
INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 1

COURSE MATERIAL

COURSE : M.Sc[IT]

TITLE OF THE PAPER : INTERNET OF THINGS

PAPER CODE : P16IT41

Prepared By,

Mrs.K.SAVIMA,

ASSISTANT PROFESSOR,

S.T.E.T.WOMEN’S COLLEGE,

MANNARGUDI.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 2

Unit – V

Creating the IoT projects:

Sensor project

A sensor is a device that detects and responds to some type of input from the physical

environment. ... The output is generally a signal that is converted to human-readable display at

the sensor location or transmitted electronically over a network for reading or further

processing.

Put simply, a sensor converts stimuli such as heat, light, sound and motion into electrical

signals. These signals are passed through an interface that converts them into a binary code and

passes this on to a computer to be processed.

Sensors enhance and replace various human senses in automated assembly equipment. They

respond to light, electromagnetic fields, sound or pressure. ... An analog sensor is wired into a

circuit so that it will have an output that falls within a certain range. Then, the value can assume

any possible value within that range.

All types of sensors can be basically classified into analog sensors and digital sensors. But,

there are a few types of sensors such as temperature sensors, IR sensors, ultrasonic sensors,

pressure sensors, proximity sensors, and touch sensors are frequently used in most of the

electronics applications.

A good sensor obeys the following rules: it is sensitive to the measured property. it is

insensitive to any other property likely to be encountered in its application, and. it does not

influence the measured property.

a sensor is a device, module, machine, or subsystem whose purpose is to detect events or

changes in its environment and send the information to other electronics, frequently a computer

processor. A sensor is always used with other electronics.

 Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile

sensor) and lamps which dim or brighten by touching the base, besides innumerable

applications of which most people are never aware. With advances in micromachinery and

easy-to-use microcontroller platforms, the uses of sensors have expanded beyond the

traditional fields of temperature, pressure or flow measurement, for example into MARG

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 3

sensors. Moreover, analog sensors such as potentiometers and force-sensing resistors are still

widely used. Applications include manufacturing and machinery, airplanes and aerospace, cars,

medicine, robotics and many other aspects of our day-to-day life. There are a wide range of

other sensors, measuring chemical & physical properties of materials. A few examples include

optical sensors for Refractive index measurement, vibrational sensors for fluid viscosity

measurement and electro-chemical sensor for monitoring pH of fluids.

A sensor's sensitivity indicates how much the sensor's output changes when the input quantity

being measured changes. For instance, if the mercury in a thermometer moves 1 cm when the

temperature changes by 1 °C, the sensitivity is 1 cm/°C (it is basically the

slope dy/dx assuming a linear characteristic). Some sensors can also affect what they measure;

for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid

while the liquid heats the thermometer. Sensors are usually designed to have a small effect on

what is measured; making the sensor smaller often improves this and may introduce other

advantages.

Technological progress allows more and more sensors to be manufactured on a microscopic

scale as microsensors using MEMS technology. In most cases, a microsensor reaches a

significantly faster measurement time and higher sensitivity compared

with macroscopic approaches. Due the increasing demand for rapid, affordable and reliable

information in today's world, disposable sensors—low-cost and easy‐to‐use devices for short‐

term monitoring or single‐shot measurements—have recently gained growing importance.

Using this class of sensors, critical analytical information can be obtained by anyone, anywhere

and at any time, without the need for recalibration and worrying about contamination.

The following projects are based on sensors. This list shows the latest innovative projects which

can be built by students to develop hands-on experience in areas related to/ using sensors.

1. IoT using Raspberry Pi

2. Automatic Solar Tracker

3. 7 Robots (Combo Course)

4. Gesture Controlled Robot

5. Gesture Based Robotics

6. IoT using Arduino

https://www.skyfilabs.com/online-courses/iot-using-raspberry-pi
https://www.skyfilabs.com/online-courses/iot-using-raspberry-pi
https://www.skyfilabs.com/online-courses/automatic-solar-tracker
https://www.skyfilabs.com/online-courses/automatic-solar-tracker
https://www.skyfilabs.com/online-courses/7-robots-combo-course
https://www.skyfilabs.com/online-courses/gesture-controlled-robot-using-arduino
https://www.skyfilabs.com/online-courses/gesture-controlled-robot-using-arduino
https://www.skyfilabs.com/online-courses/gesture-based-robotics
https://www.skyfilabs.com/online-courses/gesture-based-robotics
https://www.skyfilabs.com/online-courses/iot-using-arduino
https://www.skyfilabs.com/online-courses/iot-using-arduino
https://www.skyfilabs.com/online-courses/sensor-guided-robotics

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 4

7. Sensor Guided Robotics

8. Automated Street Lighting

9. Smart Irrigation System

10. Smart Water Monitoring

11. Smart Building using IoT

12. 5 IoT Projects (Combo Course)

13. 4 Smart Energy Projects

14. 2 IoT Projects (Combo Course)

15. Animatronic Hand

16. Swarm Robotics

17. Automated Railway Crossing

18. Maze Solver Robot

19. Edge Detection Robot

20. 4 Mechatronics Projects (Combo Course)

Actuator project

An actuator is a component of a machine that is responsible for moving and controlling a

mechanism or system, for example by opening a valve. In simple terms, it is a "mover". ...

When it receives a control signal, an actuator responds by converting the signal's energy into

mechanical motion.

A valve actuator is a mechanical device that uses a power source to operate a valve. This

power source can be electric, pneumatic (compressed air), or hydraulic (the flow of oil). There

https://www.skyfilabs.com/online-courses/sensor-guided-robotics
https://www.skyfilabs.com/online-courses/automated-street-lighting-using-iot
https://www.skyfilabs.com/online-courses/automated-street-lighting-using-iot
https://www.skyfilabs.com/online-courses/smart-irrigation-system-using-iot
https://www.skyfilabs.com/online-courses/smart-irrigation-system-using-iot
https://www.skyfilabs.com/online-courses/smart-water-monitoring-using-iot
https://www.skyfilabs.com/online-courses/smart-water-monitoring-using-iot
https://www.skyfilabs.com/online-courses/smart-building-using-iot-and-pir
https://www.skyfilabs.com/online-courses/smart-building-using-iot-and-pir
https://www.skyfilabs.com/online-courses/5-iot-projects-combo-course
https://www.skyfilabs.com/online-courses/5-iot-projects-combo-course
https://www.skyfilabs.com/online-courses/4-smart-energy-projects
https://www.skyfilabs.com/online-courses/4-smart-energy-projects
https://www.skyfilabs.com/online-courses/2-iot-projects-combo-course
https://www.skyfilabs.com/online-courses/2-iot-projects-combo-course
https://www.skyfilabs.com/online-courses/animatronic-hand
https://www.skyfilabs.com/online-courses/animatronic-hand
https://www.skyfilabs.com/online-courses/swarm-robotics
https://www.skyfilabs.com/online-courses/swarm-robotics
https://www.skyfilabs.com/online-courses/automated-railway-crossing
https://www.skyfilabs.com/online-courses/automated-railway-crossing
https://www.skyfilabs.com/online-courses/maze-solver-robot
https://www.skyfilabs.com/online-courses/maze-solver-robot
https://www.skyfilabs.com/online-courses/edge-detection-robot-using-arduino
https://www.skyfilabs.com/online-courses/edge-detection-robot-using-arduino
https://www.skyfilabs.com/online-courses/4-mechatronics-projects-combo-course
https://www.skyfilabs.com/online-courses/4-mechatronics-projects-combo-course

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 5

are two main types of actuators, one for each of the two main types of valves that require

them. They are rotary and linear.

There are four common types of actuators: manual, pneumatic, hydraulic, and electric.

What is actuator in HVAC?

Dampers are the final control devices for almost all airflow in HVAC systems. Actuators are

the interface between the control system and the mechanical system and are critical to accurate

control. Typically, 80% or more of direct digital control (DDC) outputs in the HVAC portion

of the system go to actuators.

What is an actuator example?

In a mechanical device, an actuator is a component that turns the control signal into

movement. Examples of actuators include: Electric motors. Solenoids. Hard drive stepper

motors.

Where is actuator used?

Electric rotary actuators are used primarily in automation applications when a gate, valve, etc.

requires controlled movement to particular rotational positions. They are used in a wide range

of industries where positioning is needed. The actuators are driven by various motor types,

voice coils, etc.

What are the three types of actuators?

It describes different types of Actuators viz. Hydraulic actuator, Pneumatic actuator, Electrical

actuator, Mechanical actuator, Thermal or Magnetic actuator, Soft actuator etc.

What is the use of actuator?

An actuator is something that converts energy into motion. It also can be used to apply a force.

An actuator typically is a mechanical device that takes energy — usually energy that is created

by air, electricity or liquid — and converts it into some kind of motion.

What is actuator system?

Actuation systems are the elements of control systems which are responsible for transforming

the output of a microprocessor or control system into a controlling action on a machine or

device.

How does the actuator work?

