| § | PUANE BLECTROMAGNETIC WAVES

ON
AND THEIR PROPAGAT!
lNTRODUC’I‘ION %

[In thi ; : ons,
predict tl:z C:apter We shall show that the Maxwell’s field .eqU:s"Ot e
Propagation Xistence of electromagnetic waves and dxscu. nd

of these w : onducting 2
1omzed med aves in free space, non-conducting, € i wit
: 1a. We shal] also investigate the energy flow associate
®Ir propagation, ) e
§ S5.1. E)
We knech-omagneﬁc Waves in free space.*
Ow that Maxwell’s equations are
V @ D-_— W
bl J=cE
VXH=J+a_Dr with{ B =pH A1)
3 or D=¢cE
E Y
and in free space j.e. vacuum
p=0 g, =1
c=0 M=1
So Maxwell's equations reduce to
VeE=0 ..(a)]
VeH=0 ...(b)
V xH=¢, %—fz .. --(2)
JH
VXE=-p,—...(d
u'o at ( )d
Now if
(I) We take the curl of equation 2 (c) then
Vx(VxH)=¢,V x(ﬁ)
ot
d
ie. [V(v 'H)-V2“]=805(V X E). - (3)
* Reader is advised to go through appendix III before starting this chapter.

M



#———_——"'

a8 ¢ GROVIOS

(L'

Electromagnetic Theory

234
But from equations 2 (b) and 2 (d) &
VeH=0 and Vsz—uo_a—.
!
So eqn. (3) reduces to
. 1 ’H , " 8
V'H——?—é;z—=0wnthpoeo—cz. ..(A)
(I1) We take the curl of equation 2 (d), then
JH
V x(VXE)=V x(—-p,o —5;-)
)
ik [V(V  E)-V?E] =, 5 (V  H)- .(4)
But from equation 2 (a) and 2 (¢)
JE
Ve E=) and V xH= & -—a—t' -
So equation (4) reduces to
1 ’E , 1
ie. VZE—? v =0 with o€~ - ...(B)

A glance at differential equations (A) and (B) reveals that these are
indential in form to the equation

Viy - — — =0. -3

However equation (5) is a standard wave equation representing
unattenuated wave traveling at a speed v*. So we conclude that field
vector E and H are propagated in free space as waves at a speed

4
C=_—_«/(t-:1u)= (41t81:u )_-_\Rgxmn R
0 0

=3 x10°* m/s
i.e. the velocity of light.**

Further as equation (A) and (B) are vector wave equations their
solution can be obtained in many forms, for instance either stationary or
progressive waves or having wave fronts of particular types such as plane,
cylindrical or spherical. Where no boundary conditions are imposed, as in

* For details of plane progressive wave see point (3) in appendix IIL
** This result suggests that light may be electromagnetic in nature.
drnsedririet
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The quantity Z, has the dimension

[zo]=|: (E‘?_) a (H/nlj_ (ohmxscc)
& F/m) \\coul/volt

_J(ohmxvolt]
s T——— | mohm
amp

ie. of i (s I trinei Sl
_ dlmpedance, hence it is called the intrinsic or characteristic
impendence of free space, It is a constant having value

7
zZ, = (ﬁ)= suld AR REUTTRE U
WWe (1/47 x9%10°)

(#57) The Poynting vector for a plane electromagnetic wave in
free space will be given by

S=ExH=gx2XE)
Cho
ie. PR s ol M R,
CHo CHy
(as E-n =0because E is L to m)
or S=eocE2n=—1——E2n (as 1 =ceo=—l-—)
A i CHy Z,

<S>=t—:0c<E2>n=—l— <E?>n.

or
0

But as :
<E?>=<[E,e @ ¥* VP >=E2 <cos*(wt—keor)>

g E
ie. <E? >=E;° =(5%)(J%)=E:"[a8<cosze>=%]

1 |
So <S>=€g,cE.,, n= ZE}L“ ...(E)

i e. the flow of energy in a plane wave in free space is in the direction of

wave propagation.
(iv) In case of a plane electromagnetic wave
u

e _JZ.eOEz _80 (E)z—l aS£— b_
“u—’%uon Mo \H H Vﬁo
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i.e. the electromagnetic energy density is equal to the magnetostatic
energy density.

