compile time in

configuration. As TinyOS does not support dynamic memory allocation, all

components are statically constructed at compile time. A complete application is

always a configuration rather than a module. An application must contain the

main module, which links the code to the scheduler at run time. The main has

single Std Control interface, which is the ultimate source of initialization of all

components.

 Dataflow-Style Language: TinyGALS

Dataflow languages are intuitive for expressing computation on interrelated data

units by specifying data dependencies among them. A dataflow diagram has a set

of processing units called actors. Actors have ports to receive and produce data,

and the directional connections among ports are FIFO queues that mediate the

flow of data. Actors in dataflow languages intrinsically capture concurrency in a

system, and the FIFO queues give a structured way of decoupling their

executions. The execution of an actor is triggered when there are enough input

data at the input ports. Asynchronous event-driven execution can be viewed as a

special case of data flow models, where each actor is triggered by every incoming

event. The globally asynchronous and locally synchronous (GALS) mechanism

is a way of building event-triggered concurrent execution from thread-unsafe

components. TinyGALS is such as language for TinyOS. One of the key factors

that affect component reusability in embedded software is the component

composability, especially concurrent composability. In general, when developing

a component, a programmer may not anticipate all possible scenarios in which

the component may be used. Implementing all access to variables as atomic

blocks, incurs too much overhead. At the other extreme, making all variable

access unprotected is easy for coding but certainly introduces bugs in concurrent

composition. TinyGALS addresses concurrency concerns at the system level,

rather than at component level as in nesC. Reactions to concurrent events are

managed by a dataflow-style FIFO queue communication.

TINYGALS PROGRAMMING MODEL

TinyGALS supports all TinyOS components, including its interfaces and module

implementations. All method calls in a component interface are synchronous

method calls- that is, the thread of control enters immediately into the called

component from the caller component. An application in TinyGALS is built in

two steps: (1) constructing asynchronous actors from synchronous components,

and (2) constructing an application by connecting the asynchronous components

through FIFO queues. An actor in TinyGALS has a set of input ports, a set of

output ports, and a set of connected TinyOS components. An actor is constructed

by connecting synchronous method calls among TinyOS components. At the

application level, the asynchronous communication of actors is mediated using

FIFO queues. Each connection can be parameterized by a queue size. In the

current implementation of TinyGALS, events are discarded when the queue is

full. However, other mechanisms such as discarding the oldest event can be used.

NODE-LEVEL SIMULATORS

Node-level design methodologies are usually associated with simulators that

simulate the behavior of a sensor network on a per-node basis. Using simulation,

designers can quickly study the performance (in terms of timing, power,

bandwidth, and scalability) of potential algorithms without implementing them

on actual hardware and dealing with the vagaries of actual physical phenomena.

A node-level simulator typically has the following components:

Sensor node model:

A node in a simulator acts as a software execution platform, a sensor host, as well

as a communication terminal. For designers to focus on the application-level

code, a node model typically provides or simulates a communication protocol

stack, sensor behaviors (e.g., sensing noise), and operating system services. If the

nodes are mobile, then the positions and motion properties of the nodes need to

be modeled. If energy characteristics are part of the design considerations, then

the power consumption of the nodes needs to be modeled.

Communication model:

Depending on the details of modeling, communication may be captured at

different layers. The most elaborate simulators model the communication media

at the physical layer, simulating the RF propagation delay and collision

of simultaneous transmissions. Alternately, the communication may be simulated

at theMAC layer or network layer, using, for example, stochastic processes to

represent low-level behaviors.

Physical environment model:

A key element of the environment within a sensor network operates is the

physical phenomenon of interest. The environment can also be simulated at

various levels of details. For example, a moving object in the physical world may

be abstracted into a point signal source. The motion of the point signal source

may be modeled by differential equations or interpolated from a trajectory profile.

If the sensor network is passive- that is, it does not impact the behavior of the

environment-then the environment can be simulated separately or can even be

stored in data files for sensor nodes to read in. If, in addition to sensing, the

network also performs actions that influence the behavior of the environment,

then a more tightly integrated simulation mechanism is required.