An actuator is a motor that converts energy into torque which then moves or controls a

mechanism or a system into which it has been incorporated. It can introduce motion as well as

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 6

prevent it. An actuator typically runs on electric or pressure (such as hydraulic or pneumatic).

...

How does a linear actuator work?

An electric linear actuator is a device that converts the rotational motion of a AC or DC motor

into linear motion – that is, it will provide both push and pull movements. By pushing and

pulling it is possible to lift, drop, slide, adjust, tilt, push or pull objects, simply by pushing a

button.

Controller

What is a controller in IoT?

IoT Controllers. Qorvo's innovative ultra-low-power wireless data

communication controller chips enable smart home applications and the Internet of Things

(IoT). Our radio communication chips are optimized for remote controls, smart home

gateways, and end devices, each with their specific features and needs.

What is the role of controller service in IoT?

It handles all the number crunching and local data manipulation and decision-making. ... The

input ports collect data from sensors. While the outputs support any necessary actuation or

local control in the IoT device. Usually, microcontrollers control various devices or

subsystems within embedded applications.

The Control System | The Brain in an IoT Device

https://bridgera.com/iot-device-control-system/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 7

We recently published an introduction to IoT Sensors and Actuators, where we learned that the

enabling technology is a transducer, a physical device that converts one form of energy into

another. Now let’s look at how this energy conversion is used as input for a control system in

an IoT device.

The Control System

Your IoT device may be smaller than a coin or larger than a refrigerator. It may perform a

simple sensing function and send raw data back to a control center. It may combine data from

many sensors, perform local data analysis, and then take action. Additionally, your device

could be remote and standalone or be co-located within a larger system.

Regardless of the function, environment, or location, your IoT device requires two components,

a brain and connectivity. The “brain” provides local control (or decision-making). Your

device’s function will determine the size and capabilities of the brain component. Connectivity

is needed to communicate with external control. The environment and location of your device

will determine how it connects.

The “Brain” of the IoT Device

Your IoT device will most likely use a microcontroller as its brain. Think of a microcontroller

as a small computer with a microprocessor core, memory, and input/output (I/O) ports. The

microprocessor core of your microcontroller is a central processing unit. It handles all the

number crunching and local data manipulation and decision-making. The memory includes

Read Only Memory (ROM) and Random Access Memory (RAM). ROM stores the

microcontroller’s software program. RAM stores and receives data while also supporting

number crunching. The final microcontroller component, the I/O ports, may be either digital or

analog. The input ports collect data from sensors. While the outputs support any necessary

actuation or local control in the IoT device.

Usually, microcontrollers control various devices or subsystems within embedded applications.

By integrating the microprocessor, memory, and input/outputs, microcontrollers reduce cost

and make development easier. This makes it more affordable and less complicated to control

many IoT devices.

https://bridgera.com/iot-system-sensors-actuators/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 8

Simple Microcontroller

To determine which microcontroller to use for an IoT application, you first need to understand

a few basic specifications:

• Microprocessor Type (“Brain”)

 How fast your brain needs to think (clock speed) and how much information it can handle

(data I/O bus size) determines the microprocessor type. Depending on your application, you

may have a very simple microprocessor or a much faster, bigger, power hungry one. While you

don’t need to be an expert on microprocessors, you should have an idea of what you want it to

be able to do.

• Amount of Memory

ROM “stores” your application program in the microcontroller. The size of the program is a

function of the complexity. RAM performs two functions: It reads and writes data for file

storage, and it holds data waiting for processing by the microprocessor. An important

distinction between ROM and RAM is volatility. ROM is non-volatile, meaning that the data

remains stored with or without power. RAM is volatile, meaning it may lose data if it is without

power. This is an important factor for IoT devices which may be prone to an interruption of the

power supply.

https://bridgera.com/wp-content/uploads/2017/07/Microcontroller_Graphicpg_18.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 9

• Operating Voltage and Current

The device needs adequate voltage to support its sensors and power sources. If a device is part

of a larger system, it may use a local output voltage. Generally, sensor and battery technologies

operate within a compatible voltage range. You will need higher output currents if you need

control or activation (such as operating a motor).

• Number and Type of Input/output (I/O) Ports

The I/O ports are the connection to your device sensors and actuators. There may be few, or

many, depending on the application. The ports may act as inputs from sensor to device, as

outputs from device to sensor (or actuator), or both. As mentioned above, I/O ports may be

digital or analog. Digital ports are for simple logic, or yes/no type input. Examples include,

closing a switch, tripping a wire, presenting/not presenting something. When acting as an

output, a digital port may turn something on or off. Analog ports are for continuous input/output

like a temperature or speed. Keep in mind; microcontrollers are digital devices so signals

moving in and out must also be in digital format. Inputs from analog sensors use an analog-to-

digital converter (ADC). The purpose of the ADC is to convert data into a format that is usable

by the microcontroller. Once you define your IoT device application, you can determine the

type and number of I/O ports you need.

• Control Interface

A control interface is a protocol allowing peripheral devices and the microcontroller to

communicate with one another. Depending on the application, you may need a specific control

interface. There are different ways the interface may facilitate communication. It may use an

inter-integrated circuit (I2C), a serial peripheral interface (SPI), or a controller area network

(CAN) communications protocol. While you do not need to know technical details about these,

you do need to know which protocols your system requires. Those will determine if you need

a control interface and how that interface should communicate.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 10

Camera

Cameras are expected to become key sensor devices for various internet of things (IoT)

applications. ... Our approach towards data security for smart cameras is rooted on protecting

the captured images by signcryption based on elliptic curve cryptography (ECC).

When does a camera become a sensor?

“What most still refer to as ‘CCTV’ cameras have come a long way since the grainy days of

analogue. Today’s cameras are mostly digital, very high resolution and now extend beyond just

capturing video — to analysing and providing insight into what’s happening on-screen,”

said Crosbie.

“Physical retailers are often at a disadvantage to e-commerce sites because they lack tangible

data about store activity such as: how many people visit their shops at different times of day

and week; where people move throughout shops (pathmaps); where people linger longest

(heatmaps), and which items they handle most – all of which Prism can provide.

One of the most profitable discoveries a retailer can make is which products are getting handled

the most, but not purchased. Knowing the underlying reasons – problems with quality, sizing,

pricing – a store manager can course correct in time. I’m talking to a large petrol station retailer

that has a simple goal of converting £1 of this per customer into sales, which it reckons would

https://bridgera.com/wp-content/uploads/2017/07/Thing_Callout_Graphicpg_20.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 11

seriously boost the bottom line. This is the kind of problem that’s easy to solve with IoT and

data analytics technology.

Of course, when retailers improve the store to sell more, the in-store experience always gets

better. Popular items that customers want are easier to find, queues don’t build up, and

promotions are targeted better. These don’t just directly benefit customers, but they improve

staff morale as well, which indirectly benefits customers and the overall brand.”

Using an IoT service platform

An IoT platform plays a pivotal role for smart device vendors and startups, who can use it to

equip their products with remote control and real-time monitoring functions, configurable

alerts and notifications, pluggable cloud services, and integration with consumers'

smartphones and other devices.

What are different IoT platforms?

IoT Platform Comparison

IoT platform Services

Particle Hardware, Connectivity, Device Cloud, and Apps.

Salesforce IoT Cloud Data from customers, partners, devices, and sensors.

ThingWorx End-to-end Industrial IoT platform.

IBM Watson IoT Connection Service, Analytics Service, Blockchain Service.

Top 11 Cloud Platforms for Internet of Things (IoT)

1. Thingworx 8 IoT Platform

Thingworx is one of the leading IoT platforms for industrial companies, which provides easy

connectivity for devices. It enables the experience from today’s connected world. Thingworx

8 is a better, faster, easier platform, providing the functionality to build, deploy, and extend

industrial projects and apps.

https://searcherp.techtarget.com/definition/PTC-ThingWorx

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 12

Thingworx is an IoT platform designed by PTC for development of enterprise app

development. It offers basic features, such as:

• Easy connectivity with electronic devices, like sensors and RFIDs

• You can work remotely once you are done with the setup

• Pre-built widgets for the dashboard

• Remove Complexity of the project

• Integrated machine learning

Pros

• Easy web page designs for customers

• Easy to manage devices

• Simple connectivity solutions

Cons

• Difficult to use with custom programs in C#

• Hard to manage complex systems.

• The limitation to install edge program on a custom platform.

2. Microsoft Azure IoT Suite

Microsoft Azure provides multiple services to create IoT solutions. It enhances your

profitability and productivity with pre-built connected solutions. It analyzes untapped data to

transform business. This provides the solutions for a small PoC to Rolling out your ideas. Azure

Suite can easily analyze and act on new data.

https://azure.microsoft.com/en-in/services/iot-hub/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 13

Azure IoT Suite provides features like:

• Easy Device Registry.

