
EDAYATHANGUDY G.S.PILLAY ARTS AND SCIENCE COLLEGE

 Affiliated to Bharathidhasan university, Tiruchirappalli
 (NAAC Accredited with “A”Grade)
 Nagapattinam--611002

 Subjectcode:16SCCCA4
Subject: DataBase System

Unit V:

 Relational database design: Features of good Relation

design - Atomic Domains and first normal form - Decomposition
using functional dependencies – Functional-Dependencies theory -
Decomposition using functional dependencies - Decomposition
using Multivaluted dependencies – More Normal forms – Database-
Design process

Relational Database Design

􀂄 Features of Good Relational Design
􀂄 Atomic Domains and First Normal Form
􀂄 Decomposition Using Functional Dependencies
􀂄 Functional Dependency Theory
􀂄 Algorithms for Functional Dependencies
􀂄 Decomposition Using MultivaluedDependencies
􀂄 MoreNormal Form
􀂄 Database-Design Process
􀂄 Modeling Temporal Data

The Banking
Schema

􀂄 branch= (branch_name, branch_city, assets)
􀂄 customer= (customer_id, customer_name, customer_street, customer_city)
􀂄 loan= (loan_number, amount)
􀂄 account= (account_number, balance)

􀂄 employee= (employee_id. employee_name, telephone_number, start_date)
􀂄 dependent_name= (employee_id, dname)
􀂄 account_branch= (account_number, branch_name)
􀂄 loan_branch= (loan_number, branch_name)
􀂄 borrower= (customer_id, loan_number)
􀂄 depositor= (customer_id, account_number)
􀂄 cust_banker= (customer_id, employee_id, type)
􀂄 works_for= (worker_employee_id, manager_employee_id)
􀂄 payment= (loan_number, payment_number, payment_date, payment_amount)
􀂄 savings_account= (account_number, interest_rate)
􀂄 checking_account= (account_number, overdraft_amount)

©Silberschatz, Korth and Sudarshan 7.4 Database System Concepts - 5th Edition, Oct 5, 2006

Combine
Schemas?

􀂄 Suppose we combine borrowerand loanto get

bor_loan= (customer_id, loan_number, amount)
􀂄 Result is possible repetition of information (L-100 in example below)

A Combined Schema Without Repetition

􀂄 Consider combining loan_branchand loan

loan_amt_br= (loan_number, amount, branch_name)
􀂄 No repetition (as suggested by example below)

What About Smaller Schemas?

􀂄 Suppose we had started with bor_loan. How would we know to split up (decompose) it into
borrower and loan?
􀂄 Write a rule “if there were a schema (loan_number, amount), then loan_number would be a
candidate key”
􀂄 Denote as a functional dependency:

loan_number→amount
􀂄 In bor_loan, because loan_numberis not a candidate key, the amount of a loan may have to be
repeated. This indicates the need to decompose bor_loan.
􀂄 Not all decompositions are good. Suppose we decompose employeeinto

employee1= (employee_id, employee_name)
employee2= (employee_name, telephone_number, start_date)

􀂄 The next slide shows how we lose information --we cannot reconstruct the original
employeerelation --and so, this is a lossydecomposition.

A Lossy Decomposition

First Normal
Form

􀂄 Domain is atomicif its elements are considered to be indivisible units
􀂄 Examples of non-atomic domains:
􀀗Set of names, composite attributes
􀀗Identification numbers like CS101 that can be broken up into parts
􀂄 A relational schema R is in first normal formif the domains of all attributes of R are
atomic
􀂄 Non-atomic values complicate storage and encourage redundant (repeated) storage of
data
􀂄 Example: Set of accounts stored with each customer, and set of owners stored with
each account
􀂄 We assume all relations are in first normal form (and revisit this in Chapter 9)

First Normal Form (Cont Cont’d) d)
􀂄 Atomicity is actually a property of how the elements of the domain are used.
􀂄 Example: Strings would normally be considered indivisible
􀂄 Suppose that students are given roll numbers which are strings of the form CS0012 or
EE1127

􀂄 If the first two characters are extracted to find the department, the domain of roll
numbers is not atomic.
􀂄 Doing so is a bad idea: leads to encoding of information in application program rather

than in the database.

