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UNIT 5 

SENSOR NETWORK PLATFORMS                       

AND TOOLS 

 

 INTRODUCTION 

           A real-world sensor network application is likely to incorporate all the 

functionalities like sensing and estimation, networking, infrastructure services, 

sensor tasking, data storage and query. This makes sensor network application 

development quite different from traditional distributed system development or 

database programming. With ad hoc deployment and frequently changing 

network topology, a sensor network application can hardly assume an always-on 

infrastructure that provides reliable services such as optimal routing, global 

directories, or service discovery.  

        There are two types of programming for sensor networks, those carried out 

by end users and those performed by application developers. An end user may 

view a sensor network as a pool of data and interact with the network via queries. 

Just as with query languages for database systems like SQL, a good sensor 

network programming language should be expressive enough to encode 

application logic at a high level of abstraction, and at the same time be structured 

enough to allow efficient execution on the distributed platform. On the other 

hand, an application developer must provide end users a sensor network with the 

capabilities of data acquisition, processing, and storage. Unlike general 

distributed or database systems, collaborative signal and information processing 

(CSIP)software comprise reactive, concurrent, distributed programs running on 

ad hoc resource-constrained, unreliable computation and communication 

platforms. For example, signals are noisy, events can happen at the same time, 

communication and computation take time, communications may be unreliable, 

battery life is limited, and so on. 

 

 SENSOR NODE HARDWARE 

Sensor node hardware can be grouped into three categories, each of which entails 

a different trade-off in the design choices.  



• Augmented general-purpose computers: Examples include low-power 

PCs, embedded PCs (e.g. PC104), custom-designed PCs, (e.g. Sensoria 

WINS NG nodes), and various personal digital assistants (PDA). These 

nodes typically run –ff-the-shelf operating systems such as WinCE, Linux, 

or real-time operating systems and use standard wireless communication 

protocols such as IEEE 802.11, Bluetooth, Zigbee etc. Because of their 

relatively higher processing capability, they can accommodate wide 

variety of sensors, ranging from simple microphones to more sophisticated 

video cameras.  

• Dedicated embedded sensor nodes: Examples include the Berkeley mote 

family the UCLA Medusa family, Ember nodes and MIT µAMP. These 

platforms typically use commercial off-the-shelf (COTS) chip sets with 

emphasis on small formfactor, low power processing and communication, 

and simple sensor interfaces. Because of their COTS CPU, these platforms 

typically support at least one programming language, such as C. However, 

in order to keep the program footprint small to accommodate their small 

memory size, programmers of these platforms are given full access to 

hardware but rarely any operating system support. A classic example is the 

TinyOS platform and its companion programming language, nesC. 

 

• System on-chip (SoC) nodes: Examples of SoC hardware include smart 

dust, the BWRC picoradio node [5], and the PASTA node [6]. Designers 

of these platforms tryto push the hardware limits by fundamentally 

rethinking the hardware architecture trade-offs for a sensor node at the chip 

design level. The goal is to find new ways of integrating CMOS, MEMS, 

and RF technologies to build extremely low power and small footprint 

sensor nodes that still provide certain sensing, computation, and 

communication capabilities. Among these hardware platforms, the 

Berkeley motes, due to their small form factor, open source software 

development, and commercial availability, have gained wide popularity in 

the sensor network research. 

 

 

 SENSOR NETWORK PROGRAMMING CHALLENGES 

Traditional programming technologies rely on operating systems to provide 

abstraction for processing, I/O, networking, and user interaction hardware. When 

applying such a model to programming networked embedded systems, such as 

sensor networks, the application programmers need to explicitly deal with 



message passing, event sync hronization, interrupt handling, and sensor reading. 

