
 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

Unit II Assembly Language Programs (8085 only) 

Flow chart 

 The thinking process described here and the steps necessary to write the program can be 

represented in a pictorial format, called a flowchart. 

 Generally, a flowchart is used for two purposes: to assist and clarify the thinking process 

and to communicate the programmer's thoughts or logic to others 

 Symbols commonly used in flowcharting are shown in Figure 

 

 

 

 

 

 

 

 

 

Circle with an arrow: Represents continuation 

(an entry or exit) to a different page 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

DATA TRANSFER (COPY) OPERATIONS 

 One of the primary functions of the microprocessor is copying data, from a 

register(or I/O or memory) called the source, to another register (or I/O or 

memory) called the destination 

 The contents of the source are not transferred, but are copied into the destination 

register without modifying the contents of the source. 

  

Several instructions are used to copy data. This section is concerned with the following 

operations. 

 

MOV: Move    -Copy a data byte. 

 

MVI: Move Immediate   -Load a data byte directly. 

 

OUT: Output to Port    -Send a data byte to an output device. 

 

IN: Input from Port               -Read a data byte from an input device. 

 

 The term copy is equally valid for input/output functions because the contents of the 

source are not altered.  

 However, the term data transfer is used so commonly to indicate the data copy function 

that, these terms are used interchangeably when the meaning is not ambiguous. 

 In addition to data copy instructions, it is necessary to introduce two machinecontrol 

operations to execute programs. 

 

HLT: Halt Stop processing and wait. 

 

NOP: No Operation Do not perform any operation. 

------------- 

DATA MANIPULATIONOPERATIONS: 

 

1. ARITHMETIC OPERATIONS 

 

ADD: Add   Add the contents of a register.* 

 

ADI: Add Immediate  Add 8-bit data. 

 

SUB: Subtract   Subtract the contents of a register. 

 

SUI: Subtract Immediate Subtract 8-bit data. 

 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

INR: Increment  Increase the contents of a register by 1. 

 

DCR: Decrement  Decrease the contents of a register by 1. 

Addition 

 The 8085 performs addition with 8-bit binary numbers and stores the sum in the 

accumulator.  

 If the sum is larger than eight bits (FFH), it sets the Carry flag. 

 Addition can be performed either by adding the contents of a source register (B, C, D, E, 

H, L, or memory) to the contents of the accumulator (ADD) or by adding the second byte 

directly to the contents of the accumulator (ADI). 

Subtraction 
 

 The 8085 performs subtraction by using the method of 2's complement. 

 Subtraction can be performed by using either the instruction SUB to subtract the contents 

of a source register or the instruction SUI to subtract an 8-bitnumber from the contents of 

the accumulator. In either case, the accumulator contents are regarded as the minuend 

(the number from which to subtract). 

The8085performs the following steps internally to execute the instruction SUB (or SUI). 

Step1: Convertssubtrahend (the number to be subtracted) into its l's complement. 

Step2:Adds 1 to l's complement to obtain 2's complement of the subtrahend. 

Step3: Add 2's complement to the minuend (the contents of the accumulator). 

Step4: Complementsthe Carry flag. 

2. LOGIC OPERATIONS 

 A microprocessor is basically a programmable logic chip.  

 It can perform all the logic functions of the hard-wired logic through its instruction set.  

 The 8085 instruction set includes such logic functions as AND, OR, Ex OR, and NOT 

(complement). The opcodes of these operations are as follows:* 

 

ANA: AND Logically AND the contents of A- register 

 

ANI: AND Immediate Logically AND 8-bit data. 

 

ORA: OR Logically OR the contents of A- register. 

 

ORI: OR Immediate Logically OR 8-bit data. 

 

XRA: X-OR Exclusive-OR the contents of A- register. 

 

XRI : X-OR Immediate Exclusive-OR 8-bit data. 

 

All logic operations are performed in relation to the contents of the accumulator. 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

OR, Exclusive-OR, and NOT 

 

The instruction ORA (and ORI) simulates logic ORing with eight 2-input OR gates; this process 

is similar to that of AND ing. The instruction XRA (and XRI)performsExc1usive-ORingof eight 

bits and the instruction CMA invert the bits of the accumulator. 

