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  Relational database design: Features of good Relation 

design - Atomic Domains and first normal form - Decomposition 
using functional dependencies – Functional-Dependencies theory - 
Decomposition using functional dependencies - Decomposition 
using Multivaluted dependencies – More Normal forms – Database- 
Design process  
 
 
 
 
 



 
 

Relational Database Design  
 
􀂄 Features of Good Relational Design 
􀂄 Atomic Domains and First Normal Form 
􀂄 Decomposition Using Functional Dependencies 
􀂄 Functional Dependency Theory 
􀂄 Algorithms for Functional Dependencies 
􀂄 Decomposition Using MultivaluedDependencies  
􀂄 MoreNormal Form 
􀂄 Database-Design Process 
􀂄 Modeling Temporal Data 
 
 

The Banking 
Schema  

 
􀂄 branch= (branch_name, branch_city, assets) 
􀂄 customer= (customer_id, customer_name, customer_street, customer_city) 
􀂄 loan= (loan_number, amount) 
􀂄 account= (account_number, balance) 



􀂄 employee= (employee_id. employee_name, telephone_number, start_date) 
􀂄 dependent_name= (employee_id, dname) 
􀂄 account_branch= (account_number, branch_name) 
􀂄 loan_branch= (loan_number, branch_name) 
􀂄 borrower= (customer_id, loan_number) 
􀂄 depositor= (customer_id, account_number) 
􀂄 cust_banker= (customer_id, employee_id, type) 
􀂄 works_for= (worker_employee_id, manager_employee_id) 
􀂄 payment= (loan_number, payment_number, payment_date, payment_amount) 
􀂄 savings_account= (account_number, interest_rate) 
􀂄 checking_account= (account_number, overdraft_amount) 
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Combine 
Schemas?  

 
􀂄 Suppose we combine borrowerand loanto get  
 

bor_loan= (customer_id, loan_number, amount ) 
􀂄 Result is possible repetition of information (L-100 in example below) 
 



 
 

 

 

A Combined Schema Without Repetition  
 
􀂄 Consider combining loan_branchand loan 
 

loan_amt_br= (loan_number, amount, branch_name) 
􀂄 No repetition (as suggested by example below) 



 

 

 

What About Smaller Schemas?  
 
􀂄 Suppose we had started with bor_loan. How would we know to split up (decompose) it into 
borrower and loan? 
􀂄 Write a rule “if there were a schema (loan_number, amount), then loan_number would be a 
candidate key” 
􀂄 Denote as a functional dependency:  



 

loan_number→amount 
􀂄 In bor_loan, because loan_numberis not a candidate key, the amount of a loan may have to be 
repeated. This indicates the need to decompose bor_loan. 
􀂄 Not all decompositions are good. Suppose we decompose employeeinto 
 

employee1= (employee_id, employee_name) 
employee2= (employee_name, telephone_number, start_date) 

􀂄 The next slide shows how we lose information --we cannot reconstruct the original 
employeerelation --and so, this is a lossydecomposition. 
 
 

A Lossy Decomposition 
 
 
 



 

 



First Normal 
Form  

 
􀂄 Domain is atomicif its elements are considered to be indivisible units 
􀂄 Examples of non-atomic domains: 
􀀗Set of names, composite attributes 
􀀗Identification numbers like CS101 that can be broken up into parts 
􀂄 A relational schema R is in first normal formif the domains of all attributes of R are 
atomic 
􀂄 Non-atomic values complicate storage and encourage redundant (repeated) storage of 
data 
􀂄 Example: Set of accounts stored with each customer, and set of owners stored with 
each account 
􀂄 We assume all relations are in first normal form (and revisit this in Chapter 9) 

 

First Normal Form (Cont Cont’d) d) 
􀂄 Atomicity is actually a property of how the elements of the domain are used. 
􀂄 Example: Strings would normally be considered indivisible 
􀂄 Suppose that students are given roll numbers which are strings of the form CS0012 or 
EE1127 



􀂄 If the first two characters are extracted to find the department, the domain of roll 
numbers is not atomic. 
􀂄 Doing so is a bad idea: leads to encoding of information in application program rather 

than in the database. 