Goal — Devise a Theory for the Following

􀂄 Decide whether a particular relation Ris in “good”form.
􀂄 In the case that a relation Ris not in “good”form, decompose it into a set of relations {R1,
R2, ..., Rn} such that
􀂄 each relation is in good form
􀂄 the decomposition is a lossless-join decomposition
􀂄 Our theory is based on:
􀂄 functional dependencies
􀂄 multivalued dependencies

Functional Dependencies

􀂄 Constraints on the set of legal relations.
􀂄 Require that the value for a certain set of attributes determines uniquely the value for
another set of attributes.
􀂄 A functional dependency is a generalization of the notion of a key.

Functional Dependencies (Cont.)

􀂄 Let Rbe a relation schema

α⊆R and β⊆R
􀂄 The functional dependency

α→β

holds onRif and only if for any legal relations r(R), whenever any
two tuples t1and t2of ragree on the attributes α, they also agree
on the attributes β. That is,

t1[α] = t2 [α] ⇒t1[β] = t2 [β]
􀂄 Example: Consider r(A,B) with the following instance of r.

 1 4

 1 5
 3 7
􀂄 On this instance, A→Bdoes NOThold, but B→Adoes hold.

Functional Dependencies (Cont.)

􀂄 Kis a superkeyfor relation schema Rif and only if K →R
􀂄 Kis a candidate key for Rif and only if
􀂄 K →R, and
􀂄 for no α⊂K, α→R
􀂄 Functional dependencies allow us to express constraints that cannot be expressed
using superkeys. Consider the schema:

bor_loan= (customer_id, loan_number, amount).
We expect this functional dependency to hold:

loan_number→amount

but would not expect the following to hold:
amount →customer_name

Use of Functional Dependencies

􀂄 We use functional dependencies to:
􀂄 test relations to see if they are legal under a given set of functional dependencies.
􀀗If a relation ris legal under a set Fof functional dependencies, we say that rsatisfies F.
􀂄 specify constraints on the set of legal relations
􀀗We say that Fholds onRif all legal relations on Rsatisfy the set of functional
dependencies F.
􀂄 Note: A specific instance of a relation schema may satisfy a functional dependency
even if the functional dependency does not hold on all legal instances.
􀂄 For example, a specific instance of loanmay, by chance, satisfy
amount →customer_name.

Functional Dependencies (Cont.)

􀂄 A functional dependency is trivialif it is satisfied by all instances of a relation
􀂄 Example:

􀀗customer_name, loan_number →customer_name
􀀗customer_name→customer_name
􀂄 In general, α→βis trivial ifβ⊆α

Closure of a Set of Functional
Dependencies

􀂄 Given a set Fof functional dependencies, there are certain other functional
dependencies that are logically implied by F.
􀂄 For example: If A→Band B→C, then we can infer that A→C
􀂄 The set of allfunctional dependencies logically implied by Fis the closureof F.
􀂄 We denote the closure of Fby F+.
􀂄 F+is a superset of F.

Boyce Boyce-Codd Normal Form
􀂄 α →βis trivial (i.e., β⊆α)

􀂄 αis a superkey for R

A relation schema Ris in BCNF with respect to a set Fof functional dependencies if for all
functional dependencies in F+of the form

α →β

where α⊆Rand β⊆R,at least one of the following holds:
Example schema notin BCNF:
bor_loan= (customer_id, loan_number, amount)

because loan_number→amountholds on bor_loanbut loan_numberis not a superkey.

Decomposing a Schema into BCNF

􀂄 Suppose we have a schema R and a non-trivial dependency α →βcauses a violation of
BCNF.

