SENGAMALA THAYAAR EDUCATIONAL TRUST WOMEN'S COLLEGE

(Affiliated to Bharathidasan University)

(Accredited with 'A' Grade {3.45/4.00} By NAAC)

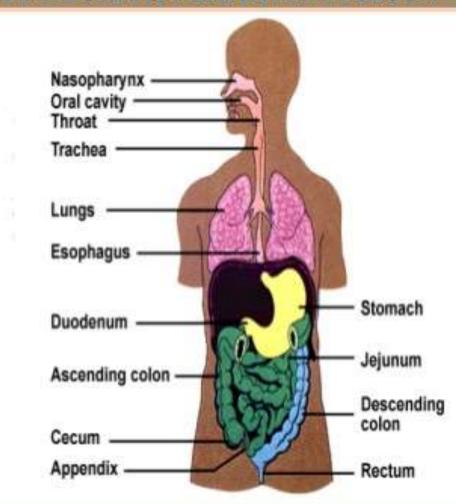

(An ISO 9001: 2015 Certified Institution)

Sundarakkottai, Mannargudi-614 016. Thiruvarur (Dt.),

Tamil Nadu, India.

MEDICAL MICROBIOLOGY
SEMESTER – IV
NORMAL FLORA
SUBJECT CODE: P16MB41

Dr.M.KANNAHI
ASSISTANT PROFESSOR
PG & RESEARCH DEPARTMENT OF MIICROBIOLOGY


Normal Flora

- More bacterial than human cells in the body
 - provide some nutrients (vitamin K)
 - stimulate immune system, immunity can be cross-reactive against certain pathogens
 - Prevent colonization by potential pathogens (antibiotic-associated colitis, *Clostridium difficile*)

NORMAL FLORA

LOCATION SITE OF NORMAL FLORA ON HEALTHY PERSON

- **Skin**
- Eyes (i.e.Cunjunctiva)
- O Nose (i.e. Respiratory tract)
- Mouth (i.e Human Oral Cavity)
- o Ears
- Urogenetal tract
- Gastrointestinal tract

Skin (aerobes: Staphylococci & Corynebacteria; anaerobes: Propionibacteria) Nose: Staphylococcus aureus (similar to skin) Oral (106-109 cfu/ml): complex, mostly anaerobes: GPB: Bifidobacteria, Propionibacteria GNB: Bacteroides, Fusobacteria, Leptotrichia Small intestine: GPC: Peptostreptococci, Streptococci GNC: Veillonella (tongue) Spirochetes: Treponema Urinary tract: usually sterile

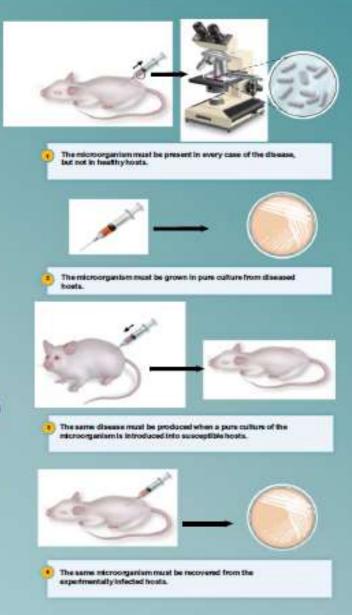
Stomach: (0-103 cfu/ml) Gram + aerobes, Lactobacilli & Streptococci, H. pylori

Proximal ileum (103-104 cfu/ml) aerobic Gram +. Distal ileum (1011-1012 cfu/ml) Gram - anaerobes.

Colon (1011-1012 cfu/ml): Bacteroides, Eubacteria, Peptostreptococci, Bifidobacteria, Fusobacteria

Vagina: diverse aerobes & anaerobes including Lactobacillus jensenii, Lactobacillus acidophilus, Lactobacillus casei

Fig. 1. Predominant flora in different niches of the human body. Compiled from references: (3), (9-13).