 

 

Goal — Devise a Theory for the Following 

􀂄 Decide whether a particular relation Ris in “good”form. 
􀂄 In the case that a relation Ris not in “good”form, decompose it into a set of relations {R1, 
R2, ..., Rn} such that 
􀂄 each relation is in good form 
􀂄 the decomposition is a lossless-join decomposition 
􀂄 Our theory is based on: 
􀂄 functional dependencies 
􀂄 multivalued dependencies 

 

 

 



Functional Dependencies  
 
􀂄 Constraints on the set of legal relations. 
􀂄 Require that the value for a certain set of attributes determines uniquely the value for 
another set of attributes. 
􀂄 A functional dependency is a generalization of the notion of a key. 
 
 
 

Functional Dependencies (Cont.)  
 
􀂄 Let Rbe a relation schema 
 

α⊆R and β⊆R 
􀂄 The functional dependency 
 

α→β 

holds onRif and only if for any legal relations r(R), whenever any  
two tuples t1and t2of ragree on the attributes α, they also agree  
on the attributes β. That is,  

t1[α] = t2 [α] ⇒t1[β] = t2 [β]  
􀂄 Example: Consider r(A,B ) with the following instance of r. 



                                           1  4 
 
                                           1  5 
                                           3  7 
􀂄 On this instance, A→Bdoes NOThold, but B→Adoes hold.  
 
 
 
 

Functional Dependencies (Cont.)  
 
􀂄 Kis a superkeyfor relation schema Rif and only if K →R 
􀂄 Kis a candidate key for Rif and only if  
􀂄 K →R, and 
􀂄 for no α⊂K, α→R 
􀂄 Functional dependencies allow us to express constraints that cannot be expressed 
using superkeys. Consider the schema: 
 

bor_loan= (customer_id, loan_number, amount ). 
We expect this functional dependency to hold: 

loan_number→amount 

but would not expect the following to hold:  
amount →customer_name 



 
 
 
 

Use of Functional Dependencies  
 
􀂄 We use functional dependencies to: 
􀂄 test relations to see if they are legal under a given set of functional dependencies.  
􀀗If a relation ris legal under a set Fof functional dependencies, we say that rsatisfies F. 
􀂄 specify constraints on the set of legal relations 
􀀗We say that Fholds onRif all legal relations on Rsatisfy the set of functional 
dependencies F. 
􀂄 Note: A specific instance of a relation schema may satisfy a functional dependency 
even if the functional dependency does not hold on all legal instances.  
􀂄 For example, a specific instance of loanmay, by chance, satisfy  
amount →customer_name. 
 
 

Functional Dependencies (Cont.)  
 
􀂄 A functional dependency is trivialif it is satisfied by all instances of a relation 
􀂄 Example: 



􀀗customer_name, loan_number →customer_name 
􀀗customer_name→customer_name 
􀂄 In general, α→βis trivial ifβ⊆α 
 
 
 
 

Closure of a Set of Functional 
Dependencies  

 
􀂄 Given a set Fof functional dependencies, there are certain other functional 
dependencies that are logically implied by F. 
􀂄 For example: If A→Band B→C, then we can infer that A→C 
􀂄 The set of allfunctional dependencies logically implied by Fis the closureof F. 
􀂄 We denote the closure of Fby F+. 
􀂄 F+is a superset of F. 
 
  

Boyce Boyce-Codd Normal Form 
􀂄 α →βis trivial (i.e., β⊆α) 

􀂄 αis a superkey for R 



A relation schema Ris in BCNF with respect to a set Fof functional dependencies if for all 
functional dependencies in F+of the form 

α →β 

where α⊆Rand β⊆R,at least one of the following holds: 
Example schema notin BCNF: 
bor_loan= ( customer_id, loan_number, amount) 

because loan_number→amountholds on bor_loanbut loan_numberis not a superkey. 

 
 
 
 
 
 
 
 

 

Decomposing a Schema into BCNF  
 
􀂄 Suppose we have a schema R and a non-trivial dependency α →βcauses a violation of 
BCNF. 
 

We decompose Rinto: 

•(α U β) 

•( R-( β-α) ) 



􀂄 In our example,  
􀂄 = loan_number 
􀂄 =amount 
 

and bor_loanis replaced by 
􀂄 (α U β) = ( loan_number, amount) 

􀂄 ( R-( β-α) ) = ( customer_id, loan_number) 

 
 

 
BCNF and Dependency Preservation  

 
􀂄 Constraints, including functional dependencies, are costly to check in practice unless 
they pertain to only one relation 
􀂄 If it is sufficient to test only those dependencies on each individual relation of a 
decomposition in order to ensure that allfunctional dependencies hold, then that 
decomposition is dependency preserving. 
􀂄 Because it is not always possible to achieve both BCNF and dependency preservation, 
we consider a weaker normal form, knownas third normal form. 
 