 

BRANCH OPERATIONS 

 The branch instructions are the most powerful instructions because they allow the 

microprocessor to change the sequence of a program, either unconditionally or under 

certain test conditions.  

 These instructions are the key to the flexibility and versatility of a computer.  

 The microprocessor is a sequential machine; it executes machine codes from one memory 

location to the next.  

 Branch instructions instruct the microprocessor to go to a different memory location, and 

the microprocessor continues executing machine codes from that new location.  

 The address of the new memory location is either specified explicitly or supplied by the 

microprocessor or by extra hardware.  

 The branch instructions are classified in three categories: 

1. Jump instructions 

2. Call and Return instructions 

3. Restart instructions 

 The Jump instructions specify the memory location explicitly.  

 They are 3-byte instructions: one byte for the operation code, followed by a 16-bit 

memory address.  

 Jump instructions are classified into two categories: Unconditional Jump and 

Conditional Jump. 

Unconditional Jump 

The 8085 instruction set includes one unconditional Jump instruction. The unconditional Jump 

instruction enables the programmer to set up continuous loops. 

Example:  
JMP 8500 

    

Description 

 This is a 3-byte instruction  

 The second and third bytes specify the 16 bit memory address. However, the second byte 

specifies the low-order and the third byte specifies the high-order memory address 

 
 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

Conditional Jumps 

 

 Conditional Jump instructions allow the microprocessor to make decisions based on 

certain conditions indicated by the flags.  

 After logic and arithmetic operations, flip-flops (flags) are set or reset to reflect data 

conditions. 

  The conditional Jump instructions check the flag conditions and make decisions to 

change or not to change the sequence of a program. 

 Four flags used by the Jump instructions are 

1. Carry flag2. Zero flag3. Sign flag4. Parity flag 

Instruction: 

All conditional Jump instructions in the 8085 are 3-byte instructions; the second byte specifies 

the low-order (line number) memory address, and the third byte specifies the high-order (page 

number) memory address. 

Example:     

 

JC 8500          -      Jump on Carry (if result generates carry and CY=1) 

 

JNC 8500 -     Jump on No Carry (CY =0) 

 

JZ 8500           -       Jump on Zero (if result is zero and Z = 1) 

 

JNZ 8500 -   Jump on No Zero (Z =0) 

______________________________________________________________________________ 

Assembly language program for 8085 microprocessor: 

1. 8 bit – Addition 

LABLE MNEMONICS COMMENT 

 LDA 8200H Get first data in A register 

 MOV B,A Move A to B 

 LDA 8201H Get second data in A register 

 MVI C,00H Clear C register 

 ADD B Add B and A and store in A register 

 JNC AHEAD  If carry is 0 go to AHEAD 

 INR C If carry is 1 increment C register 

AHEAD STA 8202H Store the sum on memory 

 MOV A,C Move the content C to A register 

 STA 8203H Store the carry in memory 

 HLT halt program execution 

 

 

 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

2. 8 bit – Subtraction 

LABLE MNEMONICS COMMENT 

 MVI C,00H Move the immediate data 00h into the C register 

 LDA 9000H Load the content of 9000h into A register 

 MOV B,A Copy the content of A to B 

 LDA 9001H Load the content of 9001H into A register 

 SUB B Subtract the content of B from the accumulator content 

  

JNC L1 (800EH) 

 

Jump on to L1 , if there is no carry  

 

 INR C Increment the content of C reg by 1 

L1  

STA 8500H 

Store accumulator content in the memory 

 

 

 MOV A,C Copy the content of C to A register 

  

STA 8501H 

Store the accumulator content in the memory 

 

 

 HLT halt program execution 

 

3. 8 bit – Multiplication 

LABLE MNEMONICS COMMENT 

 MVI D, 00H Move the immediate data 00h into the D register 

 LDA 8500H Load the content of 8500h into A register 

 MOV B,A Copy the content of A to B 

 LDA 8501H Load the content of 8501H into A register 

 MOV C,A Copy the content of A to C 

 XRA A Clear the accumulator 

L2 ADD B Add the content of A with B 

 JNC L1(8010H) Jump on to L1 , if there is no carry 

 INR D Increment the content of D register by 1 

L1 DCR C Decrement the content of C register by 1 

 JNZ L2(800BH) Jump on to L2 , if there is no 0 

 STA 9000H Store the accumulator content in the memory 

 MOV A,D Copy the content of D to A register 

 STA 9001H Store the accumulator content in the memory 

 HLT halt program execution 

 