Further
2
< S > En CEI'I".\ n
g 2l
<u> EOEl_m.\'
ie. S =cun

This implies that electromagnetic energy in free space is transmitteq
with the speed of light ¢ with which the field vectors E and H do

In case of propagation E. M. W. in free space.

(i) The wave propagates with a speed equal to that of light in free space.

(i) The electromagnetic waves are transverse in nature.

(iii) The wave vectors E and H are mutually perpendicular.

(iv) The vector E and H are in phase.

(V) The electrostatic energy density is equal to the magnetostatic energy density.

(vi) The electromagnetic energy is transmitted in the direction of wave propagation
at speed c.

§ 5.2. Propagation of E. M. W. in Isotropic Dielectrics.*
We know that Maxwell’s field equations are

VeD=p ]
VeB=0 J = 6F
- xH:ﬁ%_D_r with{B = uH (1)
4 E)Bt e
£ VXE==——
ot |
and in isotropic dielectrics
_. oc=0 and p=0.
So Maxwell's equations reduce to
Ve E=0 skl
Ve H=0 ...(b)
oE
VxHee — ..(cM ske
& = ©) )
oH
VAE=-p— ...d
| M : ).

* A non-conducting medium whose properties are same in all directions is called
isotropic dielectric.
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Fllrther as th : . C
fi n by equation (C)
suggests thag ¢ form of field vector E and H given by €q

So in terms of these operators eqn. (2) reduces to
keE=0 ...(a)]
keH=0 ...(b) } (9)#
“kxH=weE ... (c)
kxE=wpH ..(d)]
From this form of Maxwell’s equation it is self evident that in a plane
tromagnetic wave propagating through isotopic dielectric—

elec

()  The vectors E, H and k are orthogonal i.e. the eIechq-
magnetic wave is transverse in nature and in it the electric and magnetic
Vectors are also mutually orthogonal. This is because

accordingto9(a) Eisltok

accordingto9(b) Hisltok

accordingto9(c) Eis L toboth kand H
and accordingto 9 (d) HisLtobothkand E

(i) The vectors E and H are in phase and their magnitudes are
related to each other by the relation.

where Z is called the impendence of the medium.
This is because according to equation 9 (d).

k 1 =2
H=—0;(an)=E(an) (as k—u)

R e
with z=\/(5)=\/("' “°)=Wz° (r=VJm.e)
m T -

K. X, :
= — = Z =real quantity. ...(10
or |ﬁ' H, q ty (10)
* |In this case
k=h=££n=2_11n=9_n
A v v

Generated by CamScanner

~w



242 Electromagnetic Theory

(iif) The direction of flow of energy is the direction in which the
wave propagates and the Poynting vector is (n/W,) times of the Poynting
vector if the same wave propagatles, through free space.

It 1s because

(n XE)
S=EXH=EX
&
i.e. =%[(Eo E)n —(Een)E]
ie. S=lZ E’n [as Ee n =0because E is L to n]
" _1 2_" 2 l:nlznec)
i.e. S_ZEn_p,[EOCE]n (asz e T S
M esaad T e B Rt 0 (11)
z K,

(iv) The electromagnetic energy density is equal to the magneto-
static energy density and the total energy density is€, times of the energy
density if the same wave propagates through free space.

- This is because

, 1ap2 2

; = =12€E2=E(E_2)=§.(22 PR e B (as |Hl.__|f“1_)

= u, WH" p\H 1] T Z

s and u=u, +u_ =tE*=¢, & E>)

n

1 <S> e dEL]

- Further S="’€°2 =

,'- <u>. [erSOErms] u'r er
ie. <S>="-<u>n [asn=1/@€)]
ie. <S>=v<u>n (asc/n=")
i.e. electromagnetic energy is transmitted with the same velocity with
which the fields do.