As a result, an application is typically implemented as a finite state machine 

(FSM) that covers all extreme cases: unreliable communication channels, long 

delays, irregular arrival of messages, simultaneous events etc. For resource-

constrained embedded systems with real-time requirements, several mechanisms 

are used in embedded operating systems to reduce code size, improve response 

time, and reduce energy consumption. Microkernel technologies modularize the 

operating system so that only the necessary parts are deployed with the 

application. Real-time scheduling [8] allocates resources to more urgent tasks so 

that they can be finished early. Event-driven execution allows the system to fall 

into low-power sleep mode when no interesting events need to be processed. At 

the extreme, embedded operating systems tend to expose more hardware controls 

to the programmers, who now must directly face device drivers and scheduling 

algorithms, and optimize code at the assembly level. Although these techniques 

may work well for small, stand-alone embedded systems, they do not scale up for 

the programming of sensor networks for two reasons: 

  

Sensor networks are large-scale distributed systems, where global properties are 

derivable from program execution in a massive number of distributed nodes. 

Distributed algorithms themselves are hard to implement, especially when 

infrastructure support is limited due to the ad hoc formation of the system and 

constrained power, memory, and bandwidth resources. 

  

As sensor nodes deeply embed into the physical world, a sensor network should 

be able to respond to multiple concurrent stimuli at the speed of changes of the 

physical phenomena of interest. There no single universal design methodology 

for all applications. Depending on the specific tasks of a sensor network and the 

way the sensor nodes are organized, certain methodologies and platforms may be 

better choices than others. For example, if the network is used for monitoring a 

small set of phenomena and the sensor nodes are organized in a simple star 

topology, then a client-server software model would be enough. If the network is 

used for monitoring a large area from a single access point (i.e., the base station), 

and if user queries can be decoupled into aggregations of sensor readings from a 

subset of nodes, then a tree structure that is rooted at the base station is a better 

choice. However, if the phenomena to be monitored are moving targets, as in the 

target tracking, then neither the simple client-server model nor the tree 

organization is optimal. More sophisticated design and methodologies and 

platforms are required. 



 

NODE-LEVEL SOFTWARE PLATFORMS 

Most design methodologies for sensor network software are node-centric, where 

programmers think in terms of how a node should behave in the environment. A 

node-level platform can be node-centric operating system, which provides 

hardware and networking abstractions of a sensor node to programmers, or it can 

be a language platform, which provides a library of components to programmers. 

A typical operating system abstracts the hardware platform by providing a set of 

services for applications, including file management, memory allocation, task 

scheduling, peripheral device drivers, and networking. For embedded systems, 

due to their highly specialized applications and limited resources, their operating 

systems make different trade-offs when providing these services. For example, if 

there is no file management requirement, then a file system is obviously not 

needed. If there is no dynamic memory allocation, then memory management can 

be simplified. If prioritization among tasks is critical, then a more elaborate 

priority scheduling mechanism may be added. 

 

 Operating System: TinyOS 

Tiny OS aims at supporting sensor network applications on resource-constrained 

hardware platforms, such as the Berkeley motes. 

To ensure that an application code has an extremely small footprint, TinyOS 

chooses to have no file system, supports only static memory allocation, 

implements a simple task model, and provides minimal device and networking 

abstractions. Furthermore, it takes a language-based application development 

approach so that only the necessary parts of the operating system are compiled 

with the application. To a certain extent, each TinyOS application is built into the 

operating system. Like many operating systems, TinyOS organizes components 

into layers. Intuitively, the lower a layer is, the ‘closer’ it is to the hardware; the 

higher a layer is, the closer it is to the application. In addition to the layers, 

TinyOS has a unique component architecture and provides as a library a set of 

system software components. A components specification is independent of the 

component’s implementation. Although most components encapsulate software 

functionalities, some are just thin wrappers around hardware. An application, 

typically developed in the nesC language, wires these components together with 

other application-specific components. A program executed in TinyOS has two 

contexts, tasks and events, which provide two sources of concurrency. Tasks are 

created (also called posted) by components to a task scheduler. The default 



implementation of the TinyOS scheduler maintains a task queue and invokes 

tasks according to the order in which they were posted. Thus, tasks are deferred 

computation mechanisms. Tasks always run to completion without pre-empting 

or being pre-empted by other tasks. Thus, tasks are non-pre-emptive. The 

scheduler invokes a new task from the task queue only when the current task has 

completed. When no tasks are available in the task queue, the scheduler puts the 

CPU into the sleep mode to save energy. The ultimate sources of triggered 

execution are events from hardware: clock, digital inputs, or other kinds of 

interrupts. The execution of an interrupt handler is called an event context. The 