 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

4. 8bit - Division 

LABLE MNEMONICS COMMENT 

 MVI C, 00H Move the immediate data 00h into the C register 

 LDA 8500H Load the content of 8500h into A register 

 MOV B,A Copy the content of A to B 

 LDA 8501H Load the content of 8501H into A register 

L2 CMP B Compare accumulator value with B value 

 JC L1(8012H) Jump on to L1 , if there is no carry 

 SUB B Subtract the content of B from the accumulator 

content 

 INR C Increment the content of C register by 1 

 JMP L2 Jump on to L2, without any condition 

L1  

STA 9000H 

Store the accumulator content in the memory 

 

 

 MOV A,C Move C to A register 

  

STA 9001H 

Store the accumulator content in the memory 

 

 

 HLT halt program execution 

 

5.  Ascending order 

(Write an program to sort on array of data in the Ascending order. The array is stored in 

the memory starting from 4200H the first element of the array gives the count value for 

the number of elements in the array)  

 

 

LABLE MNEMONICS COMMENT 

 LDA 4200H Load the count value in A-register. 

 MOV B, A Set count for N-1 repetition  

 DCR B of  N-1comparison 

LOOP 2 LXI H,4200H Set pointer for  array 

 MOV C, M Setv count for N-1 comparisons 

 DCR C  

 INX H  Increment the pointer 

LOOP 1 MOV A, M get one data of array in  A-register. 

 INX H  

 CMP M Compare the next data of array with content of A-

register. 

 JC AHEAD If content of A is Less than memory, then go to 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

 

 

 

 

 

 

 

 

6. Descending order 

(Write an program to sort on array of data in the Descending order. The array is stored in 

the memory starting from 4200H the first element of the array gives the count value for 

the number of elements in the array)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

AHEAD  

 MOV D, M If the content of A is greater than content of memory, 

then exchange the content of memory pointed by HL 

and previous memory location 

 MOV M,A   

 DCX H  

 MOV M , D  

 INX H  

AHEAD DCR C  

 JNZ LOOP 1 Repeat comparison until C- count is zero  

 DCR B  

 JNZ LOOP 2 Repeat N-1 comparison until B- count is zero 

 HLT halt program execution 

LABLE MNEMONICS COMMENT 

 LDA 4200H Load the count value in A-register. 

 MOV B, A Set count for N-1 repetition  

 DCR B of  N-1comparison 

LOOP 2 LXI H,4200H Set pointer for  array 

 MOV C, M Setv count for N-1 comparisons 

 DCR C  

 INX H  Increment the pointer 

LOOP 1 MOV A, M get one data of array in A-register. 

 INX H  

 CMP M Compare the next data of array with the content of A-

register. 

 JNC AHEAD If content of A is greater than content of memory 

addressed by HL pair, then go to AHEAD  

 MOV D, M If the content of A is less than content of memory 

addressed by HL pair, then exchange content of 

memory pointed by HL and previous memory location 

 MOV M,A   

 DCX H  

 MOV M , D  

 INX H  

AHEAD DCR C  

 JNZ LOOP 1 Repeat comparison until C- count is zero  

 DCR B  

 JNZ LOOP 2 Repeat N-1 comparison until B- count is zero 

 HLT halt program execution 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

 

7. Search for Smallest data in an array 

(Write an assembly language program to search the smallest data in an array of N data stored 

in memory from 4200H to (4200H+N). The first element of the array gives the number of 

data in the array) 

LABLE MNEMONICS COMMENT 

 LXIH, 4200H set pointer for array 

 MOV B, M set count for no. of elements in array 

 INX H  

 MOV A , M Set first element of array as smallest data 

 DCR B Decrement the count 

LOOP INX H  

 CMP M Compare an element of array with current smallest 

data 

 JC AHEAD  If CF =1, go to AHEAD 

 MOV A, M If CF =0, Then content of memory is smaller than A-

register. Hence, if CF = 0, make memory as smallest 

by moving to A - register 

AHEAD DCR   B  

 JNZ LOOP Repeat comparison until count is zero 

 STA 4300H Store the smallest data in memory 

 HLT halt program execution 

 