• Rich Integration with SAP, Salesforce, Oracle, WebSphere, etc

• Dashboards and visualization

• Real-time streaming

Pros

• Offers third-party services

• Secure and scalable

• High availability

Cons

• Requires management

• Expensive

• No support for bugs

3. Google Cloud’s IoT Platform

Google's platform is among the best platforms we currently have. Google has an end-to-end

platform for Internet-of-Things solutions. It allows you to easily connect, store, and manage

IoT data. This platform helps you to scale your business.

https://searchsap.techtarget.com/definition/SAP
https://www.salesforce.com/in/
https://i1.wp.com/outfresh.com/wp-content/uploads/2018/06/https__blogs-images.forbes.com_janakirammsv_files_2015_10_Azure_IoT.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 14

Their main focus is on making things easy and fast. Pricing on Google Cloud is done on a per-

minute basis, which is cheaper than other platforms.

Google Cloud's IoT platform provides features, including:

• Provides huge storage

• Cuts cost for server maintenance

• Business through a fully protected, intelligent, and responsive IoT data

• Efficient and scalable

• Analyze big data

Pros

• Fastest input/output

• Lesser access time

• Provides integration with other Google services

Cons

• Most of the components are Google technologies

• Limited programming language choices

4. IBM Watson IoT Platform

IBM Watson is a powerful platform backed by IBM ’s the Bluemix and hybrid

cloud PaaS (platform as a service) development platform. By providing easy sample apps and

interfaces for IoT services, they make it accessible to beginners. You can easily try out their

sample to see how it works, which makes it stand out from other platforms.

https://cloud.google.com/solutions/iot/
https://www.ibm.com/internet-of-things/spotlight/watson-iot-platform
https://en.wikipedia.org/wiki/Bluemix
https://en.wikipedia.org/wiki/Platform_as_a_service

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 15

Users can get the following features:

• Real-time data exchange

• Secure Communication

• Cognitive systems

• Recently added data sensor and weather data service

Pros

• Process untapped data

• Handle huge quantities of data

• Improve customer services

Cons

• Need a lot of maintenance.

• Take time for Watson integration

• High switching cost.

5. AWS IoT Platform

Amazon made it much easier for developers to collect data from sensors and Internet-connected

devices. They help you collect and send data to the cloud and analyze that information to

provide the ability to manage devices.

You can easily interact with your application with the devices even they are offline.

https://i0.wp.com/outfresh.com/wp-content/uploads/2018/06/WatsonIoT.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 16

Main features of the AWS IoT platform are:

• Device management

• Secure gateway for devices

• Authentication and encryption

• Device shadow

Pros

• Good integration with laas offering.

• Price dropped over the last six years

• Open and flexible

Cons

• A big learning curve for AWS

• Three outages in the last 2 years

• Not secure for hosting critical enterprise applications

6. Cisco IoT Cloud Connect

Cisco Internet of Things accelerates digital transformation and actions from your data. Cisco

IoT Cloud Connect is a mobile, cloud-based suite. It offers solutions for mobile operators to

provide phenomenal IoT experience. It provides flexible deployment options for your devices.

https://aws.amazon.com/iot-core/features/
https://www.cisco.com/c/en/us/solutions/service-provider/iot-cloud-connect/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/iot-cloud-connect/index.html
https://i2.wp.com/outfresh.com/wp-content/uploads/2018/06/AWS-IoT-Core-.png

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 17

The main feature of the Cisco Cloud Connect:

• Data and voice connectivity

• Device and IP session report

• Billing is customizable

• Flexible deployment options

7. Salesforce IoT Cloud

Salesforce IoT Cloud is powered by Salesforce Thunder. It gathers data from devices, websites,

applications, and partners to trigger actions for real-time responses. Salesforce combined with

IoT delivers improved customer service.

https://www.youtube.com/watch?v=lW1QY-fFl2I
https://i0.wp.com/outfresh.com/wp-content/uploads/2018/06/CISCO.png

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 18

Key features of Salesforce IoT Cloud:

• Enhanced data collection

• Improved customer engagement

• Real-time event processing

• Technology optimization

Pros

• Scale to billions of devices and messages.

• Easy UI designs to connect with customers.

Cons

• Security liability

• Flexibility limitations

8. Kaa IoT Platform

Kaa is an open-source, multipurpose, middleware platform for complete end-to-end IoT

development and smart devices. It reduces cost, risk, and market time. Also, Kaa offers a range

of IoT tools that can be easily plugged in and implemented in IoT use cases.

https://www.kaaproject.org/
https://i2.wp.com/outfresh.com/wp-content/uploads/2018/06/Salesforce-IoT.png

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 19

It provides many features that make it unique, such as:

• Reduce development time

• Open source and free

• Easy and direct device implementation

• Reduce marketing time

• Handle millions of devices

Pros

• Ease of use

• Third-party integration

• Data security

Cons

• Not able to deploy applications based on the PaaS model

9. Oracle IoT Platform

Oracle offers real-time Internet of Things data analysis, endpoint management, and high speed

messaging where the user can get real-time notification directly on their devices. Oracle IoT

https://docs.oracle.com/en/cloud/paas/iot-cloud/index.html
https://i2.wp.com/outfresh.com/wp-content/uploads/2018/06/kaa-1.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 20

cloud service is a Platform as a Service (PaaS), cloud-based offering that helps you to make

critical business decisions.

Features offering to users

• Secure and scalable

• Real-time insight

• Integrated

• Faster to market

Pros

• Device visualization

• High speed messaging

• Event store

10. Thingspeak IoT Platform

Thingspeak is an open-source platform that allows you to collect and store sensor data to the

cloud. It provides you the app to analyze and visualize your data in Matlab. You can use

Arduino, Raspberry Pi, and Beaglebone to send sensor data. You can create a separate channel

to store data.

https://thingspeak.com/
https://i0.wp.com/outfresh.com/wp-content/uploads/2018/06/oracl-1.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 21

Features of Thingspeak:

• Collect data in private channels

• App integration

• Event scheduling

• MATLAB analytics and visualization

Pros

• Free hosting for channels

• Easy visualization

• Provides additional features for Ruby, Node.js, and Python

Cons

• Limited data uploading for API

• ThingSpeak API can be a hurdle for beginners

11. GE Predix IoT Platform

Predix is the world’s first industrial platform. Predix was designed to target factories and

provides simple ecosystem. It can directly analyze data from the machine and store. GE wants

to provide the growing industrial Internet of Things for its cloud platform. This platform is

secure and scalable.

https://en.wikipedia.org/wiki/Predix_(software)
https://i2.wp.com/outfresh.com/wp-content/uploads/2018/06/thingspeak-apps-for-social-things-5-728.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 22

According to the customers their IoT platform can:

• Optimize assets and operations
• Provides key performance data
• Reduces unplanned downtime
• Real-time operational data

Selecting an IoT

The Internet of Things (IoT) brings plenty of opportunities for System Integrators (SI). The

topic is hot, and customers are keen to harvest value from smart connected devices, digital

twins, and IoT-enabled business processes. It’s also true that there’s no one de-facto “IoT-in-

a-box” solution today, and integrators deliver most implementations using a variety of

technologies.

The first dilemma for SI is a choice between building the platform that “ticks all technical

requirement boxes” and finding a suitable platform on the market. Platform development is

time-consuming, and not alwats rewarding; rivals can take the market share while the SI

develops the “ideal platform.”

One should not forget about everlasting platform maintenance costs, including new industrial

protocol support and certification and new regulatory requirements support.

Those who want to choose the right IoT platform need to consider criteria that also keep core

SI business principles in mind:

https://i1.wp.com/outfresh.com/wp-content/uploads/2018/06/GE.jpg

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 23

• Complete profitable projects and deliver on time

• Try to win more projects with the same customer after the first successful

implementation

• Reuse skills and resources where possible

A good IoT platform helps the System Integrator to achieve all above, but the SI needs to make

a tough choice among several hundreds of self-described IoT platforms available on the market.

Before moving to selection criteria, let’s define the IoT platform and its services.

Despite some “platforms” can formally claim all services available, it does not make them the

right choice for the integrator.

There are three areas SI needs to evaluate the IoT platform from a technical, business, and

partnership perspective.

Technical Evaluation

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 24

The more obvious selection criteria, including connectivity, device management, data storage,

data processing, visualization, integration, and security, are covered in the full version of this

article.

There are also less apparent criteria that integrators often overlook during the IoT platform

selection process.

Platform Development and Diagnostic Tools

The IoT platform itself is the development tool, and its administrative module is an Integrated

Developer Environment (IDE). Therefore, it should allow not only application logic

development but also provide a full set of debugging capabilities.

Scalability

First, the platform should allow building a horizontal cluster with workload balancing

capabilities.

Second, it’s multi-layer architecture support. Each layer, including edge servers, data

collection, data storage, data processing and analytics, application servers and UI servers,

should scale independently.

Performance

Too many processing cores or too much memory required for data collection and manipulation

can make IoT solution unreasonably expensive. The platform should allow building cost-

effective distributed architectures keeping the solution performance high.

DevOps

The platform should allow fast code transfer between development, testing, production

environments and provide integration with GitHub/SVN.