processing of events also runs to completion, but it pre-empts tasks and can be 

pre-empted by other events. Because there is no pre-emption mechanism among 

tasks and because events always pre-empt tasks, programmers are required to 

chop their code, especially the code in the event contexts, into small execution 

pieces, so that it will not block other tasks for too long. Another trade-off between 

non-pre-emptive task execution and program reactiveness isthe design of split-

phase operations in TinyOS. Like the notion of asynchronous method calls in 

distributed computing, a split-phase operation separates the initiation of a method 

call from the return of the call. A call to split-phase operation returns 

immediately, without performing the body of the operation. The true execution 

of the operation is scheduled later; when the execution of the body finishes, the 

operation notifies the original caller through a separate method call. In TinyOS, 

resource contention is typically handled through explicit rejection of concurrent 

requests. All split-phase operations return Boolean values indicating whethera 

request to perform the operation is accepted. 

   

In summary, many design decisions in TinyOS are made to ensure that it is 

extremely lightweight. Using a component architecture that contains all variables 

inside the components and disallowing dynamic memory allocation reduces the 

memory management overhead and makes the data memory usage statically 

analyzable. The simple concurrency model allows high concurrency with low 

thread maintenance overhead. However, the advantage of being lightweight is not 

without cost. Many hardware idiosyncrasies and complexities of concurrency 

management are left for the application programmers to handle. Several tools 

have been developed to give programmers language-level support for improving 

programming productivity and code robustness. 

 

  



Imperative Language: nesC 

          nesC is an extension of C to support and reflect the design of TinyOS. It 

provides a set of language constructs and restrictions to implement TinyOS 

components and applications. A component in nesC has an interface specification 

and an implementation. To reflect the layered structure of TinyOS, interfaces of 

a nesC component are classified as provides or uses interfaces. A provides 

interface is a set of method calls exposed to the upper layers,while a user interface 

is a set of method calls hiding the lower layer components. Methods in the 

interfaces can be grouped and named. Although they have the same method call 

semantics, nesC distinguishes the directions of the interface calls between layers 

as event calls and command calls. An event call is a method call from a lower 

layer component to a higher layer component, while a command is the opposite. 

The separation of interface type definitions from how they are used in the 

components promotes the reusability of standard interfaces. A component can 

provide and use the same interface type, so that it can act as a filter interposed 

between a client and a service. A component may even use or provide the same 

interface multiple times. 

 

 

COMPONENT IMPLEMENTATION 

      There are two types of components in nesC, depending on how they are 

implemented: modules and configurations. Modules are implemented by 

application code (written in a C-like syntax). Configurations are implemented by 

connecting interfaces of existing components. nesC also supports the creation of 

several instances of a component by declaring. 

ABSTRACT COMPONENTS 

With optional parameters. Abstract components are created at compile time in 

configuration. As TinyOS does not support dynamic memory allocation, all 

components are statically constructed at compile time. A complete application is 

always a configuration rather than a module. An application must contain the 

main module, which links the code to the scheduler at run time. The main has 

single Std Control interface, which is the ultimate source of initialization of all 

components. 

   

 



 Dataflow-Style Language: TinyGALS 

Dataflow languages are intuitive for expressing computation on interrelated data 

units by specifying data dependencies among them. A dataflow diagram has a set 

of processing units called actors. Actors have ports to receive and produce data, 

and the directional connections among ports are FIFO queues that mediate the 

flow of data. Actors in dataflow languages intrinsically capture concurrency in a 

system, and the FIFO queues give a structured way of decoupling their 

executions. The execution of an actor is triggered when there are enough input 

data at the input ports. Asynchronous event-driven execution can be viewed as a 

special case of data flow models, where each actor is triggered by every incoming 

event. The globally asynchronous and locally synchronous (GALS) mechanism 

is a way of building event-triggered concurrent execution from thread-unsafe 

components. TinyGALS is such as language for TinyOS. One of the key factors 

that affect component reusability in embedded software is the component 

composability, especially concurrent composability. In general, when developing 

a component, a programmer may not anticipate all possible scenarios in which 

the component may be used. Implementing all access to variables as atomic 

blocks, incurs too much overhead. At the other extreme, making all variable 

access unprotected is easy for coding but certainly introduces bugs in concurrent 

composition. TinyGALS addresses concurrency concerns at the system level, 

rather than at component level as in nesC. Reactions to concurrent events are 

managed by a dataflow-style FIFO queue communication. 