 



Third Normal 
Form  

 
􀂄 A relation schema Ris in third normal form (3NF) if for all: 
 

α→βin F+ 

at least one of the following holds: 
􀂄 is trivial (i.e., β∈α) 
􀂄 is a superkey for R 
􀂄 Each attribute Ain β–αis contained in a candidate key for R. 
 

(NOTE: each attribute may be in a different candidate key) 
􀂄 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above 
must hold). 
􀂄 Third condition is a minimal relaxation of BCNF to ensure dependency preservation 
(will see why later). 
 

Goals of 
Normalization  

  



􀂄 Let Rbe a relation scheme with a setFof functional dependencies. 
􀂄 Decide whether a relation scheme Ris in “good”form. 
􀂄 In the case that a relation scheme Ris not in “good”form, decompose it into a set of 
relation scheme {R1, R2, ..., Rn} such that  
􀂄 each relation scheme is in good form  
􀂄 the decomposition is a lossless-join decomposition 
􀂄 Preferably, the decomposition should be dependency preserving. 
 
 

How good is 
BCNF?  

 
􀂄 There are database schemas in BCNF that do not seem to be sufficiently normalized  
􀂄 Consider a database  
 

classes (course, teacher, book ) 

such that (c, t, b) ∈classesmeans that tis qualified to teach c,and bis a 
required textbook for c 

􀂄 The database is supposed to list for each course the set of teachers any one of which 
can be the course’s instructor, and the set of books, all of which are required for the 
course (no matter who teaches it). 
 



 
 
 
 
 

How good is BCNF? (Cont.) 
 

 

course  
 

 

teacher  
 

 

book  
 

 

Database 
Database 
Database 
Database 
Database 
Database 
operating systems 
operating systems 
operating systems 
operating systems  
 

 

Avi 
Avi 
Hank 
Hank 
Sudarshan 
Sudarshan 
Avi 
Avi  
Pete  
Pete  
 

 

DB Concepts 
Ullman 
DB Concepts 
Ullman 
DB Concepts 
Ullman 
OS Concepts 
Stallings 
OS Concepts 
Stallings 
 

 
                                                  Classes 



 

 

 

 

 

 

􀂄 There are no non-trivial functional dependencies and therefore the relation is in BCNF  
􀂄 Insertion anomalies –i.e., if Marilyn is a new teacher that can teach database, two 
tuples need to be inserted 
 
(database, Marilyn, DB Concepts) 

(database, Marilyn, Ullman) 

 
 
 
 
 
 
 
 
 
 
 

    How good is BCNF? (Cont.) 
 

 

􀂄 Therefore, it is better to decompose classes into: 
 



 

course  
 

 

teacher  
 

 

Database 
 database  
database  
operating systems  
operating systems  
 

 

Avi 
Hank 
Sudarshan 
Avi  
Jim 
 

                                                                                 Teaches 
 

 

course  
 

 

book  
 

 

Database 
 database  
database  
operating systems  
operating systems  
 

 
 

DB Concepts 
Ullman 
OS Concepts 
Shaw 
 

 
 

                                                       Text 
 



 

This suggests the need for higher normal forms, such as Fourth Normal Form (4NF), 
which we shall see later. 
 
 

Functional Functional-Dependency Theory 
 
􀂄 We now consider the formal theory that tells us which functionaldependencies are 
implied logically by a given set of functional dependencies. 
􀂄 We then develop algorithms to generate lossless decompositions into BCNF and 3NF 
􀂄 We then develop algorithms to test if a decomposition is dependency-preserving 
 
 

Closure of a Set of Functional 
Dependencies  

 
􀂄 Given a set Fset of functional dependencies, there are certain other functional 
dependencies that are logically implied by F. 
􀂄 For example: If A→Band B→C, then we can infer that A→C 
􀂄 The set of allfunctional dependencies logically implied by Fis the closureof F. 
􀂄 We denote the closure of Fby F+. 
􀂄 We can find all ofF+by applying Armstrong’s Axioms: 



􀂄 if β⊆α, then α→β(reflexivity) 
􀂄 if α→β, then γα→γβ(augmentation) 
􀂄 if α→β, and β→γ, then α→γ(transitivity) 
􀂄 These rules are  
􀂄 sound(generate only functional dependencies that actually hold) and  
􀂄 complete(generate all functional dependencies that hold). 
 