§ 5.3. Propagation of E.M.W. in Anisotropic Dielectric*.

In anisotropic medium the relative permitivity is no longer a scalar
and to deal with wave propagation we refer all fields to the principal axes
so that

D, =ee,E ; D,=E ¢ E and D =¢¢&E A1)
Further since the medium is non-conducting i.e.
J=0; p=0and p, =1

* A non-conducting medium whose properties depend on direction is called
anisotropic dielectric.
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’ b‘ » C (l d (‘0"
a - 1“(‘".("”".\'"&'”(‘ Waves ﬂ!ld their ! ropag

ile D - _..L_ [E —~(ne E) COS(I] (2)
Hov™
Similmlv
D = _J‘_ [E, — (neE) cosf] +(3)
Mov?
And p = u\l_[g —(neE) cosYy] -(4)
v

Now as in an anisotropic medium

Vector H is normal k.=kcosa
to the plane of the k,=kcosp
paper and outward. k.=kcosy
D =¢eg E. D = €8,E, and D.=gg,E.
£y D
ie. E = 2 D =—— and E=—
R Foe By £L,
2 2 2
or £ =SFop E=2L'p  anda  E-SRep
S €&, i R, 3
(asl/e, =p o)
or E =p,v’D, E = =W,v,’ D, TR ) S

[as¢/\[(e) = c/ €,) =v, and ¢/\[ () =v,]

So on substituting the values of £, » £, and E; from equation (5)in2,3
and 4 respectively we get

D = ot [pov D, —(nOE)cosa]
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So boundary conditions become

(1) D, =0
(i) B,, =0
(i) H,, =,
(iv) E, =0

at the surface of a perfect conductor electric field K is normal while
magnetic fields H is tangential to the surface. i.e. the tangential
component of electric field and normal component of magnetic field
vanishes at the surface of a perfect conductor.

§ 6.2. Reflection and refraction of E.M.W.

we now need to consider that what happens when plane
electromagnetic waves which are traveling in one medium are incident
upon an infinite plane surface separating this medium from another with
different electromagnetic properties.

When an electric wave is traveling through space there is an exact
balance between the electric and magnetic fields. Half of the energy of
I wave as a matter of fact is in electric
: I -2 field and half in the magnetic.* If the
i wave enters some different medium,
there must be a new distribution of
energy (due to the change in field
vectors). Whether the new medium is a
dielectric, a magnetic, a conducting or
an ionised region, there will havetobe a
Fig. 6.3 readjustment of energy relations as the
wave reaches its surface. Since no
energy can be added to the wave as it passes through the boundary surface,
the only way that a new balance can be achieved is for some of the
incident energy to be reflected. This is what actually happens. The
transmitted energy constitutes the refracted wave and the reflected one the
reflected wave.

J O W

.y

-« 'A “'.—v“

The reflection and refraction of light at a plane surface between two
media of different dielectric properties is a familiar example of reflection
and refraction of electromagnetic waves. The various aspects of the
phenomenon divide themselves into two classes :

* SeeArnt§S5.2.
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Interaction of E.M.W. with Matter on Macroscopic Scale

L . 1 there
Now since in an E.M.W. E, H and k are orthogonal, in generd

are three possible modes of propagation viz.

. an
(4 TE Waves (or Mode) : This is characterlsed by

: : erse
‘ :El\t/;w having an electric field E which is entirely in a Pla‘;e trg?;; the

o the assumed axij i ich is z-axis here)- '
axis of propagation (which is z-axis gation

magnetic field H has a component along the assumed axis of prop? :
and hence this type of wave is also known as H-wave. This is shown 11
fig. 6.18 (a). For TE wave it is possible to express all field components 1
terms of the axial magnetic field component H..