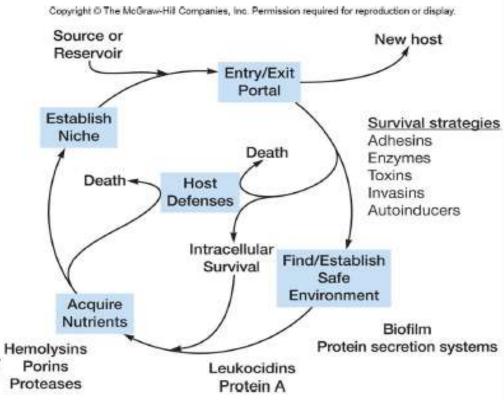

SIGNIFICANCE OF NORMAL FLORA

- 1.The normal flora influences the anatomy, physiology, susceptibility to pathogens, and morbidity of the host.
- 2. The effect of the normal flora on the host was not well
 understood until germ-free animals became available.
- Cesarean Section => Germ-free animals => Isolators
 w/o detectable pathogens (viruses, bacteria & others)
- 3. Two interesting observations:
- a. the germ-free animals lived almost twice as long as their conventionally maintained counterparts.
- b. the major causes of death were different in the
- two groups.

16.4. Establishing the Cause of Infectious Disease

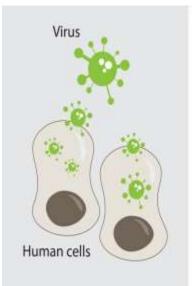
Koch's Postulates

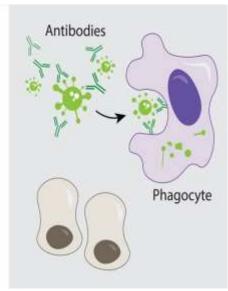
- Criteria Robert Koch used to establish that Bacillus anthracis causes anthrax
 - Microorganism must be present in every case of disease
 - Organism must be grown in pure culture from diseased host
 - Same disease must be produced when pure culture is introduced into susceptible hosts
 - Organisms must be recovered from experimentally infected hosts