TINYGALS PROGRAMMING MODEL 

TinyGALS supports all TinyOS components, including its interfaces and module 

implementations. All method calls in a component interface are synchronous 

method calls- that is, the thread of control enters immediately into the called 

component from the caller component. An application in TinyGALS is built in 

two steps: (1) constructing asynchronous actors from synchronous components, 

and (2) constructing an application by connecting the asynchronous components 

through FIFO queues. An actor in TinyGALS has a set of input ports, a set of 

output ports, and a set of connected TinyOS components. An actor is constructed 

by connecting synchronous method calls among TinyOS components. At the 

application level, the asynchronous communication of actors is mediated using 

FIFO queues. Each connection can be parameterized by a queue size. In the 

current implementation of TinyGALS, events are discarded when the queue is 

full. However, other mechanisms such as discarding the oldest event can be used. 

   



NODE-LEVEL SIMULATORS 

Node-level design methodologies are usually associated with simulators that 

simulate the behavior of a sensor network on a per-node basis. Using simulation, 

designers can quickly study the performance (in terms of timing, power, 

bandwidth, and scalability) of potential algorithms without implementing them 

on actual hardware and dealing with the vagaries of actual physical phenomena. 

A node-level simulator typically has the following components: 

 

Sensor node model: 

A node in a simulator acts as a software execution platform, a sensor host, as well 

as a communication terminal. For designers to focus on the application-level 

code, a node model typically provides or simulates a communication protocol 

stack, sensor behaviors (e.g., sensing noise), and operating system services. If the 

nodes are mobile, then the positions and motion properties of the nodes need to 

be modeled. If energy characteristics are part of the design considerations, then 

the power consumption of the nodes needs to be modeled. 

 

Communication model: 

Depending on the details of modeling, communication may be captured at 

different layers. The most elaborate simulators model the communication media 

at the physical layer, simulating the RF propagation delay and collision 

of simultaneous transmissions. Alternately, the communication may be simulated 

at theMAC layer or network layer, using, for example, stochastic processes to 

represent low-level behaviors. 

 

Physical environment model: 

A key element of the environment within a sensor network operates is the 

physical phenomenon of interest. The environment can also be simulated at 

various levels of details. For example, a moving object in the physical world may 

be abstracted into a point signal source. The motion of the point signal source 

may be modeled by differential equations or interpolated from a trajectory profile. 

If the sensor network is passive- that is, it does not impact the behavior of the 

environment-then the environment can be simulated separately or can even be 

stored in data files for sensor nodes to read in. If, in addition to sensing, the 



network also performs actions that influence the behavior of the environment, 

then a more tightly integrated simulation mechanism is required. 

 

Statistics and visualization: 

The simulation results need to be collected for analysis. Since the goal of a 

simulation is typically to derive global properties from the execution of individual 

nodes, visualizing global behaviors is extremely important. An ideal visualization 

tool should allow users to easily observe on demand the spatial distribution and 

mobility of the nodes, the connectivity among nodes, link qualities, end-to-end 

communication routes and delays, phenomena and their spatio-temporal 

dynamics, sensor readings on each node, sensor nodes states, and node lifetime 

parameters (e.g., battery power). A sensor network simulator simulates the 

behavior of a subset of the sensor nodes with respect to time. Depending on how 

the time is advanced in the simulation, there are two types of execution models: 

cycle-driven simulation and discrete-event simulation. A cycle-driven (CD) 

simulation discretizes the continuous notion of real time into (typically regularly 

spaced) ticks and simulates the system behavior at these ticks. At each tick, the 

physical phenomena are first simulated, and then all nodes are checked to see if 

they have anything to sense, process, or communicate. Sensing and computation 

are assumed to be finished before the next tick. Sending a packet is also assumed 

to be completed by then. However, the packet will not be available for the 

destination node until next tick. This split-phase communication is a key 

mechanism to reduce cyclic dependencies that may occur in cycle-driven 

simulations. Most CD simulators do not allow interdependencies within a single 

tick.  