 
Example  

 
􀂄 R = (A, B, C, G, H, I) 
F = { A →B 
A →C 
CG →H 
CG →I 
B →H} 
􀂄 some members of F+ 

􀂄 A →H  
􀀗by transitivity from A →B and B →H 
􀂄 AG →I  
􀀗by augmenting A →C with G, to get AG →CG  
          and then transitivity with CG →I  



􀂄 CG →HI  
􀀗by augmenting CG →I to infer CG →CGI,  
           and augmenting of CG →H to inferCGI →HI, and then        
            transitivity 
 
 

Procedure for Computing F  
 
􀂄 To compute the closure of a set of functional dependencies F: 
 

F += F 

repeat 
for eachfunctional dependency fin F+ 

apply reflexivity and augmentation rules on f 
add the resulting functional dependencies to F + 

for each pair of functional dependencies f1and f2in F + 

iff1and f2can be combined using transitivity 

thenadd the resulting functional dependency to F + 

until F +does not change any further 
NOTE: We shall see an alternative procedure for this task later 
 
 



Closure of Functional Dependencies 
(Cont.)  

 
􀂄 We can further simplify manual computation of F+by using the following additional 
rules. 
􀂄 If α→βholdsand α→γholds, then α→βγholds (union) 
􀂄 If α→βγholds, then α→βholds and α→γholds (decomposition) 
􀂄 If α→βholdsand γβ→δholds, then αγ→δholds(pseudotransitivity) 
 
The above rules can be inferred from Armstrong’s axioms. 
 
 

Closure of Attribute Sets  
 
􀂄 Given a set of attributes α,define the closureof αunderF(denoted by α+) as the set of 
attributes that are functionally determined by αunder F 
􀂄 Algorithm to compute α+, the closure of αunder F 
 

result := α; 

while(changes to result) do 
for each β→γinFdo 



begin 

if β⊆resultthen result := result ∪γ 

end 
 
 

Uses of Attribute 
Closure  

 
There are several uses of the attribute closure algorithm: 

􀂄 Testing for superkey: 
􀂄 To test if αis a superkey, we compute α+,and check if α+contains all attributes of R. 
􀂄 Testing functional dependencies 
􀂄 To check if a functional dependency α→βholds (or, in other words, is in F+), just check 
if β⊆α+.  
􀂄 That is, we compute α+by using attribute closure, and then check if it contains β.  
􀂄 Is a simple and cheap test, and very useful 
􀂄 Computing closure of F 
􀂄 For each γ⊆R, we find the closure γ+, and for each S⊆γ+, we output a functional 
dependency γ→S. 
 



Canonical 
Cover  

 
􀂄 Sets of functional dependencies may have redundant dependencies that can be 
inferred from the others 
􀂄 For example: A →Cis redundant in: {A→B, B→C} 
􀂄 Parts of a functional dependency may be redundant 
􀀗E.g.: on RHS: {A→B, B→C, A→CD} can be simplified  
                 to  
                      {A→B, B→C, A→D}  
􀀗E.g.: on LHS: {A →B, B→C, AC→D} can be simplified  
                        to  
                   {A →B, B→C, A→D}  
􀂄 Intuitively, a canonical cover of F is a “minimal”set of functional dependencies 
equivalent to F, having no redundant dependencies or redundant parts of dependencies  
 
 

 

 
 
  

 



Extraneous 
Attributes  

 
􀂄 Consider a set Fof functional dependencies and the functional dependency α→βin F. 
􀂄 Attribute A is extraneous in αif A ∈α 

and Flogically implies (F–{α→β}) ∪{(α–A) →β}. 
􀂄 Attribute Ais extraneousin βif A∈β 
and the set of functional dependencies  
( F–{α→β}) ∪{α→(β–A)} logically implies F. 

􀂄 Note: implication in the opposite direction is trivial in each of the cases above, since a 
“stronger”functional dependency always implies a weaker one 
􀂄 Example: Given F= {A→C, AB→C} 
􀂄 Bis extraneous in AB→Cbecause {A→C, AB→C} logically implies A→C (I.e. the result 
of dropping B from AB→C). 
􀂄 Example: Given F= {A→C, AB→CD} 
􀂄 Cis extraneous in AB→CDsince AB →Ccan be inferred even after deleting C 
 
 

Testing if an Attribute is Extraneous  
 
􀂄 Consider a set Fof functional dependencies and the functional dependency α→βin F. 