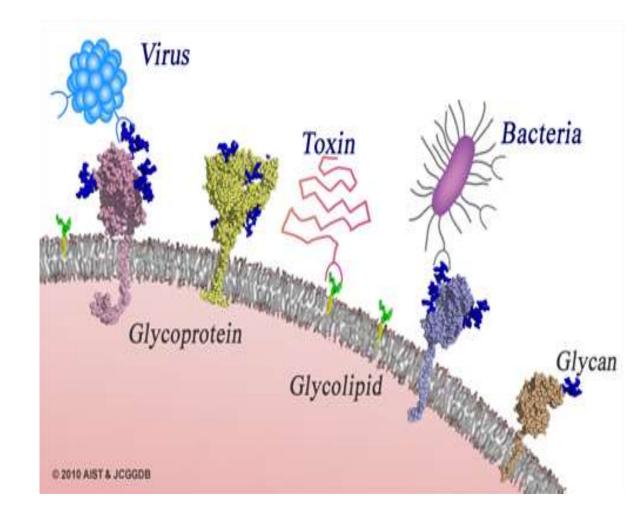


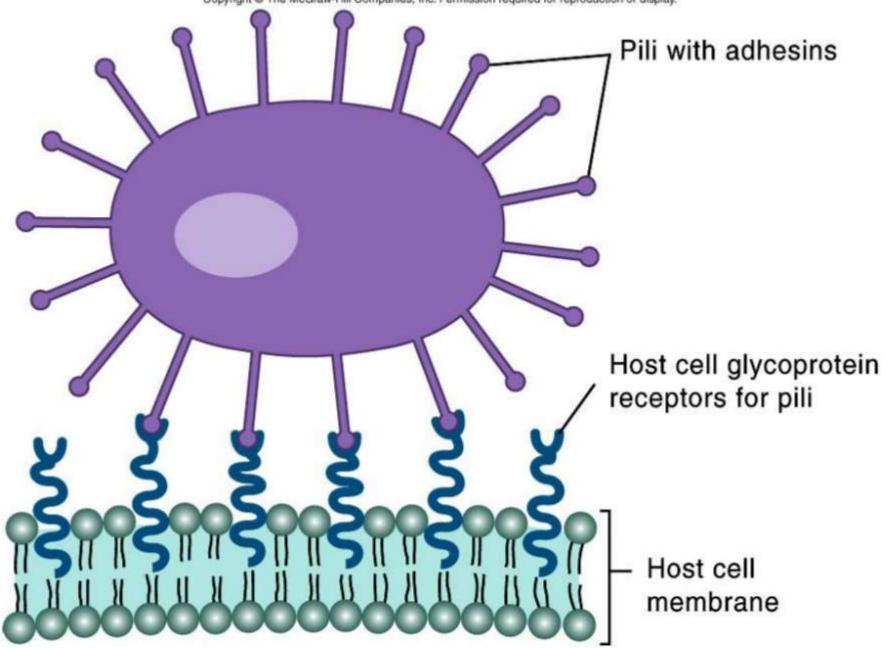
Types of Pathogens

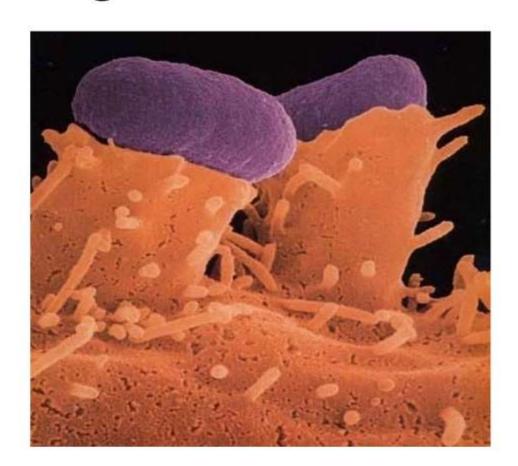
- Primary Pathogens
 - Cause disease upon infection, not normally associated with host
 - Plague (Yersinia pestis), influenza virus
- Opportunistic Pathogens
 - Cause disease under some circumstances, sometime members of normal flora
 - Pseudomonas, Candida albicans

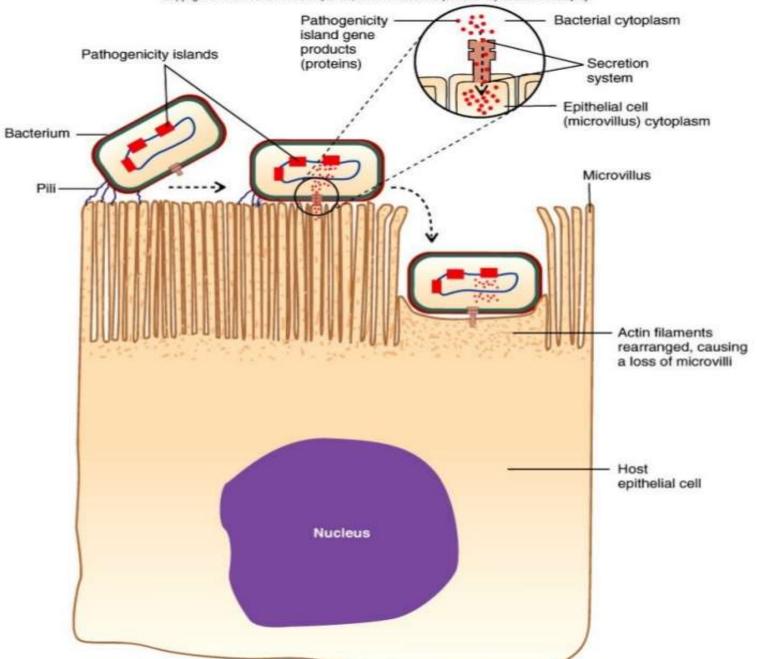

Infectious Process


- A pathogen must contact a host AND survive within it to cause a disease. To survive, it needs
 - a suitable environment
 - a source of nutrients
 - in competition with eukaryotic host cells
 - Protection from harmful elements
 - virulence factors allow Porins Proteases
 a pathogen to outcompete
 host cells and resist their defenses


• 1. Encounter:


- fecal-oral (cholera)
- human-human (tuberculosis)
- animal-human (rabies)
- vector-borne (plague, lyme disease)
- environmental contact (anthrax)