      Unlike cycle-driven simulators, a discrete-vent (DE) simulator assumes that 

the time is continuous, and an event may occur at any time. As event is 2-tuple 

with a value and a time stamp indicating when the event is supposed to be 

handled. Components in a DE simulation react to input events and produce output 

events. In node-level simulators, a component can be a sensor node, and the 

events can be communication packets; or a component can be software module 

within, and the events can be message passing among these nodes. Typically, 

components are causal, in the sense that if an output event is computed from an 

input event, then the time stamp of the output should not be earlier than that of 

the input event. Non-causal components require the simulators to be able to roll 

back in time, and worse, they may not define a deterministic behaviour of a 

system. A DE simulator typically requires a global event queue. All events 

passing between nodes or modules are put in the event queue and sorted according 



to their chronological order. At each iteration of the simulation, the simulator 

removes the first event (the one with earliest time stamp) from the queue and 

triggers the component that reacts to that event.  

        In terms of timing behavior, a DE simulator is more accurate than a CD 

simulator, and therefore, DE simulators run slower. The overhead of ordering all 

events and computation, in addition to the values and time stamps of events, 

usually dominates the computation time. At an early stage of a design when only 

the asymptotic behaviors rather than timing properties are of concern, CD 

simulations usually require fewer complex components and give faster 

simulations. This is partly because of the approximate timing behaviors, which 

make simulation results less comparable from application to application, there is 

no general CD simulator that fits all sensor network simulation tasks. Many of 

the simulators are developed for particular applications and exploit application-

specific assumptions to gain efficiency. 

         DE simulations are sometimes considered as good as actual 

implementations, because of their continuous notion of time and discrete notion 

of events. There are several open-source or commercial simulators available. One 

class of these simulators comprises extensions of classical network simulators, 

such as ns-2, J-Sim (previously known as JavaSim), and GloMoSim/ Qualnet. 

The focus of these simulators is on network modelling, protocol stacks, and 

simulation performance. Another class of simulators, sometimes called software-

in-the-loop simulators, incorporate the actual node software into the simulation. 

For this reason, they are typically attached to particular hardware platforms and 

are less portable. Example include TOSSIM [12] for Berkeley motes and Em* 

for Linux-based nodes such as Sensoria WINS NG platforms. 

 

The ns-2 Simulator and its Sensor Network Extensions 

The simulator ns-2 is an open-source network simulator that was originally 

designed for wired, IP networks. Extensions have been made to simulate 

wireless/mobile networks (e.g. 802.11 MAC and TDMA MAC) and more 

recently sensor networks. While the original ns-2 only supports logical addresses 

for each node, the wireless/mobile extension of it introduces the notion of node 

locations and a simple wireless channel model. This is not a trivial extension, 

since once the nodes move, the simulator needs to check for each physical layer 

event whether the destination node is within the communication range. For a large 

network, this significantly slows down the simulation speed.  



         There are two widely known efforts to extend ns-2 for simulating sensor 

networks: SensorSim form UCLA [15] and the NRL sensor network extension 

from the Navy Research Laboratory [16]. SensorSim also supports hybrid 

simulation, where some real sensor nodes, running real applications, can be 

executed together with a simulation. The NRL sensor network extension provides 

a flexible way of modeling physical phenomena in a discrete event simulator. 

Physical phenomena are modeled as network nodes which communicate with real 

nodes through physical layers.  

         The main functionality of ns-2 is implemented in C++, while the dynamics 

of the simulation (e.g., time-dependent application characteristics) is controlled 

by Tcl scripts. Basic components in ns-2 are the layers in the protocol stack. They 

implement the handler’s interface, indicating that they handle events. Events are 

communication packets that are passed between consecutive layers within one 

node, or between the same layers across nodes.  

           The key advantage of ns-2 is its rich libraries of protocols for nearly all 

network layers and for many routing mechanisms. These protocols are modeled 

in fair detail, so that they closely resemble the actual protocol implementations. 