Statistics and visualization:

The simulation results need to be collected for analysis. Since the goal of a

simulation is typically to derive global properties from the execution of individual

nodes, visualizing global behaviors is extremely important. An ideal visualization

tool should allow users to easily observe on demand the spatial distribution and

mobility of the nodes, the connectivity among nodes, link qualities, end-to-end

communication routes and delays, phenomena and their spatio-temporal

dynamics, sensor readings on each node, sensor nodes states, and node lifetime

parameters (e.g., battery power). A sensor network simulator simulates the

behavior of a subset of the sensor nodes with respect to time. Depending on how

the time is advanced in the simulation, there are two types of execution models:

cycle-driven simulation and discrete-event simulation. A cycle-driven (CD)

simulation discretizes the continuous notion of real time into (typically regularly

spaced) ticks and simulates the system behavior at these ticks. At each tick, the

physical phenomena are first simulated, and then all nodes are checked to see if

they have anything to sense, process, or communicate. Sensing and computation

are assumed to be finished before the next tick. Sending a packet is also assumed

to be completed by then. However, the packet will not be available for the

destination node until next tick. This split-phase communication is a key

mechanism to reduce cyclic dependencies that may occur in cycle-driven

simulations. Most CD simulators do not allow interdependencies within a single

tick.

 Unlike cycle-driven simulators, a discrete-vent (DE) simulator assumes that

the time is continuous, and an event may occur at any time. As event is 2-tuple

with a value and a time stamp indicating when the event is supposed to be

handled. Components in a DE simulation react to input events and produce output

events. In node-level simulators, a component can be a sensor node, and the

events can be communication packets; or a component can be software module

within, and the events can be message passing among these nodes. Typically,

components are causal, in the sense that if an output event is computed from an

input event, then the time stamp of the output should not be earlier than that of

the input event. Non-causal components require the simulators to be able to roll

back in time, and worse, they may not define a deterministic behaviour of a

system. A DE simulator typically requires a global event queue. All events

passing between nodes or modules are put in the event queue and sorted according

to their chronological order. At each iteration of the simulation, the simulator

removes the first event (the one with earliest time stamp) from the queue and

triggers the component that reacts to that event.

 In terms of timing behavior, a DE simulator is more accurate than a CD

simulator, and therefore, DE simulators run slower. The overhead of ordering all

events and computation, in addition to the values and time stamps of events,

usually dominates the computation time. At an early stage of a design when only

the asymptotic behaviors rather than timing properties are of concern, CD

simulations usually require fewer complex components and give faster

simulations. This is partly because of the approximate timing behaviors, which

make simulation results less comparable from application to application, there is

no general CD simulator that fits all sensor network simulation tasks. Many of

the simulators are developed for particular applications and exploit application-

specific assumptions to gain efficiency.

 DE simulations are sometimes considered as good as actual

implementations, because of their continuous notion of time and discrete notion

of events. There are several open-source or commercial simulators available. One

class of these simulators comprises extensions of classical network simulators,

such as ns-2, J-Sim (previously known as JavaSim), and GloMoSim/ Qualnet.

The focus of these simulators is on network modelling, protocol stacks, and

simulation performance. Another class of simulators, sometimes called software-

in-the-loop simulators, incorporate the actual node software into the simulation.

For this reason, they are typically attached to particular hardware platforms and

are less portable. Example include TOSSIM [12] for Berkeley motes and Em*

for Linux-based nodes such as Sensoria WINS NG platforms.

The ns-2 Simulator and its Sensor Network Extensions

The simulator ns-2 is an open-source network simulator that was originally

designed for wired, IP networks. Extensions have been made to simulate

wireless/mobile networks (e.g. 802.11 MAC and TDMA MAC) and more

recently sensor networks. While the original ns-2 only supports logical addresses

for each node, the wireless/mobile extension of it introduces the notion of node

locations and a simple wireless channel model. This is not a trivial extension,

since once the nodes move, the simulator needs to check for each physical layer

event whether the destination node is within the communication range. For a large

network, this significantly slows down the simulation speed.

 There are two widely known efforts to extend ns-2 for simulating sensor

networks: SensorSim form UCLA [15] and the NRL sensor network extension

from the Navy Research Laboratory [16]. SensorSim also supports hybrid

simulation, where some real sensor nodes, running real applications, can be

executed together with a simulation. The NRL sensor network extension provides

a flexible way of modeling physical phenomena in a discrete event simulator.