We decompose Rinto:

•(α U β)

•(R-(β-α))

􀂄 In our example,
􀂄 = loan_number
􀂄 =amount

and bor_loanis replaced by
􀂄 (α U β) = (loan_number, amount)

􀂄 (R-(β-α)) = (customer_id, loan_number)

BCNF and Dependency Preservation

􀂄 Constraints, including functional dependencies, are costly to check in practice unless
they pertain to only one relation
􀂄 If it is sufficient to test only those dependencies on each individual relation of a
decomposition in order to ensure that allfunctional dependencies hold, then that
decomposition is dependency preserving.
􀂄 Because it is not always possible to achieve both BCNF and dependency preservation,
we consider a weaker normal form, knownas third normal form.

Third Normal
Form

􀂄 A relation schema Ris in third normal form (3NF) if for all:

α→βin F+

at least one of the following holds:
􀂄 is trivial (i.e., β∈α)
􀂄 is a superkey for R
􀂄 Each attribute Ain β–αis contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)
􀂄 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above
must hold).
􀂄 Third condition is a minimal relaxation of BCNF to ensure dependency preservation
(will see why later).

Goals of
Normalization

􀂄 Let Rbe a relation scheme with a setFof functional dependencies.
􀂄 Decide whether a relation scheme Ris in “good”form.
􀂄 In the case that a relation scheme Ris not in “good”form, decompose it into a set of
relation scheme {R1, R2, ..., Rn} such that
􀂄 each relation scheme is in good form
􀂄 the decomposition is a lossless-join decomposition
􀂄 Preferably, the decomposition should be dependency preserving.

How good is
BCNF?

􀂄 There are database schemas in BCNF that do not seem to be sufficiently normalized
􀂄 Consider a database

classes (course, teacher, book)

such that (c, t, b) ∈classesmeans that tis qualified to teach c,and bis a
required textbook for c

􀂄 The database is supposed to list for each course the set of teachers any one of which
can be the course’s instructor, and the set of books, all of which are required for the
course (no matter who teaches it).

How good is BCNF? (Cont.)

course

teacher

book

Database
Database
Database
Database
Database
Database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi
Pete
Pete

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Stallings
OS Concepts
Stallings

 Classes

􀂄 There are no non-trivial functional dependencies and therefore the relation is in BCNF
􀂄 Insertion anomalies –i.e., if Marilyn is a new teacher that can teach database, two
tuples need to be inserted

(database, Marilyn, DB Concepts)

(database, Marilyn, Ullman)

 How good is BCNF? (Cont.)

􀂄 Therefore, it is better to decompose classes into:

course

teacher

Database
 database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi
Jim

 Teaches

course

book

Database
 database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

 Text

This suggests the need for higher normal forms, such as Fourth Normal Form (4NF),
which we shall see later.

Functional Functional-Dependency Theory

􀂄 We now consider the formal theory that tells us which functionaldependencies are
implied logically by a given set of functional dependencies.
􀂄 We then develop algorithms to generate lossless decompositions into BCNF and 3NF
􀂄 We then develop algorithms to test if a decomposition is dependency-preserving

Closure of a Set of Functional
Dependencies

􀂄 Given a set Fset of functional dependencies, there are certain other functional
dependencies that are logically implied by F.
􀂄 For example: If A→Band B→C, then we can infer that A→C
􀂄 The set of allfunctional dependencies logically implied by Fis the closureof F.
􀂄 We denote the closure of Fby F+.
􀂄 We can find all ofF+by applying Armstrong’s Axioms:

􀂄 if β⊆α, then α→β(reflexivity)
􀂄 if α→β, then γα→γβ(augmentation)
􀂄 if α→β, and β→γ, then α→γ(transitivity)
􀂄 These rules are
􀂄 sound(generate only functional dependencies that actually hold) and
􀂄 complete(generate all functional dependencies that hold).