On-Premise/Cloud and Edge Code Base Compatibility

Unfortunately, it’s not a rare case when the code for edge computing differs from the platform

code. It often happens when the IoT platform vendor tries to catch up with the market trend

towards edge computing by acquisitions.

https://blog.aggregate.tibbo.com/2019/05/iot-platform-selection-guide/
https://blog.aggregate.tibbo.com/2019/05/iot-platform-selection-guide/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 25

The same set of development tools and code portability between edge and on-premise/cloud

environments is a big time saver for the integrator.

Business Evaluation

• References and experience: A universal IoT platform means a mix of industries and use

cases in the list of references.

• IoT platform focus: Ideally, the platform should be the core business for the vendor.

But this is not always the case.

• Roadmap: Is it public or available upon request?

• Platform deployment options should include on-premise and be public Cloud provider

agnostic.

Partnership Program

• Education roadmap: The education program from the platform should cover all IoT

solution roles: administrators, implementation engineers, developers, UI developers,

data scientists, architects, etc.

• Documentation: The same as for education purposes, the Platform documentation

should be role-based, detailed, and up-to-date.

• Pricing policy: The pricing policy should be understandable. For long-term strategic

relationships, it’s also important to be clear about annual price harmonizations.

Transparent pricing allows budget projects accurately.

Final Thoughts

The IoT can be the next Big Thing for many System Integrators, and the right platform choice

determines long-term success.

While an idea to build a simple IoT platform can be a reasonable option for an enterprise with

only one IoT application, it’s not usually the case for a System Integrator. Most of SIs prefer

to partner with a specific IoT platform.

Platform

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 26

What is an IoT platform?

An IoT platform is a multi-layer technology that enables straightforward provisioning,

management, and automation of connected devices within the Internet of Things universe. It

basically connects your hardware, however diverse, to the cloud by using flexible connectivity

options, enterprise-grade security mechanisms, and broad data processing powers. For

developers, an IoT platform provides a set of ready-to-use features that greatly speed up

development of applications for connected devices as well as take care of scalability and cross-

device compatibility.

Thus, an IoT platform can be wearing different hats depending on how you look at it. It is

commonly referred to as middleware when we talk about how it connects remote devices to

user applications (or other devices) and manages all the interactions between the hardware and

the application layers. It is also known as a cloud enablement platform or IoT enablement

platform to pinpoint its major business value, that is empowering standard devices with cloud-

based applications and services. Finally, under the name of the IoT application enablement

platform, it shifts the focus to being a key tool for IoT developers.

IoT platform as the middleware

IoT platforms originated in the form of IoT middleware, which purpose was to function as a

mediator between the hardware and application layers. Its primary tasks included data

collection from the devices over different protocols and network topologies, remote device

configuration and control, device management, and over-the-air firmware updates.

To be used in real-life heterogeneous IoT ecosystems, IoT middleware is expected to support

integration with almost any connected device and blend in with third-party applications used

by the device. This independence from underlying hardware and overhanging software allows

a single IoT platform to manage any kind of connected device in the same straightforward way.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 27

Modern IoT platforms go further and introduce a variety of valuable features into the hardware

and application layers as well. They provide components for frontend and analytics, on-device

data processing, and cloud-based deployment. Some of them can handle end-to-end IoT

solution implementation from the ground up.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 28

IoT platform technology stack

In the four typical layers of the IoT stack, which are things, connectivity, core IoT features,

and applications & analytics, a top-of-the-range IoT platform should provide you with the

majority of IoT functionality needed for developing your connected devices and smart things.

Your devices connect to the platform, which sits in the cloud or in your on-premises data center,

either directly or by using an IoT gateway. A gateway comes useful whenever your endpoints

aren’t capable of direct cloud communication or, for example, you need some computing power

on edge. You can also use an IoT gateway to convert protocols, for example, when your

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 29

endpoints are in LoRaWan network but you need them to communicate with the cloud over

MQTT.

An IoT platform itself can be decomposed into several layers. At the bottom there is the

infrastructure level, which is something that enables the functioning of the platform. You can

find here components for container management, internal platform messaging, orchestration of

IoT solution clusters, and others.

The communication layer enables messaging for the devices; in other words, this is where

devices connect to the cloud to perform different operations.

The following layer represents core IoT features provided by the platform. Among the essential

ones are data collection, device management, configuration management, messaging, and OTA

software updates.

Sitting on top of core IoT features, there is another layer, which is less related to data exchange

between devices but rather to processing of this data in the platform. There is reporting, which

allows you to generate custom reports. There is visualization for data representation in user

applications. Then, there are a rule engine, analytics, and alerting for notifying you about any

anomalies detected in your IoT solution.

Importantly, the best IoT platforms allow you to add your own industry-specific components

and third-party applications. Without such flexibility adapting an IoT platform for a particular

business scenario could bear significant extra cost and delay the solution delivery indefinitely.

Advanced IoT platforms

There are some other important criteria that differentiate IoT platforms between each other,

such as scalability, customizability, ease of use, code control, integration with 3rd party

software, deployment options, and the data security level.

• Scalable (cloud native) – advanced IoT platforms ensure elastic scalability across any

number of endpoints that the client may require. This capability is taken for granted for

public cloud deployments but it should be specifically put to the test in case of an on-

premises deployment, including the platform’s load balancing capabilities for

maximized performance of the server cluster.

• Customizable – a crucial factor for the speed of delivery. It closely relates to flexibility

of integration APIs, louse coupling of the platform’s components, and source code

transparency. For small-scale, undemanding IoT solutions good APIs may be enough

to fly, while feature-rich, rapidly evolving IoT ecosystems usually require developers

to have a greater degree of control over the entire system, its source code, integration

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 30

interfaces, deployment options, data schemas, connectivity and security mechanisms,

etc.

• Secure – data security involves encryption, comprehensive identity management, and

flexible deployment. End-to-end data flow encryption, including data at rest, device

authentication, user access rights management, and private cloud infrastructure for

sensitive data – this is the basics of how to avoid potentially compromising breaches in

your IoT solution.

Cutting across these aspects, there are two different paradigms of IoT solution cluster

deployment offered by IoT platform providers: a public cloud IoT PaaS and a self-hosted

private IoT cloud.

IoT cloud enablement

An IoT cloud is a pinnacle of the IoT platforms evolution. Sometimes these two terms are used

interchangeably, in which case the system at hand is typically an IoT platform-as-a-service

(PaaS). This type of solution allows you to rent cloud infrastructure and an IoT platform all

from a single technology provider. Also, there might be ready-to-use IoT solutions (IoT cloud

services) offered by the provider, built and hosted on its infrastructure.

However, one important capability of a modern IoT platform consists in a private IoT cloud

enablement. As opposed to public PaaS solutions located at a provider’s cloud, a private IoT

cloud can be hosted on any cloud infrastructure, including a private data center. This type of

deployment offers much greater control over the new features development, customization, and

third-party integrations. It is also advocated for stringent data security and performance

requirements.

What your business can do with an IoT platform

An IoT platform plays a pivotal role for smart device vendors and startups, who can use it

to equip their products with remote control and real-time monitoring functions, configurable

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 31

alerts and notifications, pluggable cloud services, and integration with consumers’ smartphones

and other devices.

Another broad application of the IoT platform is cost optimization for companies in the

industrial, agriculture, and transportation sectors through remote monitoring of devices

and vehicles, predictive maintenance of equipment, collecting sensor data for real-time

production analytics and ensuring safety, and end-to-end cargo delivery tracking.

Large-scale IoT clouds are typical solutions

for CSPs, smart city and smart energy integrators. By using an IoT platform, these

companies develop IoT infrastructures for delivering all kinds of new services for regular

customers, public service companies, and giant corporations. Among them are connected car

services, smart grid metering, city-wide air quality monitoring, smart building deployments,

and numerous others.

Finally, an IoT platform is the essential

technology for improving customer experience in retail, healthcare, hospitality, and

travelling domains. It is used to enable highly personalized services and ensure stress-free

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 32

interaction between the customer and the company. A case in point is remote patient monitoring

and treatment solutions, which are incredibly convenient to use and save a person much time

on regular visits to the hospital. Collecting thorough patient data becomes effortless with the

IoT, whereas retailers and hospitality companies use rich data collection to create personal

offerings and run effective marketing.

Strategic trends for IoT platforms

As Gartner pointed out in their technology forecast for 2018, the next generation of business

ecosystems will be increasingly more digital, intelligent, and connected. The IoT plays a

pivotal role in what they call “an intelligent digital mesh”, thus setting a higher bar for modern

IoT platforms in several areas.

• Digital twins – offer a more powerful way to monitor, control, and manage assets.

Digital twins provide a comprehensive digital representation of real-world devices and

systems, thus improving their state monitoring and enabling faster responses to external

and internal events. Implementation of digital twins require IoT platforms to provide a

highly flexible device management capabilities, which could cope with any level of

sophistication depending on the use case. The applications of digital twins vary widely

from asset inventory and predictive maintenance to event simulation and usage

analytics. In the nearest future they are expected to become a keystone of every efficient

IoT ecosystem.