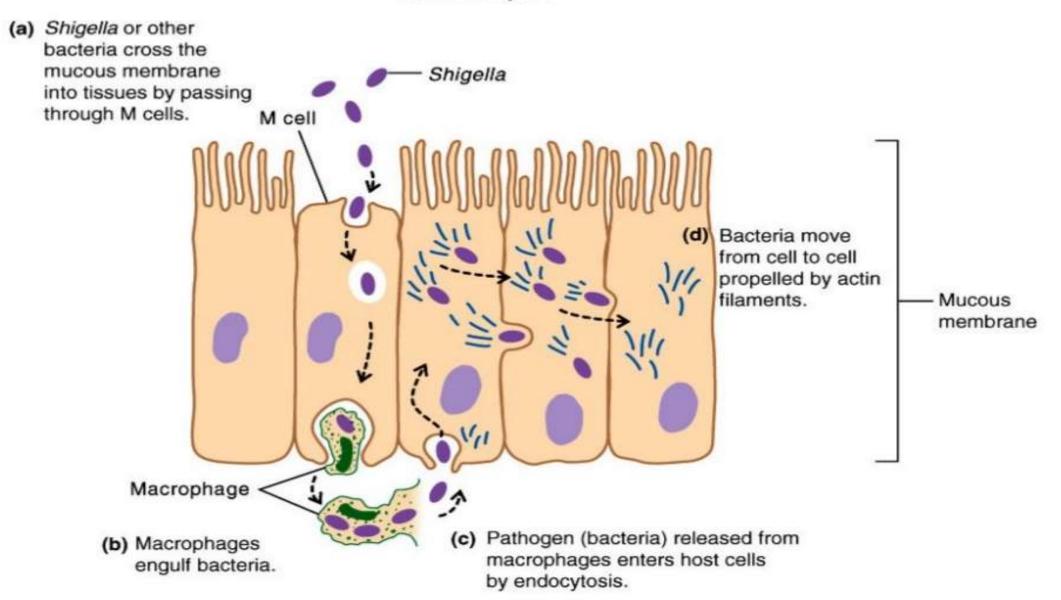

- 2. Adherence
 - Prevents early clearance
 - Often bind host tissues via pili
 - Specificity can determine host range of pathogen



- 3. Colonization: multiplication and maintainance
 - Competition with normal flora
 - Resist:
 - bile
 - stomach acid
 - peristalsis
 - skin secretions
 - IgA (mucosal antibodies)
 - compete with host for iron

- 4. Molecule Delivery
 - Affects target cell structure and host response

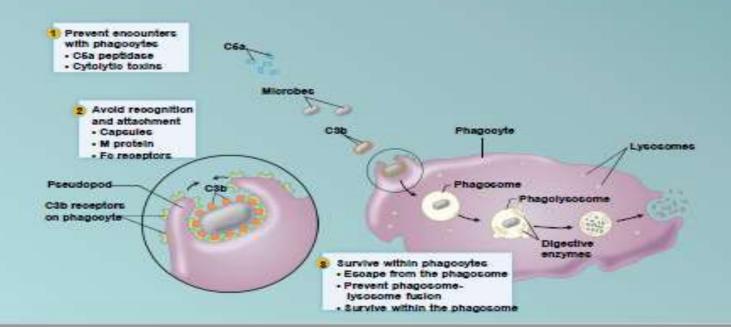
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Invasion:Breaching Anatomical Barriers

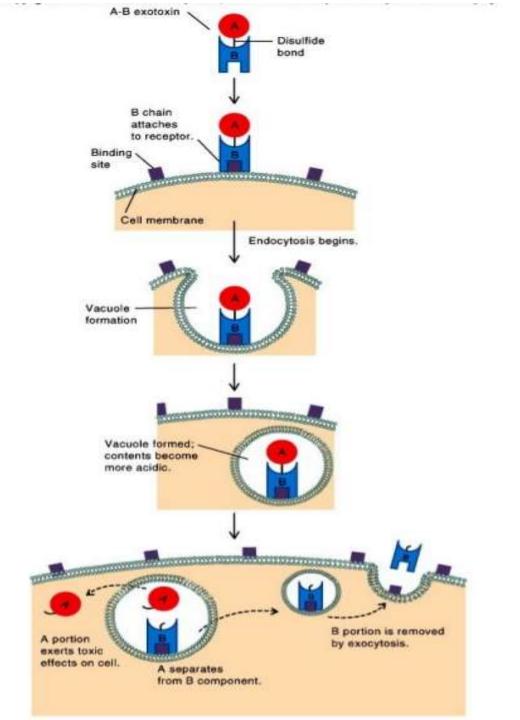
- Find new niche with few competitors
- Gain access to rich nutrient supply
- 1. Skin: tough barrier, rely on wounds or insect vectors
- 2. Crossing mucous membrane (e.g. intestinal epithelial cells)