Physical phenomena are modeled as network nodes which communicate with real

nodes through physical layers.

 The main functionality of ns-2 is implemented in C++, while the dynamics

of the simulation (e.g., time-dependent application characteristics) is controlled

by Tcl scripts. Basic components in ns-2 are the layers in the protocol stack. They

implement the handler’s interface, indicating that they handle events. Events are

communication packets that are passed between consecutive layers within one

node, or between the same layers across nodes.

 The key advantage of ns-2 is its rich libraries of protocols for nearly all

network layers and for many routing mechanisms. These protocols are modeled

in fair detail, so that they closely resemble the actual protocol implementations.

Examples include the following:

• TCP: reno, tahoe, vegas, and SACK implementations.

• MAC: 802.3, 802.11, and TDMA.

• Ad hoc routing: Destination sequenced distance vector (DSDV) routing,

dynamic source routing (DSR), ad hoc on-demand distance vector

(AOPDV) routing, and temporarily ordered routing algorithm (TORA).

• Sensor network routing: Directed diffusion, geographical routing (GEAR)

and geographical adaptive fidelity (GAF) routing.

The Simulator TOSSIM

TOSSIM is a dedicated simulator for TinyOS applications running on one or

more Berkeley motes. The key design decisions on building TOSSIM were to

make it scalable to a network of potentially thousands of nodes, and to be able to

use the actual software code in the simulation. To achieve these goals, TOSSIM

takes a cross-compilation approach that compiles the nesC source code into

components in the simulation. The event-driven execution model of TinyOS

greatly simplifies the design of TOSSIM. By replacing a few low-level

components such as the A/D conversion (ADC), the system clock, and the radio

front end, TOSSIM translates hardware interrupts into discrete-event simulator

events. The simulator event queue delivers the interrupts that drive the execution

of a node. The upper-layer TinyOS code runs unchanged.

 TOSSIM uses a simple but powerful abstraction to model a wireless network.

A network is a directed graph, where each vertex is a sensor node and each

directed edge has a bit-error rate. Each node has a private piece of state

representing what it hears on the radio channel. By setting connections among the

vertices in the graph and a bit-error rate on each connection, wireless channel

characteristics, such as imperfect channels, hidden terminal problems, and

asymmetric links can be easily modeled. Wireless transmissions are simulated at

the bit level. If a bit error occurs, the simulator flips the bit.

 TOSSIM has a visualization package called TinyViz, which is a Java

application that can connect to TOSSIM simulations. TinyViz also provides

mechanisms to control a running simulation by, for example, modifying ADC

readings, changing channel properties, and injecting packets. TinyViz is designed

as a communication service that interacts with the TOSSIM event queue. The

exact visual interface takes the form of plug-ins that can interpret TOSSIM

events. Beside the default visual interfaces, users can add application-specific

ones easily.

Programming Beyond Individual Nodes: State-Centric Programming

Many sensor network applications, such as target tracking, are not simply generic

distributed programs over an ad hoc network of energy-constrained nodes.

Deeply rooted in these applications is the notion of states of physical phenomena

and models of their evolution over space and time. Some of these states may be

represented on a small number of nodes and evolve over time, as in the target

tracking problem, while others may be represented over a large and spatially

distributed number of nodes, as in tracking a temperature contour.

A distinctive property of physical states, such as location, shape, and motion of

objects, is their continuity in space and time. Their sensing and control is typically

done through sequential state updates. System theories, the basis for most signal

and information processing algorithms, provide abstractions for state updates,

such as:

xk+1= f (xk,uk)

yk=g(xk,uk)

where x is the state of a system, u is the system input, y is the output and k is an

integer update index over space and/or time, f is the state update function, and g

is the output or observation function. This formulation is broad enough to capture

a wide variety of algorithms in sensor fusion, signal processing, and control (e.g.,

Kalman filtering, Bayesian estimation, system identification, feedback control

laws, and finite-state automata).However, in distributed real-time embedded

systems such as sensor networks, the formulation is not as clean as represented

in the above equations. The relationships among subsystems can be highly

complex and dynamic over space and time. The following issues (which are not

explicitly tackled in the above equations) must be properly addressed during the

design to ensure the correctness and efficiency of the system.

• Where are the state variables stored?

• Where do the inputs come from?

• Where do the outputs go?