• Intelligent things – utilize AI and machine learning to extract more insights from

collected data and optimize their interactions within an IoT ecosystem. As basic IoT use

cases have been successfully gaining ground, further enhancement offered by AI will

galvanize even greater progress. Autonomous vehicles and robots at manufacturing

facilities maximize production and delivery speed while unparalleled surveillance

capacity provided by AI-supported security cameras radically transforms criminal-

justice systems. The examples are many in every sector of economy. To allow for these

cutting-edge solutions, IoT platforms must be designed to support flexible integration

with AI systems and offer scalable, resilient device orchestration.

• Cloud to the edge – places computing and data processing powers closer to managed

entities in an IoT ecosystem. The combination of cloud and edge computing

architectures enables all the benefits of a flexible cloud-native model, where separate

services can be managed and distributed across connected assets in a scalable manner,

while at the same time ensure effective operation of disconnected entities and allow

https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 33

them take faster actions in response to new data. Considering other related tasks in

regard to cluster management in private cloud and multicloud environments, it is clear

that an IoT platform have grown out of being a mere development tool and should be

capable of handling DevOps as effectively.

Connecting the dots

IoT solutions are getting inevitably more complex and dynamic. They involve larger

ecosystems of devices and evolve much faster than traditional enterprise application software.

With the proliferation of all types of remote interactions between devices and humans, IoT

solutions are also spearheading a new paradigm for customer-oriented digital experience. Their

complexity may seem intimidating at first but, in fact, taking advantage of the IoT is feasible

at a fraction of the usual effort and without reinventing the wheel. For this purpose, an IoT

platform is the new wheel.

The clayster platform, Interfacing our devices using

XMPP,Creating control application.

The Clayster platform

In this chapter, we will redevelop the Controller application that we developed in the

previous chapter and call it Controller2. We will, however, develop it as a service to be run

on the Clayster Internet of Things platform. In this way, we can compare the work that was

required to develop it as a standalone application with the effort that is required to create it as

a service running on an IoT platform. We can also compare the results and see what

additional benefits we will receive by running our service in an environment where much that

is required for a final product already exists.

Downloading the Clayster platform

We will start the download of the Clayster platform by downloading its version meant for

private use from http://www.clayster.com/downloads.

Before you are able to download the platform, the page will ask you to fill in a few personal

details and a working e-mail address. When the form is filled, an e-mail will be sent to you to

confirm the address. Once the e-mail address has been confirmed, a distribution of the

platform will be built for you, which will contain your personal information. When this is

done, a second e-mail will be sent to you that will contain a link to the distribution along with

instructions on how to install it on different operating systems.

Note

http://www.clayster.com/downloads

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 34

In our examples available for download, we have assumed that you will install Clayster

platform on a Windows machine in the C:\Downloads\ClaysterSmall folder. This is not a

requirement. If you install it in another folder or on another operating system, you might have

to update the references to Clayster Libraries in the source code for the code to compile.

All the information about Clayster, including examples and tutorials, is available in a wiki.

You can access this wiki at https://wiki.clayster.com/.

Creating a service project

Creating a service project differs a little from how we created projects in the previous

chapters. Appendix A, Console Applications outlines the process to create a simple console

application. When we create a service for a service platform, the executable EXE file already

exists. Therefore, we have to create a library project instead and make sure that the target

framework corresponds to the version of the Clayster distribution (.NET 3.5 at the time of

writing this book). Such a project will generate a dynamic link library (DLL) file. During

startup, the Clayster executable file will load any DLL file it finds marked as a Clayster

Module in its installation folder or any of its subfolders.

Adding references

The Clayster distribution and runtime environment already contains all Clayster libraries.

When we add references to these libraries from our project, we must make sure to use the

libraries available in the Clayster distribution from the installation folder, instead of using the

libraries that we used previously in this book. This will ensure that the project uses the

correct libraries. Apart from the libraries used previously, there are a few new libraries

available in the Clayster distribution that are new to us, and which we will need:

• Clayster.AppServer.Infrastructure: This library contains the application engine

available in the platform. Apart from managing applications, it also provides report

tools, cluster support, management support for operators and administrators; it

manages backups, imports, exports, localization and various data sources used in IoT,

and it also provides rendering support for different types of GUIs, among other things.

• Clayster.Library.Abstract: This library contains a data abstraction layer, and is a

crucial tool for the efficient management of objects in the system.

• Clayster.Library.Installation: This library defines the concept of packages.

• Clayster.Library.Meters: This library replaces the Clayster.Library.IoT library used in

previous chapters. It contains an abstraction model for things such as sensors,

actuators, controllers, meters, and so on.

Apart from the libraries, we will also add two additional references to the project—this time

to two service modules available in the distribution, which are as follows:

• Clayster.HomeApp.MomentaryValues: This is a simple service that displays

momentary values using gauges. We will use this project to display gauges of our

sensor values.

• Clayster.Metering.Xmpp: This module contains an implementation of XMPP on top

of the abstraction model defined in the Clayster.Library.Metersz namespace. It does

everything we did in the previous chapter and more.

https://wiki.clayster.com/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 35

Making a Clayster module

Not all DLLs will be loaded by Clayster. It will only load the DLLs that are marked as

Clayster modules. There are three requirements for a DLL to be considered as a Clayster

module:

• The module must be CLS-compliant.

• It must be marked as a Clayster module.

• It must contain a public certificate with information about the developer.

Tip

There are a lot of online services that allow you to create simple self-signed certificates. One

such service can be found at www.getacert.com.

All these things can be accomplished through the AssemblyInfo.cs file, available in each

.NET project. Enforcing CLS compliance is easy. All you need to do is add

the CLSCompliant assembly attribute, defined in the System namespace, as follows:

using System;

[assembly: CLSCompliant(true)]

This will make sure that the compiler creates warnings every time it finds a construct that is

not CLS-compliant.

The two last items can be obtained by adding a public (possibly self-generated) certificate as

an embedded resource to the project and referencing it using the Certificate assembly

attribute, defined in the Clayster.Library.Installation library, as follows:

[assembly: Certificate("LearningIoT.cer")]

Note

This certificate is not used for identification or security reasons. Since it is embedded into the

code, it is simple to extract. It is only used as a means to mark the module as a Clayster

module and provide information about the developer, so that module-specific data is stored

appropriately and locally in an intuitive folder structure.

Executing the service

There are different ways in which you can execute a service. In a commercial installation, a

service can be hosted by different types of hosts such as a web server host, a Windows

service host or a standalone executable host. While the first two types are simpler to monitor

and maintain in a production environment, the latter is much easier to work with during

development. The service can also be hosted in a cluster of servers.

The small Clayster distribution you've downloaded contains a slightly smaller version of the

standalone executable host that can be run on Mono. It is executed in a terminal window and

displays logged events. It loads any Clayster modules found in its folder or any of its

http://www.getacert.com/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 36

subfolders. If you copy the resulting DLL file to the Clayster installation folder, you can

simply execute the service by starting the standalone server from Windows, as follows:

Clayster.AppServer.Mono.Standalone

If you run the application from Linux, you can execute it as follows:

$ sudo mono Clayster.AppServer.Mono.Standalone.exe

Using a package manifest

Instead of manually copying the service file and any other associated project files, such as

content files, the developer can create a package manifest file describing the files included in

the package. This makes the package easier to install and distribute. In our example, we only

have one application file, and so our manifest file becomes particularly simple to write. We

will create a new file and call it Controller2.packagemanifest. We will write the following

into this new file and make sure that it is marked as a content file:

<?xml version="1.0" encoding="utf-8" ?>

<ServicePackageManifest

xmlns="http://clayster.com/schema/ServicePackageManifest/v1.xsd">

<ApplicationFiles>

<ApplicationFile file="Controller2.dll"/>

</ApplicationFiles>

</ServicePackageManifest>

Tip

You can find more information on how to write package manifest file can be found

at https://wiki.clayster.com/mediawiki/index.php?title=Service_Package_Manifest_File.

Now that we have a package manifest file, we can install the package and execute the

standalone server from the command line in one go. For a Windows system we can use the

following command:

Clayster.AppServer.Mono.Standalone –i Controller2.packagemanifest

On a Linux system the standalone server can be executed using the following command:

$ sudo mono Clayster.AppServer.Mono.Standalone.exe –i Controller2.packagemanifest

Before loading the server and executing the particular service, the executable file analyzes the

package manifest file and copies all the files to the location where they belong.

Executing from Visual Studio

If you are working with the professional version of Visual Studio, you can execute the service

directly from the IDE. This will allow you to debug the code directly from the IDE. To do

https://wiki.clayster.com/mediawiki/index.php?title=Service_Package_Manifest_File

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 37

this, you need to open the properties by right-clicking on the project in the Solution Explorer

and go to the Debug tab. As a Start Action, choose the Start external program option. There

you need to search for the Clayster.AppServer.Mono.Standalone.exe file and enter -i

Controller2.packagemanifest on the command line arguments box. Now you can execute and

debug the service directly from the IDE.

Configuring the Clayster system

The Clayster system does many things automatically for us that we have manually done

earlier. For instance, it maintains a local object database, configures a web server, configures

mail settings, connects to an XMPP server, creates an account, registers with a Thing

Registry and provisioning server, and so on. However, we need to provide some details

manually for this to work. We will do this by editing

the Clayster.AppServer.Infrastructure.Settings.xml file.