Examples include the following:  

• TCP: reno, tahoe, vegas, and SACK implementations. 

• MAC: 802.3, 802.11, and TDMA. 

• Ad hoc routing: Destination sequenced distance vector (DSDV) routing, 

dynamic source routing (DSR), ad hoc on-demand distance vector 

(AOPDV) routing, and temporarily ordered routing algorithm (TORA).  

• Sensor network routing: Directed diffusion, geographical routing (GEAR) 

and geographical adaptive fidelity (GAF) routing. 

   

 

The Simulator TOSSIM 

TOSSIM is a dedicated simulator for TinyOS applications running on one or 

more Berkeley motes. The key design decisions on building TOSSIM were to 

make it scalable to a network of potentially thousands of nodes, and to be able to 

use the actual software code in the simulation. To achieve these goals, TOSSIM 

takes a cross-compilation approach that compiles the nesC source code into 

components in the simulation. The event-driven execution model of TinyOS 

greatly simplifies the design of TOSSIM. By replacing a few low-level 

components such as the A/D conversion (ADC), the system clock, and the radio 



front end, TOSSIM translates hardware interrupts into discrete-event simulator 

events. The simulator event queue delivers the interrupts that drive the execution 

of a node. The upper-layer TinyOS code runs unchanged.  

      TOSSIM uses a simple but powerful abstraction to model a wireless network. 

A network is a directed graph, where each vertex is a sensor node and each 

directed edge has a bit-error rate. Each node has a private piece of state 

representing what it hears on the radio channel. By setting connections among the 

vertices in the graph and a bit-error rate on each connection, wireless channel 

characteristics, such as imperfect channels, hidden terminal problems, and 

asymmetric links can be easily modeled. Wireless transmissions are simulated at 

the bit level. If a bit error occurs, the simulator flips the bit. 

      TOSSIM has a visualization package called TinyViz, which is a Java 

application that can connect to TOSSIM simulations. TinyViz also provides 

mechanisms to control a running simulation by, for example, modifying ADC 

readings, changing channel properties, and injecting packets. TinyViz is designed 

as a communication service that interacts with the TOSSIM event queue. The 

exact visual interface takes the form of plug-ins that can interpret TOSSIM 

events. Beside the default visual interfaces, users can add application-specific 

ones easily. 

 

Programming Beyond Individual Nodes: State-Centric Programming 

Many sensor network applications, such as target tracking, are not simply generic 

distributed programs over an ad hoc network of energy-constrained nodes. 

Deeply rooted in these applications is the notion of states of physical phenomena 

and models of their evolution over space and time. Some of these states may be 

represented on a small number of nodes and evolve over time, as in the target 

tracking problem, while others may be represented over a large and spatially 

distributed number of nodes, as in tracking a temperature contour.  

A distinctive property of physical states, such as location, shape, and motion of 

objects, is their continuity in space and time. Their sensing and control is typically 

done through sequential state updates. System theories, the basis for most signal 

and information processing algorithms, provide abstractions for state updates, 

such as: 

xk+1= f (xk,uk) 

yk=g(xk,uk) 



   

where x is the state of a system, u is the system input, y is the output and k is an 

integer update index over space and/or time, f is the state update function, and g 

is the output or observation function. This formulation is broad enough to capture 

a wide variety of algorithms in sensor fusion, signal processing, and control (e.g., 

Kalman filtering, Bayesian estimation, system identification, feedback control 

laws, and finite-state automata).However, in distributed real-time embedded 

systems such as sensor networks, the formulation is not as clean as represented 

in the above equations. The relationships among subsystems can be highly 

complex and dynamic over space and time. The following issues (which are not 

explicitly tackled in the above equations) must be properly addressed during the 

design to ensure the correctness and efficiency of the system. 

 

• Where are the state variables stored? 

• Where do the inputs come from? 

• Where do the outputs go? 

• Where are the functions f and g evaluated? 

• How long does the acquisition of input take? 

• Are the inputs in uk collected synchronously? 

• Do the inputs arrive in the correct order through communication? 

• What is the time duration between indices k and k+1? Is it a constant? 