Example

􀂄 R = (A, B, C, G, H, I)
F = { A →B
A →C
CG →H
CG →I
B →H}
􀂄 some members of F+

􀂄 A →H
􀀗by transitivity from A →B and B →H
􀂄 AG →I
􀀗by augmenting A →C with G, to get AG →CG
 and then transitivity with CG →I

􀂄 CG →HI
􀀗by augmenting CG →I to infer CG →CGI,
 and augmenting of CG →H to inferCGI →HI, and then
 transitivity

Procedure for Computing F

􀂄 To compute the closure of a set of functional dependencies F:

F += F

repeat
for eachfunctional dependency fin F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2in F +

iff1and f2can be combined using transitivity

thenadd the resulting functional dependency to F +

until F +does not change any further
NOTE: We shall see an alternative procedure for this task later

Closure of Functional Dependencies
(Cont.)

􀂄 We can further simplify manual computation of F+by using the following additional
rules.
􀂄 If α→βholdsand α→γholds, then α→βγholds (union)
􀂄 If α→βγholds, then α→βholds and α→γholds (decomposition)
􀂄 If α→βholdsand γβ→δholds, then αγ→δholds(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

Closure of Attribute Sets

􀂄 Given a set of attributes α,define the closureof αunderF(denoted by α+) as the set of
attributes that are functionally determined by αunder F
􀂄 Algorithm to compute α+, the closure of αunder F

result := α;

while(changes to result) do
for each β→γinFdo

begin

if β⊆resultthen result := result ∪γ

end

Uses of Attribute
Closure

There are several uses of the attribute closure algorithm:

􀂄 Testing for superkey:
􀂄 To test if αis a superkey, we compute α+,and check if α+contains all attributes of R.
􀂄 Testing functional dependencies
􀂄 To check if a functional dependency α→βholds (or, in other words, is in F+), just check
if β⊆α+.
􀂄 That is, we compute α+by using attribute closure, and then check if it contains β.
􀂄 Is a simple and cheap test, and very useful
􀂄 Computing closure of F
􀂄 For each γ⊆R, we find the closure γ+, and for each S⊆γ+, we output a functional
dependency γ→S.

Canonical
Cover

􀂄 Sets of functional dependencies may have redundant dependencies that can be
inferred from the others
􀂄 For example: A →Cis redundant in: {A→B, B→C}
􀂄 Parts of a functional dependency may be redundant
􀀗E.g.: on RHS: {A→B, B→C, A→CD} can be simplified
 to
 {A→B, B→C, A→D}
􀀗E.g.: on LHS: {A →B, B→C, AC→D} can be simplified
 to
 {A →B, B→C, A→D}
􀂄 Intuitively, a canonical cover of F is a “minimal”set of functional dependencies
equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous
Attributes

􀂄 Consider a set Fof functional dependencies and the functional dependency α→βin F.
􀂄 Attribute A is extraneous in αif A ∈α

and Flogically implies (F–{α→β}) ∪{(α–A) →β}.
􀂄 Attribute Ais extraneousin βif A∈β
and the set of functional dependencies
(F–{α→β}) ∪{α→(β–A)} logically implies F.

􀂄 Note: implication in the opposite direction is trivial in each of the cases above, since a
“stronger”functional dependency always implies a weaker one
􀂄 Example: Given F= {A→C, AB→C}
􀂄 Bis extraneous in AB→Cbecause {A→C, AB→C} logically implies A→C (I.e. the result
of dropping B from AB→C).
􀂄 Example: Given F= {A→C, AB→CD}
􀂄 Cis extraneous in AB→CDsince AB →Ccan be inferred even after deleting C

Testing if an Attribute is Extraneous

􀂄 Consider a set Fof functional dependencies and the functional dependency α→βin F.