In Raspberry Pi, we will do this with the following command:

$ sudo nano Clayster.AppServer.Infrastructure.Settings.xml

The file structure is already defined. All we need to do is provide values for

the SmtpSettings element so that the system can send e-mails. We can also take this

opportunity to validate our choice of XMPP server in the XmppServerSettings element,

which by default is set to thingk.me, and our HTTP server settings, which are stored in

the HttpServerSettings and HttpCacheSettings elements.

Tip

You can find more detailed information about how to set up the system

at https://wiki.clayster.com/mediawiki/index.php?title=Clayster_Setting_Up_Index.

Using the management tool

Clayster comes with a management tool that helps you to manage the server. This Clayster

Management Tool (CMT), can also be downloaded

from http://www.clayster.com/downloads.

Apart from the settings file described in the previous section, all other settings are available

from the CMT. This includes data sources, objects in the object database, current activities,

statistics and reports, and data in readable event logs.

When the CMT starts, it will prompt you for connection details. Enter a name for your

connection and provide the IP address of your Raspberry Pi (or localhost if it is running on

your local machine). The default user name is Admin, and the default password is the blank

password. Default port numbers will also be provided.

Tip

To avoid using blank passwords, the CMT will ask you to change the password after the first

login.

https://wiki.clayster.com/mediawiki/index.php?title=Clayster_Setting_Up_Index
http://www.clayster.com/downloads

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 38

A typical login window that appears when CMT starts will looks like the following

screenshot:

Login window in CMT

Browsing data sources

Most of the configurable data in Clayster is ordered into data sources. These can be either

tree-structured, flat or singular data sources. Singular data sources contain only one object.

Flat data sources contain a list (ordered or unordered) of objects. Tree structured data sources

contain a tree structure of objects, where each object in the structure represents a node. The

tree-structured data sources are the most common, and they are also often stored as XML

files. Objects in such data sources can be edited directly in the corresponding XML file, or

indirectly through the CMT, other applications or any of the other available APIs.

When you open the CMT for the first time, make sure that you open the Topology data

source. It is a tree-structured data source whose nodes represent IoT devices. The tree

structure shows how they are connected to the system. The Root represents the server itself.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 39

In the following example, we can see the system (Root) connected to an XMPP Server (via

an account). Through this account, five entities can be accessed (as "friends"). Our sensor,

actuator, and camera are available and online (marked in green). Our thing registrar app is a

connection, but is not currently online. We are also connected to a Thing Registry and

provisioning service. Each node adds its functionality to the system.

Displaying the Topology data source in CMT

In the CMT, you can view, modify, delete, import, and export all objects in these data

sources. Apart from the Topology data source, there are a lot of other available data sources.

Make sure that you familiarize yourself with them.

Interfacing our devices using XMPP

XMPP is already implemented and supported through the Clayster.Metering.Xmpp module

that we mentioned earlier. This module models each entity in XMPP as a separate node in

the Topology data source. Connections with provisioning servers and thing registries are

handled automatically through separate nodes dedicated to this task. Friendships are handled

through simple child creation and removal operations. It can be done automatically through

requests made by others or recommendations from the provisioning server, or manually by

adding friends in the CMT. All we need to do is provide specialized classes that override base

class functionality, and add specific features that are needed.

Creating a class for our sensor

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 40

In our project, we will create a class for managing our sensor. We will derive it from

the XmppSensor class defined in Clayster.Metering.Xmpp and provide the required default

constructor through the following code:

public class Sensor : XmppSensor

{

public Sensor()

{

}

Each class managed by Clayster.Library.Abstract, such as those used by the Topology data

source, must define a TagName and a Namespace property. These are used during import and

export to identify the class in question as follows:

public override string TagName

{

get { return "IoTSensor"; }

}

public override string Namespace

{

get { return "http://www.clayster.com/learningiot/"; }

}

We must also provide a human readable name to the class. Whenever objects of this class are

displayed, for instance in the CMT, it is this human readable name that will be displayed, as

shown in the following code:

public override string GetDisplayableTypeName (Language UserLanguage)

{

return "Learning IoT - Sensor";

}

Finding the best class

When the system finds a new device, it needs to know which class best represents that device.

This is done by forcing each XMPP device class to implement a Supports method that returns

to which degree the class handles said device, based on features and interoperability

interfaces reported by the device. The class with the highest support grade is then picked to

handle the newly found device.

By using the following code, we will override this method to provide a perfect match when

our sensor is found:

public override SupportGrade Supports (

XmppDeviceInformation DeviceInformation)

{

if (Array.IndexOf<string> (

DeviceInformation.InteroperabilityInterfaces,

"Clayster.LearningIoT.Sensor.Light") >= 0 &&

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 41

Array.IndexOf<string> (

DeviceInformation.InteroperabilityInterfaces,

"Clayster.LearningIoT.Sensor.Motion") >= 0)

{

return SupportGrade.Perfect;

}

else

return SupportGrade.NotAtAll;

}

Subscribing to sensor data

Manual readout of the sensor is already supported by the XmppSensor class. This means you

can already read data from the sensor from the CMT, for instance, as it is. However, this is

not sufficient for our application. We want to subscribe to the data from the sensor. This

subscription is application-specific, and therefore must be done by us in our application. We

will send a new subscription every time the sensor reports an online or chat presence.

The XmppSensor class will then make sure that the subscription is sent again if the data is not

received accordingly. The subscription call is similar to the one we did in the previous

chapter. The subscription call is sent using the following code:

protected override void OnPresenceChanged (XmppPresence Presence)

{

if (Presence.Status == PresenceStatus.Online ||

Presence.Status == PresenceStatus.Chat)

{

this.SubscribeData (-1, ReadoutType.MomentaryValues,

new FieldCondition[] {

FieldCondition.IfChanged ("Temperature", 0.5),

FieldCondition.IfChanged ("Light", 1),

FieldCondition.IfChanged ("Motion", 1)

}, null, null, new Duration (0, 0, 0, 0, 1, 0), true,

this.NewSensorData, null);

}

}

Interpreting incoming sensor data

Interpreting incoming sensor data is done using the Clayster platform in a way that is similar

to what we did using the Clayster.Library.IoT library in the previous chapters. We will start

by looping through incoming fields:

private void NewSensorData (object Sender, SensorDataEventArgs e)

{

FieldNumeric Num;

FieldBoolean Bool;

double? LightPercent = null;

bool? Motion = null;

if(e.HasRecentFields)

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 42

{

foreach(Field Field in e.RecentFields)

{

switch(Field.FieldName)

{

There is one added advantage of handling field values when we run them on the Clayster

platform: we can do unit conversions very easily. We will illustrate this with the help of an

example, where we handle the incoming field value - temperature. First, we will try to

convert it to Celsius. If successful, we will report it to our controller application (that will

soon be created):

case "Temperature":

if ((Num = Field as FieldNumeric) != null)

{

Num = Num.Convert ("C");

if (Num.Unit == "C")

Controller.SetTemperature (Num.Value);

}

break;

Tip

There is a data source dedicated to unit conversion. You can create your own unit categories

and units and determine how these relate to a reference unit plane, which is defined for each

unit category. Unit conversions must be linear transformations from this reference unit plane.

We will handle the Light and Motion values in a similar way. Finally, after all the fields have

been processed, we will call the Controller application and ask it to check its control rules:

if (LightPercent.HasValue && Motion.HasValue)

Controller.CheckControlRules (

LightPercent.Value, Motion.Value);

}

}

Our Sensor class will then be complete.

Creating a class for our actuator

If implementing support for our Sensor class was simple, implementing a class for our

actuator is even simpler. Most of the actuator is already configured by

the XmppActuator class. So, we will first create an Actuator class that is derived from

this XmppActuator class. We will provide it with a TagName that will return "IoTActuator"

and the same namespace that the Sensor class returns. We will use Learning IoT –

Actuator as a displayable type name. We will also override the Supports method to return a

perfect response when the corresponding interoperability interfaces are found.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 43

Customizing control operations

Our Actuator class is basically complete. The XmppActuator class already has support for

reading out the control form and publishing the available control parameters. This can be

tested in the CMT, for instance, where the administrator configures control parameters

accordingly.

To make control of the actuator a bit simpler, we will add customized control methods to our

class. We already know that the parameters exist (or should exist) since the corresponding

interoperability interfaces (contracts) are supported.

We will begin by adding a method to update the LEDs on the actuator:

public void UpdateLeds(int LedMask)

{

this.RequestConfiguration ((NodeConfigurationMethod)null, "R_Digital Outputs", LedMask,

this.Id);

}

The RequestConfiguration method is called to perform a configuration. This method is

defined by Clayster.Library.Meters namespace, and can be called for all configurable nodes

in the system. Configuration is then performed from a context that is defined by the node.

The XmppActuatorclass translates this configuration into the corresponding set operation,

based on the data type of the parameter value.