 

These issues, addressing where and when, rather than how, to perform sensing, 

computation, and communication, play a central role in the overall system 

performance. However, these ‘non-functional” aspects of computation, related to 

concurrency, responsiveness, networking, and resource management, are not well 

supported by traditional programming models and languages. State-centric 

programming aims at providing design methodologies and frameworks that give 

meaningful abstractions for these issues, so that system designers can continue to 

write algorithms on top of an intuitive understanding of where and when the 

operations are performed.  

      A collaborative group is such an abstraction. A collaborative group is a set of 

entities that contribute to a state update. These entities can be physical sensor 

nodes, or they can be more abstract system components such as virtual sensors or 

mobile agents hopping among sensors. These are all referred to as agents. 



     Intuitively, a collaboration groups provides two abstractions: its scope to 

encapsulate network topologies and its structure to encapsulate communication 

protocols. The scope of a group defines the membership of the nodes with respect 

to the group. A software agent that hops among the sensor nodes to track a target 

is a virtual node, while a real node is physical sensor. Limiting the scope of a 

group to a subset of the entire space of all agents improves scalability. Grouping 

nodes according to some physical attributes rather than node addresses is an 

important and distinguishing characteristic of sensor networks.  

     The structure of a group defines the “roles” each member plays in the group, 

and thus the flow of data. Are all members in the group equal peers? Is there a 

“leader” member in the group that consumes data? Do members in the group form 

a tree with parent and children relations? For example, a group may have a leader 

node that collects certain sensor readings from all followers. By mapping the 

leader and the followers onto concrete sensor nodes, one can effectively define 

the flow of data from the hosts of followers to the host of the leader. The notion 

of roles also shields programmers from addressing individual nodes either by 

name or address. Furthermore, having multiple members with the same role 

provides some degree of redundancy and improves robustness of the application 

in the presence of node and link failures. 

 

PIECES: A State –Centric Design Framework 

PIECES (Programming and Interaction Environment for Collaborative 

Embedded Systems) is a software framework that implements the methodology 

of state-centric programming over collaboration groups to support the modeling, 

simulation, and design of sensor network applications. It is implemented in a 

mixed Java-Matlab environment. PIECES comprises principals and port agents. 

A principal is the key component for maintaining a piece of state. Typically, a 

principal maintains state corresponding to certain aspects of the physical 

phenomenon of interest. The role of a principal is to update its state from time to 

time, a computation corresponding to evaluation function f. A principal also 

accepts other principals’ queries of certain views on its own state, a computation 

corresponding to evaluating function g. 

     To update its portion of the state, a principal may gather information from 

other principals. To achieve this, a principal creates port agents and attaches them 

onto itself and onto the other principals. A port agent may be an input, an output, 

or both. An output port agent is also called an observer, sine it computes outputs 

based on the host principal’s state and sends them to their agents. Observers may 



be active and passive. An active observer pushes data autonomously to its 

destination (s0, while a passive observer sends data only when a consumer request 

for it. A principal typically attaches a set of observers to other principals and 

creates a local input port agent to receive the information collected by the remote 

agents. Thus, port agents capture communication patterns among principals.  

      The execution of principals and port agents can be either time-driven or event-

driven, where events may include physical events that are pushed to them (i.e., 

data-driven) or query events from other principals or agents (i.e., demand-driven). 

Principals maintain state, reflecting the physical phenomena. These states can be 

updated, rather than rediscovered, because the underlying physical states are 

typically continuous in time. How often the principal states need to be updated 

depends on the dynamics of the phenomena or physical events. The executions 

of observers, however, reflect the demands of the outputs. If an output is not 

currently needed, there is no need to compute it. The notion of “state” effectively 

separates these two execution flows.  

        To ensure consistency of state update over a distributed computational 

platform, PIECES requires that a piece of state, say x|s, can only be maintained 

by exactly one principal. Note that this does not prevent other principals from 

having local caches of x|s for efficiency and performance reasons; nor does it 

prevent the other principals from locally updating the values of cached x|s. 

However, there is only one master copy for x|s. All local updates should be treated 

as “suggestion” to the master copy, and only the principal that owns x|s has the 

final word on its values. This asymmetric access of variables simplifies the way 

shared variables are managed. 

  