8. Search for Largest data in an array 

(write an assembly language program to search the largest data in an arrayof N data stored  in 

memory from 4200H to (4200H+N). The first element of the array gives the number of data 

in the array) 

LABLE MNEMONICS COMMENT 

 LXIH, 4200H set pointer for array 

 MOV B, M set count for no. of elements in array 

 INX H  

 MOV A , M Set first element of array as smallest data 

 DCR B Decrement the count 

LOOP INX H  

 CMP M Compare an element of array with current smallest 

data 

 JC AHEAD  If CF =0, go to AHEAD 

 MOV A, M If CF =1, Then content of memory is larger than A-

register. Hence, if CF = 1, make memory content as 

current largest by moving it to A - register 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

AHEAD DCR   B  

 JNZ LOOP Repeat comparison until count is zero 

 STA 4300H Store the largest data in memory 

 HLT halt program execution 

 

9. Square root of 8-bit binary number 

(Write an assembly language program to find the Square root of an 8-bit binary number.The 

binary number is stored in memory location 4200H and store the square root in 4201H.) 

LABLE MNEMONICS COMMENT 

 LDA 4200H Get the given data(Y) in A-register 

 MOV B, A Save the data in B-register 

 MVI C, 02H Get the deviser (02H) in C-register 

 CALL DIV Call division subroutine to get initial value (X) in the 

D- register. 

REP MOV E, D  Save the initial value in E- register 

 MOV A, B Get the dividend (Y) in A-register 

 MOV C, D Get the divisor (X) in C-register 

 CALL DIV Call division subroutine to get  (Y/X) in D- register. 

 MOV A, D Move (Y/X) in A- register. 

 ADD E Get ((Y/X) / X) in A- register. 

 MVI C, 02H Get the deviser (02H) in C-register 

 CALL DIV Call division subroutine to get XNEW in the D- 

register. 

 MOV A, E Get X in A- register. 

 CMP D Compare X and XNEW  

 JNZ REP If XNEW is not equal to X, then repeat. 

 STA 4201H save the square root in memory 

 HLT halt program execution 

   

;division subroutine   

DIV MVI D, 00H Clear the D- register for quotient  

NEXT  SUB C Subtract the divisor from dividend 

 INR D Increment the quotient 

 CMP C Repeat subtraction until the divisor is less than 

dividend.  JNC NEXT 

 RET Return to main program  

   

 

 

 



 

Dr. I. Manimehan, M. R. Govt. Arts College, Mannargudi 

10. Find the square of given number 

(Find the square of the given numbers from memory location 6100H and store the result from 

memory location 7000H) 

 LABLE MNEMONICS COMMENT 

 LXI H,6200H Initialize lookup table pointer 

 LXI D, 6100H  Initialize source memory pointer 

 LXI B, 7000H Initialize Destination memory pointer 

BACK LDAX D  Get the number 

 MOV L,A  A point to the square 

 MOV A, M  Get he square 

 STAX B  Store the result at destination memory location  

 INX D Increment source memory pointer 

 INX B  Increment destination memory pointer 

 MOV A, C  

 CPI 05H  Check for last number 

 JNZ BACK If not repeat 

 HLT halt program execution 

 

Write short notes on look up table and its usage. (6) 

 Lookup table is an array that replaces runtime computation with a 

simpler array indexing operation.  

 The savings in terms of processing time can be significant, since 

retrieving a value from memory is often faster than undergoing an 

'expensive' computation or input/output operation. 

 The tables may be pre-calculated and stored in static program storage, 

calculated (or "pre-fetched") as part of a program's initialization phase 

(memorization), or even stored in hardware in application-specific 

platforms. 

 Lookup tables are also used extensively to validate input values by 

matching against a list of valid (or invalid) items in an array. 

 

http://en.wikipedia.org/wiki/Static_memory_allocation
http://en.wikipedia.org/wiki/Prefetcher