The first parameter contains an optional callback method that is called after the parameter has

been successfully (or unsuccessfully) configured. We don't require a callback, so we will only

send a null parameter value. The second parameter contains the name of the parameter that

needs to be configured. Local configurable parameters of the XmppActuator class differ from

its remote configurable parameters, which are prefixed by R_. The third parameter value is

the value that needs to be configured. The type of value to send here depends on the

parameter used. The fourth and last parameter is a subject string that will be used when the

corresponding configuration event is logged in the event log.

Tip

You can find out which configurable parameters are available on a node by using the CMT.

In a similar fashion, we will add a method for controlling the alarm state of the actuator and

then our Actuator class will be complete.

Creating a class for our camera

In essence, our Camera class does not differ much from our Sensor class. It will only have

different property values as well as a somewhat different sensor data subscription and field-

parsing method. Interested readers can refer to the source code for this chapter.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 44

Creating our control application

We are now ready to build our control application. You can build various different kinds of

applications on Clayster. Some of these have been listed as follows:

• 10-foot interface applications: These applications are suitable for TVs, smart phones

and tablets. They are created by deriving from

the Clayster.AppServer.Infrastructure.Application class. The name emerged from the

requirement that the application should be usable from a distance of 10 feet (about 3

meters), like a television set. This, for instance, requires large fonts and buttons, and

no windows. The same interface design is suitable for all kinds of touch displays and

smart phones.

• Web applications: These applications are suitable for display in a browser. These are

created by deriving from the Clayster.AppServer.Infrastructure.WebApplication class.

The thingk.me service is a web application running on the Clayster platform.

• Non-visible services: These services can be implemented, by

the Clayster.Library.Installation.Interfaces.IPluggableModule interface.

• Custom views: These views for integration with the CMT can be implemented by

deriving from Clayster.Library.Layout.CustomView.

The first two kinds of applications differ in one important regard: Web applications are

assumed to be scrollable from the start, while 10-foot interface applications have to adhere to

a fixed-size screen.

Understanding rendering

When creating user interfaces in Clayster, the platform helps the developer by providing them

with a powerful rendering engine. Instead of you having to provide a complete end user GUI

with client-side code, the rendering engine creates one for you dynamically. Furthermore, the

generated GUI will be created for the client currently being used by the user. The rendering

engine only takes metadata about the GUI from the application and generates the GUI for the

client. In this way, it provides a protective, generative layer between application logic and the

end user client in much the same way as the object database handles database communication

for the application, by using metadata available in the class definitions of objects that are

being persisted.

The rendering pipeline can be simplistically described as follows:

1. The client connects to the server.

2. An appropriate renderer is selected for the client, based on protocol used to connect to

the server and the capabilities of the client. The renderer is selected from a list of

available renderers, which themselves are, to a large extent, also pluggable modules.

3. The system provides a Macro-layout for the client. This Macro-layout is devoid of

client-specific details and resolutions. Instead, it consists of a basic subdivision of

available space. Macro-layouts can also be provided as pluggable modules. In the leaf

nodes of this Macro-layout, references are made either explicitly or implicitly to

services in the system. These services then provide a Micro-layout that is used to

further subdivide the available space. Micro-layout also provides content for the

corresponding area.

http://thingk.me/

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 45

Tip

More information about Macro-layout and Micro-layout can be found

here https://wiki.clayster.com/mediawiki/index.php?title=Macro_Layout_and_Micro_Layout.

1. The system then provides a theme, which contains details of how the layout should be

rendered. Themes can also be provided as pluggable modules.

2. The final interactive GUI is generated and sent to the client. This includes interaction

logic and support for push notification.

Defining the application class

Since we haven't created a 10-foot interface application in the previous chapters, we will

create one in this chapter to illustrate how they work. We will start by defining the class:

public class Controller : Application

{

public Controller ()

{

}

Initializing the controller

Much of the application initialization that we did in the previous chapters has already been

taken care of by the system for us. However, we will still need a reference to the object

database and a reduced mail settings class. Initialization is best done by overriding

the OnLoaded method:

internal static ObjectDatabase db;

internal static MailSettings mailSettings;

public override void OnLoaded ()

{

db = DB.GetDatabaseProxy ("TheController");

mailSettings = MailSettings.LoadSettings ();

if (mailSettings == null)

{

mailSettings = new MailSettings ();

mailSettings.From = "Enter address of sender here.";

mailSettings.Recipient = "Enter recipient of alarm mails here.";

mailSettings.SaveNew ();

}

}

Adding control rules

The control rules we define for the application will be the same as those used in previous

chapters. The only difference here is that we don't need to keep track of the type or number of

https://wiki.clayster.com/mediawiki/index.php?title=Macro_Layout_and_Micro_Layout

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 46

devices that are currently connected to the controller. We can simply ask the Topology data

source to return all the items of a given type, as follows:

if (!lastAlarm.HasValue || lastAlarm.Value != Alarm)

{

lastAlarm = Alarm;

UpdateClients ();

foreach (Actuator Actuator in Topology.Source.GetObjects(

typeof(Actuator), User.AllPrivileges))

Actuator.UpdateAlarm (Alarm);

if (Alarm)

{

Thread T = new Thread (SendAlarmMail);

T.Priority = ThreadPriority.BelowNormal;

T.Name = "SendAlarmMail";

T.Start ();

}

The second parameter in the GetObjects call is a user object. It is possible to limit access to

objects in a data source based on access privileges held by the role of the user. A predefined

user having all access rights (User.AllPrivileges) assures us that we will get all the objects of

the corresponding type. Also, note that we made a call to an UpdateClients method. We will

define this method later. It will ensure that anything that causes changes in the GUI is pushed

up to the connected end users.

Tip

Users, roles, and privileges are three separate data sources that are available in Clayster. You

can manage these in the CMT if you have sufficient privileges. Nodes in the Topology data

source can require visible custom privileges. Edit the corresponding nodes to set such custom

privileges. This might allow you to create an environment with compartmentalized access

to Topology data source and other data sources.

Understanding application references

Macro-layouts provided by the system can reference applications in the system in different

ways:

• Menu reference: A menu reference consists of a reference to the application together

with an instance name string. Micro-layout for a menu reference is fetched by calling

the OnShowMenu method on the corresponding application. There are three types of

menu references:

o

1. Standard menu reference: This appears in normal menus.

2. Custom menu reference: This is a custom area of custom size. It can be

considered a widget. In Clayster, such a widget is called a brieflet.

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 47

3. Dynamic selection reference: This is a selection area that can display

detailed information about a selected item from a selected application

on the screen.

• Dialog reference: A dialog reference consists of a reference to an application, together

with an instance name string and a dialog name string. Micro-layout for a dialog

reference will be fetched by calling the OnShowDialog method on the corresponding

application.

Defining brieflets

In our example, we will only use custom menu references, or the so-called brieflets. We don't

need to create menus for navigation or dialogs containing user interaction. Everything that we

need to display will fit into one simple screen. First, we will tell the system that the

application will not be visible in regular menus:

public override bool IsShownInMenu(IsShownInMenuEventArgs e)

{

return false;

}

This is the method in which the application can publish standard menu references. We will

then define the brieflets that we want to publish. This will be done by overriding

the GetBrieflets method, as follows:

public override ApplicationBrieflet[] GetBrieflets (

GetBriefletEventArgs e)

{

return new ApplicationBrieflet[] {

new ApplicationBrieflet ("Temperature",

"Learning IoT - Temperature", 2, 2),

new ApplicationBrieflet ("Light",

"Learning IoT - Light", 2, 2),

new ApplicationBrieflet ("Motion",

"Learning IoT - Motion", 1, 1),

new ApplicationBrieflet ("Alarm",

"Learning IoT - Alarm", 1, 1)

};

}

The first parameter in each brieflet definition is the instance name identifying the brieflet.

The second parameter is a human readable string that is used when a list of available brieflets

is presented to a human user. The last two parameters correspond to the size of the brieflet.

The unit that is used is the number of "squares" in an imaginary grid. A menu item in a touch

menu can be seen as a 1 x 1 square.

Displaying a gauge

All our brieflets are customized menu items. So, to display something in one of our brieflets,

we just need to return the corresponding Micro-layout by overriding

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 48

the OnShowMenu method. In this example, we want to start by returning Micro-layout for

the temperature brieflet:

public override MicroLayout OnShowMenu (ShowEventArgs e)

{

switch (e.InstanceName)

{

case "Temperature":

Micro-layout can be defined either by using XML or dynamically through code, where each

XML element corresponds to a class with the same name. We will use the second approach

since it is easier to create a dynamic Micro-layout this way. We will use the

applicationClayster.HomeApp.MomentaryValues, available in the distribution, to quickly

draw a bitmap image containing a gauge displaying our sensor value. This is shown in the

following code snippet:

MicroLayoutElement Value;

System.Drawing.Bitmap Bmp;

if (temperatureC.HasValue)

{

Bmp = Clayster.HomeApp.MomentaryValues.Graphics.GetGauge (15, 25,

temperatureC.Value, "°C", GaugeType.GreenToRed);

Value = new ImageVariable (Bmp);

}

else

Value = new Label ("N/A");

Tip

Bitmap content can be displayed using either ImageVariable or ImageConstant (or any of its

descendants). We have used ImageVariable in this example and we will

use ImageConstant to display camera images.