Invasion:Breaching Anatomical Barriers

- Find new niche with few competitors
- Gain access to rich nutrient supply
- 1. Skin: tough barrier, rely on wounds or insect vectors
- 2. Crossing mucous membrane (e.g. intestinal epithelial cells)


Intestinal Space

Tissue Inside Mucous Membrane


16.7. Avoiding the Host Defenses

- Avoiding Destruction by Phagocytes
 - Preventing Encounters with Phagocytes
 - C5a peptidase: degrades chemoattractant C5a
 - E.g., Streptococcus pyogenes
 - Membrane-damaging toxins: kill phagocytes, other cells
 - E.g., S. pyogenes makes streptolysin O

Damage to Host (Disease)

- 1. Exotoxins
 - May require prior colonization (cholera)
 - May cause food poisoning even in absence of organism
 - Botulism or Staphylococcus aureus toxin
 - Immune system often target toxin for neutralizing Ab's
 - Vaccine against toxin
 - A-B toxins: A is catalytic subunit, B binds host cells

Example	Name of Disease; Name of Toxin	Characteristics of the Disease	Mechanism	Page Reference
A-B TOXINS—Compo	sed of two subunits, A and B.	The A subunit is the toxic, or a	ctive, part; the B subunit binds to the target cel	L.
Neurotoxins				
Clostridium botulinum	Botulism; botulinum toxin	Flaccid paralysis	Blocks transmission of nerve signals to the muscles by preventing the release of acetylcholine.	p. 652
Clostridium tetani	Tetanus; tetanospasmin	Spastic paralysis	Blocks the action of inhibitory neurons by preventing the release of neurotransmitters.	p. 555
Enterotoxins				
Enterotoxigenic E. coli	Traveler's diarrhea; heat- labile enterotoxin (cholera- like toxin)	Severe watery diarrhea	Modifies a regulatory protein in intestinal cells, causing those cells to continuously secrete electrolytes and water.	p. 590
Vibrio cholerae	Cholera; cholera toxin	Severe watery diarrhea	Modifies a regulatory protein in intestinal cells, causing those cells to continuously secrete electrolytes and water.	p. 586
Cytotoxins				
Bacillus anthracis	Anthrax; edema factor, lethal factor	Inhaled form—septic shock; cutaneous form—skin lesions	Edema factor modifies a regulatory protein in cells, causing accumulation of fluids. Lethal factor inactivates proteins involved in cell signaling functions.	p. 497
Bordetella pertussis	Pertussis (whooping cough); pertussis toxin	Sudden bouts of violent coughing	Modifies a regulatory protein in respiratory cells, causing accumulation of respiratory secretions and mucus. Other factors also contribute to the symptoms.	p. 501
Corynebacterium diphtheriae	Diphtheria; diphtheria toxin	Pseudomembrane in the throat; heart, nervous system, kidney damage	Inhibits protein synthesis by inactivating an elongation factor of eukaryotic cells. Kills local cells (in the throat) and is carried in the bloodstream to various organs.	p. 490
E. coli O157:H7	Bloody diarrhea, hemolytic uremic syndrome; shiga toxin	Diarrhea that may be bloody; kidney damage	Inactivates the 605 subunit of eukaryotic ribosomes, halting protein synthesis.	p. 590
Shigella dysenteriae	Dysentery, hemolytic uremic syndrome; shiga toxin	Diarrhea that contains blood, pus, and mucus; kidney damage	Inactivates the 60S subunit of eukaryotic ribosomes, halting protein synthesis.	p. 588

Damage to Host (Disease)

- 2. Membrane-damaging toxins
 - Hemolysins
 - Cause cell-lysis: Streptolysin O

- Phospholipases
 - Cleave lipids in membranes: Clostridium perfringens
 - Gas gangrene

THANK YOU