􀂄 To test if attribute A ∈αis extraneousinα
1.compute ({α} –A)+using the dependencies in F
2.check that ({α} –A)+contains β; if it does, Ais extraneous inα
􀂄 To test if attribute A∈βis extraneous in β
1.compute α+ using only the dependencies in
F’= (F–{α→β}) ∪{α→(β–A)},
2.check that α+ contains A; if it does, A is extraneous in β

©Silberschatz, Korth and Sudarshan 7.37 Database System Concepts - 5th Edition, Oct 5, 2006

Computing a Canonical Cover

􀂄 R = (A, B, C)
F = {A →BC
B →C
A →B
AB→C}
􀂄 Combine A →BC and A →B into A →BC
􀂄 Set is now {A →BC, B →C, AB→C}
􀂄 Ais extraneous in AB→C
􀂄 Check if the result of deleting A from AB→C is implied by the other dependencies
􀀗Yes: in fact, B→C is already present!
􀂄 Set is now {A →BC, B →C}
􀂄 Cis extraneous in A→BC

􀂄 Check if A →Cis logically implied by A →B and the other dependencies
􀀗Yes: using transitivity on A →B and B →C.
 –Can use attribute closure of Ain more complex cases
􀂄 The canonical cover is:
 A →B
B →C

Lossless Lossless-join Decomposition
􀂄 For the case ofR= (R1, R2),we require that for all possible
relations ron schema

 Rr = ΠR1(r) ΠR2(r)

􀂄A decomposition of Rinto R1and R2is lossless join if and only if
atleast one of the following dependencies is in F+:

􀂄R1∩R2→R1

􀂄R1∩R2→R2

 Example

 􀂄 R = (A, B, C)F = {A →B, B →C)

􀂄 Can be decomposed in two different ways
􀂄 R1= (A, B), R2= (B, C)

􀂄 Lossless-join decomposition:
 R1 ∩R2= {B}and B →BC
􀂄 Dependency preserving
􀂄 R1 = (A, B), R2= (A, C)
􀂄 Lossless-join decomposition:

 R1 ∩R2={A}and A →AB
􀂄 Not dependency preserving (cannot check B →C without
computing R1 R2)

 Dependency Preservation

􀂄 Let Fibe the set of dependencies F +that include only attributes in Ri.
􀀗A decomposition is dependency preserving, if

(F1∪F2 ∪…∪Fn)+= F +

􀀗If it is not, then checking updates for violation of functional dependencies may
 equire computing joins, which is expensive.

Testing for Dependency Preservation

􀂄 To check if a dependency α→βis preserved in a decomposition of Rinto R1, R2, …,
Rnwe apply the following test (with attribute closure done with respect to F)
􀂄 result = α
while(changes to result) do
for eachRiin the decomposition
t= (result ∩Ri)+ ∩Ri

result = result ∪t
􀂄 If resultcontains all attributes in β, then the functional dependency
α→βis preserved.
􀂄 We apply the test on all dependencies in Fto check if a decomposition is dependency
preserving
􀂄 This procedure takes polynomial time, instead of the exponentialtime required to
compute F+and(F1∪F2∪…∪Fn)+

Testing forBCNF

􀂄 To check if a non-trivial dependency α →βcauses a violation of BCNF

1. compute α+(the attribute closure of α), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

􀂄 Simplified test: To check if a relation schema Ris in BCNF, it suffices to check only the
dependencies in the given set Ffor violation of BCNF, rather than checking all
dependencies in F+.
􀂄 If none of the dependencies in Fcauses a violation of BCNF, then none of the
dependencies in F+will cause a violation of BCNF either.
􀂄 However, using only Fis incorrectwhen testing a relation in a decomposition of R
􀂄 Consider R =(A, B, C, D, E), with F= { A →B, BC →D}
􀀗Decompose Rinto R1 =(A,B) and R2 =(A,C,D, E)
􀀗Neither of the dependencies in Fcontain only attributes from
 (A,C,D,E) so we might be mislead into thinking R2satisfies BCNF.
􀀗In fact, dependency AC→Din F+shows R2is not in BCNF.