• Where are the functions f and g evaluated?

• How long does the acquisition of input take?

• Are the inputs in uk collected synchronously?

• Do the inputs arrive in the correct order through communication?

• What is the time duration between indices k and k+1? Is it a constant?

These issues, addressing where and when, rather than how, to perform sensing,

computation, and communication, play a central role in the overall system

performance. However, these ‘non-functional” aspects of computation, related to

concurrency, responsiveness, networking, and resource management, are not well

supported by traditional programming models and languages. State-centric

programming aims at providing design methodologies and frameworks that give

meaningful abstractions for these issues, so that system designers can continue to

write algorithms on top of an intuitive understanding of where and when the

operations are performed.

 A collaborative group is such an abstraction. A collaborative group is a set of

entities that contribute to a state update. These entities can be physical sensor

nodes, or they can be more abstract system components such as virtual sensors or

mobile agents hopping among sensors. These are all referred to as agents.

 Intuitively, a collaboration groups provides two abstractions: its scope to

encapsulate network topologies and its structure to encapsulate communication

protocols. The scope of a group defines the membership of the nodes with respect

to the group. A software agent that hops among the sensor nodes to track a target

is a virtual node, while a real node is physical sensor. Limiting the scope of a

group to a subset of the entire space of all agents improves scalability. Grouping

nodes according to some physical attributes rather than node addresses is an

important and distinguishing characteristic of sensor networks.

 The structure of a group defines the “roles” each member plays in the group,

and thus the flow of data. Are all members in the group equal peers? Is there a

“leader” member in the group that consumes data? Do members in the group form

a tree with parent and children relations? For example, a group may have a leader

node that collects certain sensor readings from all followers. By mapping the

leader and the followers onto concrete sensor nodes, one can effectively define

the flow of data from the hosts of followers to the host of the leader. The notion

of roles also shields programmers from addressing individual nodes either by

name or address. Furthermore, having multiple members with the same role

provides some degree of redundancy and improves robustness of the application

in the presence of node and link failures.

PIECES: A State –Centric Design Framework

PIECES (Programming and Interaction Environment for Collaborative

Embedded Systems) is a software framework that implements the methodology

of state-centric programming over collaboration groups to support the modeling,

simulation, and design of sensor network applications. It is implemented in a

mixed Java-Matlab environment. PIECES comprises principals and port agents.

A principal is the key component for maintaining a piece of state. Typically, a

principal maintains state corresponding to certain aspects of the physical

phenomenon of interest. The role of a principal is to update its state from time to

time, a computation corresponding to evaluation function f. A principal also

accepts other principals’ queries of certain views on its own state, a computation

corresponding to evaluating function g.

 To update its portion of the state, a principal may gather information from

other principals. To achieve this, a principal creates port agents and attaches them

onto itself and onto the other principals. A port agent may be an input, an output,

or both. An output port agent is also called an observer, sine it computes outputs

based on the host principal’s state and sends them to their agents. Observers may

be active and passive. An active observer pushes data autonomously to its

destination (s0, while a passive observer sends data only when a consumer request

for it. A principal typically attaches a set of observers to other principals and

creates a local input port agent to receive the information collected by the remote

agents. Thus, port agents capture communication patterns among principals.

 The execution of principals and port agents can be either time-driven or event-

driven, where events may include physical events that are pushed to them (i.e.,

data-driven) or query events from other principals or agents (i.e., demand-driven).

Principals maintain state, reflecting the physical phenomena. These states can be

updated, rather than rediscovered, because the underlying physical states are

typically continuous in time. How often the principal states need to be updated

depends on the dynamics of the phenomena or physical events. The executions

of observers, however, reflect the demands of the outputs. If an output is not

currently needed, there is no need to compute it. The notion of “state” effectively

separates these two execution flows.

 To ensure consistency of state update over a distributed computational

platform, PIECES requires that a piece of state, say x|s, can only be maintained

by exactly one principal. Note that this does not prevent other principals from

having local caches of x|s for efficiency and performance reasons; nor does it

prevent the other principals from locally updating the values of cached x|s.

However, there is only one master copy for x|s. All local updates should be treated

as “suggestion” to the master copy, and only the principal that owns x|s has the

final word on its values. This asymmetric access of variables simplifies the way

shared variables are managed.