Constant images also provide a string ID, which identifies the image. Using this ID, the

image can be cached on the client, and it will be fetched from the server only if the client

does not already have the image in its cache. This requires less communication resources, but

may induce flicker when the image changes and the new image is not available in the cache

and while it is being loaded. ImageVariable supposes the image to be new for every update. It

requires more communication resources, but provides updates without flicker since the image

data is embedded into the frame directly. You can try the two different methods separately to

get a feel for how they work.

When we get the gauge—or the label if no value is available—we will return the Micro-

layout. Remember that Macro-layout and Micro-layout work by subdividing the available

space, rather than placing controls on a form. In our case, we will divide the available space

into two rows of relative heights 1:3, the top one containing a header and the lower one the

gauge or label:

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 49

return new MicroLayout (new Rows (

new Row (1, HorizontalAlignment.Center,

VerticalAlignment.Center,

Paragraph.Header1 ("Temperature")),

new Row (3, HorizontalAlignment.Center,

VerticalAlignment.Center, Value)));

The brieflet showing the light gauge is handled in exactly the same way.

Displaying a binary signal

The layouts for the binary motion and alarm signals are laid out in a manner similar to what

we just saw, except the size of the brieflet is only 1 x 1:

case "Motion":

Value = this.GetAlarmSymbol (motion);

return new MicroLayout (new Rows (

new Row (1, HorizontalAlignment.Center,

VerticalAlignment.Center,

Paragraph.Header1 ("Motion")),

new Row (2, HorizontalAlignment.Center,

VerticalAlignment.Center, Value)));

The same code is required for the alarm signal as well. A binary signal can be displayed by

using two constant images. One represents 0 or the "off" state, and the other represents 1 or

the "on" state. We will use this method in binary brieflets by utilizing two images that are

available as embedded resources in the application Clayster.HomeApp.MomentaryValues, to

illustrate the point:

private MicroLayoutElement GetAlarmSymbol(bool? Value)

{

if (Value.HasValue)

{

if (Value.Value)

{

return new MicroLayout (new ImageMultiResolution (

new ImageConstantResource (

"Clayster.HomeApp.MomentaryValues." +

"Graphics._60x60.Enabled." +

"blaljus.png", 60, 60),

new ImageConstantResource (

"Clayster.HomeApp.MomentaryValues." +

"Graphics._45x45.Enabled." +

"blaljus.png", 45, 45)));

}

else

return new MicroLayout (new ImageMultiResolution (

new ImageConstantResource (

"Clayster.HomeApp.MomentaryValues." +

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 50

"Graphics._60x60.Disabled." +

"blaljus.png", 60, 60),

new ImageConstantResource (

"Clayster.HomeApp.MomentaryValues." +

"Graphics._45x45.Disabled." +

"blaljus.png", 45, 45)));

}

}

else

return new Label ("N/A");

}

Note

Micro-layout supports the concept of multiresolution images. By providing various options,

the renderer can choose the image that best suits the client, given the available space at the

time of rendering.

Pushing updates to the client

It's easy to push updates to a client. First, you need to enable such push notifications. This

can be done by enabling events in the application as follows. By default, such events are

disabled:

public override bool SendsEvents

get { return true; }

Each client is assigned a location. For web applications, this location is temporary. For 10-

foot interfaces, it corresponds to a Location object in the geo-localized Groups data source. In

both cases, each location has an object ID or OID. To forward changes to a client, an

application will raise an event providing the OID corresponding to the location where the

change should be executed. The system will handle the rest. It will calculate what areas of the

display are affected, render a new layout and send it to the client.

Tip

All areas of the screen corresponding to the application will be updated on the corresponding

client. If you have multiple brieflets being updated asynchronously from each other, it is

better to host these brieflets using different application classes in the same project. This

avoids unnecessary client updates. In our code, we will divide our brieflets between three

different applications, one for sensor values, one for camera images and one for test

command buttons.

Push notifications in our application are simple. We want to update any client who views the

application after a sensor value is updated, regardless of the location from which the client

views the application. To do this, we first need to keep track of which clients are currently

viewing our application. We define a Dictionary class as follows:

private static Dictionary<string,bool> activeLocations = new Dictionary<string, bool> ();

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 51

We will populate this Dictionary class with the object IDs OID of the location of the clients

as they view the application:

public override void OnEventNotificationRequest (Location Location)

{

lock(activeLocations)

{

activeLocations [Location.OID] = true;

}

}

And depopulate it as soon as a client stops viewing the application:

public override void OnEventNotificationNoLongerRequested (Location Location)

{

lock (activeLocations)

{

activeLocations.Remove (Location.OID);

}

}

To get an array of locations that are currently viewing the application, we will simply copy

the keys of this dictionary into an array that can be safely browsed:

public static string[] GetActiveLocations ()

{

string[] Result;

lock (activeLocations)

{

Result = new string[activeLocations.Count];

activeLocations.Keys.CopyTo (Result, 0);

}

return Result;

}

Updating clients is now easy. Whenever a new sensor value is received, we will call

the UpdateClients method, which in turn will register an event on the application for all

clients currently viewing it. The platform will take care of the rest:

private static string appName = typeof(Controller).FullName;

private static void UpdateClients ()

{

foreach (string OID in GetActiveLocations()) EventManager.RegisterEvent (appName, OID);

}

Completing the application

The source code for our project contains more brieflets that are defined in two more

application classes. The CamStorage class contains three brieflets that show the last three

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 52

camera images that were taken. They use ImageConstant to display the image to the client.

The application also pushes updates to clients in the same way in which the Controller class

does. However, by putting the brieflets in a separate application, we can avoid updating the

entire screen when a new camera image is taken or when sensor values change.

A third application class named TestApp publishes two small brieflets, each containing a Test

button that can be used to test the application. It becomes quickly apparent if the sensor is

connected and works, since changes to sensor values are followed by changes in the

corresponding gauges. To test the actuator, one brieflet publishes a Test button. By clicking

on it, you can test the LED and alarm outputs. A second brieflet publishes a Snapshot button.

By clicking this button you can take a photo, if a camera is connected, and update any visible

camera brieflets.

Configuring the application

We can now try the application. We will execute the application as described earlier. The first

step is to configure the application so that the devices become friends and can interchange

information with each other. This step is similar to what we did in the previous chapter. You

can either configure friendships manually or use thingk.me to control access permissions

between the different projects and the new service.

Note that the application will create a new JID for itself and register it with the provisioning

server. It will also log a QR code to the event log, which will be displayed in the terminal

window. This QR code can be used to claim ownership of the controller.

Tip

Remember to use the CMT application to monitor the internal state of your application when

creating friendships and trying readouts and control operations. From the CMT, you can open

line listeners to monitor actual communication. This can be done by right-clicking the node in

the Topology data source that represents the XMPP server.

Viewing the 10-foot interface application

After starting the Clayster platform with our service, we can choose various ways to view the

application. We can either use a web browser or a special Clayster View application. For

simplicity's sake, we'll use a web browser. If the IP address of our controller is 192.168.0.12,

we can view the 10-foot interface

at http://192.168.0.12/Default.ext?ResX=800&ResY=600&HTML5=1&MAC=00000000000

1&SimDisplay=0&SkipDelay=1.

Tip

For a detailed description on how to form URLs for 10-foot interface clients,

see https://wiki.clayster.com/mediawiki/index.php?title=Startup_URLs.

There are various ways to identify the location object to which the client corresponds. This

identification can be done by using the client's IP address, MAC address, login user name,

certificate thumbprint, XMPP address, or a combination of these.

http://thingk.me/
https://wiki.clayster.com/mediawiki/index.php?title=Startup_URLs

INTERNET OF THINGS K.SAVIMA,M.Sc.,M.PHIL(Ph.D)

Page 53

Note

The ClaysterSmall distribution comes with a Groups data source containing one location

object identified by MAC address 000000000001. If you are using other identification

schemes, or a client that reports a true MAC address, then the corresponding location object

must be updated. For more information on this go

to https://wiki.clayster.com/mediawiki/index.php?title=Groups_-_Location.

You can also configure the system to automatically add Location objects to your Groups data

source. This would allow automatic installation of new client devices.

To be able to configure the screen the way we want, we will enter the Settings menu, click on

the Layout menu item and select the No Menu 5x4 option. This will clear the display and

allow you to experiment with placing brieflets over the entire screen using a 5x4 grid of

squares. Simply click on the user-defined layout on an area that does not have a brieflet, and

you can select which brieflet you want to display there.

After arranging the brieflets the way we want, the screen might look something like the

following screenshot. Gauges, binary signals, and camera images will be automatically

pushed to the client, and from this interface we can see both the current state of the controller

as well as test all the parts of the system.

https://wiki.clayster.com/mediawiki/index.php?title=Groups_-_Location