(B) TM wave (or Mode) : This is characterised by an

5 .M.W._ having magnetic field H which is entirely in a plane transverse to

the assumed axis of propagation (which is z-axis here). Only the electnc
ﬁEfld E has a component along the assumed axis of propagation and hence

~ this type of wave is also known as E-wave. This is shown in fig. 6.18 (b).

i Fo.r TM wave it is possible to express all field components in terms o
axial electric field components E,.

P e Y

Al @( —y || 2

X
& ¥ & g N i
E-Along x Axis H-Along x Axis H-Along x Axis
TE wave T™ wave TEM wave
(a) (b) (c)
Fig. 6.18

(C) TEM wave (or Mode) : It is characterial by an E.M.W.
having both the electric and magnetic fields entirely in a plane transverse
to the assumed axis of propagation i.e. it is an electromagnetic wave in
which the direction of wave motion is along the assumed axis of
propagation. This is shown in fig. 6.18 (c) [In coaxial cables usually
EMW are propagated in this mode].

As an example here we shall discuss only TE wave. The electric fields
for incident and reflected waves in TE case will be

E =1 Eoe_ ior - ik, (ycos® + zsin0)
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296 Electromagnetic Theopy

. joot —iky (—ycosO + zsinB)
Ep, = i E'n ¢ € ¥

So by principlc of super position the resultant electric field in the
region between the planes in TE will be

' ik (v cos® + =sinB)
E=E +E, =le ™™ [Eoe .

+ B e ik, (—y cos© + :sine)]
0

Now as by boundary condition that tangential component of £ must
vanishes at the surface of the conducting plane i.e.

E=0 at y=0
] ko, ZSi ik, =sin O
We get ie ' [E(,e"“’ AR oL ’]:0
i.e. E,+E'=0 or il F

This condition simply indicates that the reflection at the conducting
plane involves a phase change of ® and no change in amplitude
: ko, Ve ik, 1 cos© —i(wt—kyzsin®
s E___lEo[ell\"_u.osO_et o Hcos e i( o )

—i(ot —k, zsin@)

] or E=iE, [2isin (k,y cos0)] e

¥ " — i (ot — /\'g:
or E=i 2iE,sin(k_y) e -¢E)
with k. =k,cos0 and k, =k, sin O .(2)

This is the required result and from this it is clear that

(I) The resultant disturbance is propagating as a wave along
z-axis with a wave length

A, = 2 t™ (ask, =k,sinB
Bk Easinl S B
A 2n
> x = g k T
* = sin® (as 0 7»0) =

A, is called the guide wavelength and is > A,assinBis< 1.
And so the velocity of the wave will be

b gt e
k.l.’ k() Sill() (ab - (,Slne)
e o |
v sin © (as k. = C) )

This velocity is called phase velocity and is greater than ¢ assin < L
At first glance this appears to be in direct conflict with special theory of
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[ » -
nteraction of E.M.W. with Matter on Macroscopic Scale

considered as 2
fI‘Om wal] to

[in
able

" Propagatipn of EEM.W. in wave guides can be
phenomenon in which either TE or 7M waves are reflected :
wall and hence pass down the wave guide in zig-zag fashion.-

as TEM waves.]

As essential feature of wave guide propagation is that it exhibits a c}:;tt

off characteristic frequency similar to that of a high pass filter.
frequencies below the cut off value, the wave is simply reflected
backwards and forwards across the wave guide and makes no forward
progress. [Transmission line do not have any cut off frequency and are
broad band devies.]

Theory :
For making the treatment simple we assume that

(i) The walls of the guide are perfectly conducting sO that ta'n-
gential component of E and normal component of B vanishes at 1ts
surface.

(1)  The interior of the wave
guide is free space i.e. vacaum so that X +

E=¢ 0> u’ o l'l’ 0>

=0 andp=0.