􀂄 To test if attribute A ∈αis extraneousinα 
1.compute ({α} –A)+using the dependencies in F 
2.check that ({α} –A)+contains β; if it does, Ais extraneous inα 
􀂄 To test if attribute A∈βis extraneous in β 
1.compute α+ using only the dependencies in  
F’= (F–{α→β}) ∪{α→(β–A)},  
2.check that α+ contains A; if it does, A is extraneous in β 
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Computing a Canonical Cover  
  
􀂄 R = (A, B, C) 
F = {A →BC 
B →C 
A →B 
AB→C} 
􀂄 Combine A →BC and A →B into A →BC 
􀂄 Set is now {A →BC, B →C, AB→C} 
􀂄 Ais extraneous in AB→C 
􀂄 Check if the result of deleting A from AB→C is implied by the other dependencies 
􀀗Yes: in fact, B→C is already present! 
􀂄 Set is now {A →BC, B →C} 
􀂄 Cis extraneous in A→BC 



􀂄 Check if A →Cis logically implied by A →B and the other dependencies 
􀀗Yes: using transitivity on A →B and B →C.  
               –Can use attribute closure of Ain more complex cases 
􀂄 The canonical cover is:  
 A →B 
B →C 

 

Lossless Lossless-join Decomposition 
􀂄 For the case ofR= (R1, R2),we require that for all possible 
relations ron schema  

      Rr = ΠR1(r ) ΠR2(r )  

􀂄A decomposition of Rinto R1and R2is lossless join if and only if 
atleast one of the following dependencies is in F+: 

􀂄R1∩R2→R1 

􀂄R1∩R2→R2 

 

 
 

                 Example 
 
 􀂄 R = (A, B, C)F = {A →B, B →C) 

􀂄 Can be decomposed in two different ways 
􀂄 R1= (A, B), R2= (B, C) 



􀂄 Lossless-join decomposition: 
           R1 ∩R2= {B}and B →BC 
􀂄 Dependency preserving 
􀂄 R1 = (A, B), R2= (A, C) 
􀂄 Lossless-join decomposition: 

              R1 ∩R2={A}and A →AB 
􀂄 Not dependency preserving (cannot check B →C without 
computing R1 R2) 
 
 
 

                   Dependency Preservation  
 
􀂄 Let Fibe the set of dependencies F +that include only attributes in Ri.  
􀀗A decomposition is dependency preserving, if 
 

(F1∪F2 ∪…∪Fn )+= F + 

􀀗If it is not, then checking updates for violation of functional dependencies may       
              equire computing joins, which is expensive.  
 
 
 
 
 
 



Testing for Dependency Preservation  
 
􀂄 To check if a dependency α→βis preserved in a decomposition of Rinto R1, R2, …, 
Rnwe apply the following test (with attribute closure done with respect to F) 
􀂄 result = α 
while(changes to result) do 
for eachRiin the decomposition 
t= (result ∩Ri)+ ∩Ri 

result = result ∪t 
􀂄 If resultcontains all attributes in β, then the functional dependency  
α→βis preserved. 
􀂄 We apply the test on all dependencies in Fto check if a decomposition is dependency 
preserving 
􀂄 This procedure takes polynomial time, instead of the exponentialtime required to 
compute F+and(F1∪F2∪…∪Fn)+ 

 
 
 
 
 
 

 

 



Testing forBCNF  
 
􀂄 To check if a non-trivial dependency α →βcauses a violation of BCNF 
 

1. compute α+(the attribute closure of α), and  
2. verify that it includes all attributes of R, that is, it is a superkey of R. 

􀂄 Simplified test: To check if a relation schema Ris in BCNF, it suffices to check only the 
dependencies in the given set Ffor violation of BCNF, rather than checking all 
dependencies in F+. 
􀂄 If none of the dependencies in Fcauses a violation of BCNF, then none of the 
dependencies in F+will cause a violation of BCNF either. 
􀂄 However, using only Fis incorrectwhen testing a relation in a decomposition of R 
􀂄 Consider R =(A, B, C, D, E), with F= { A →B, BC →D} 
􀀗Decompose Rinto R1 =(A,B) and R2 =(A,C,D, E)  
􀀗Neither of the dependencies in Fcontain only attributes from 
          (A,C,D,E) so we might be mislead into thinking R2satisfies BCNF.  
􀀗In fact, dependency AC→Din F+shows R2is not in BCNF.  
 

 

 