(111) The cross section of guide /
is uniform and rectangular. aI <

(iv)  The axis of wave guide is < b > y
along z-direction of right handed Fig. 6.20

co-ordinate system.

In the light of above assumptions to discuss the propagation of
E.M.W. in the guide consider Maxwell’s eqns. in free space viz.

v Esl: . s (a) Pie Bss0. ... (b)
1 JE % __dB 1)
Curl B= W (c) Curl E= e (d)

Taking the curl of eqn. 1 (d) we get
V xV x E=—-aa—t curl (B)

or \Y (V-E)—V’E=-—%(Vxn) |
[asV XV xV =V (V+V)-V?V]

LR e SEIEEeal
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which in the light of equations 1 (a) and (¢) reduces to
1 d'E

V’E - = () .A2)
: r)l
Similarly taking curl of eqn. 1 (¢) and using 1 (b) and (d) we get
- 1 ’B e
V’B«--w»@ =() )
2 or?
As equations (2) and (3) are of the form
2
LYY W)
v? or?

We come to the conclusion that fields E and B are propagated as
waves in the guide at a speed c.

Now as the solution of above wave equation when it is propagating
along z-axis is
Y=y @

so if kg, is the wave vector or propagation constant along z-axis i.e. axis of
guide the solution of equations (2) and (3) will be

E,, | R e =%
{ "’}={ ‘-’}e 46 —%gd ..(4)
B(r-f) B(x:v)

To determine how E , and By ,) vary with x and y we start with
Maxwell’s equations

oB
curl B—i?—g and curl E=——

c? ot ot
which in terms of components can be written as
oy 49K BB} OB, . @B,
dy 09z c ot dy 0z ot
R o e OE L OE, JE, 9B,
oz ox ¢’ ot o ® o . & i
9B, 9B, 1 JE, of, JE, ab,

ox dy 5y 39 x Oy ot
But from equation (4) it is apparent that

9 P = . ®
E—-) ik, and §—)—zm—)—zkoc [as k0=—-] :

c
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Interaction of E.M.W. with Matter on Macroscop'c i
: 7 ik’ k)
_ SEK, TN e
€. \_}—_— ci(,;:C [l—(kc/ko)zl [ A
k°rf =2m/A] e
or \)z=c [1—(%,0/).‘,)2] [aSk—— 2
From this equation it is clear that v, <¢ and VU, = € 3. wnd B. of
’ iy y
(v) Transverse components of the fields i.e. Ex Ev on the

a guided wave are independent of one ano o
values of the longitudinal components E, or B; of the guided W
possible to express them in terms of a linear superpositio
independent solutions, one for which E=0 (TE) and one
B.=0(TE). Transverse electric waves are sometimes
and transverse magnetic waves as E-waves.

TE Waves :
For these as E,=0 and k2 =kj —k; equations
reduce to ;
ik,c 0B ik, 0B. 1
o —f—c——’- ..(1) 3 =-’——2”———‘— .(i11)
kK oy k* ox
>
ik ,c OB. ik OB. j
y SEWEOL L il Bt )
k. ox ! k. oy

Thus in TE mode all the transverse components of E and B can
tor B..

expressed in terms of longitudinal component of magnetic vec
order to compute B- we use equation (3)ie

4 1 9’°B
V’B—— =0
¢ ot?
which in the light of eqn. (4) i.e.
—i (ot — kgz)
B =aB(x. we <
i.e. with— — (ik,)and Y — (—im) becomes
z } :
T RN | I
o + 3 +(ik,) B-——c—z"(—l(l)) B=0
ie aZB+‘:’2B+ @ _¢ |B=o
e o Py = £ |B=
: B 9B . .
ie. e b %" +k”B=0 [ask,=w/cand k,

d only .
ther and gy 8 ave, SO it1s

n of twoO

for whiCh
known as H wave

(A), (B), (©) and (D)

...(8)

be
In

=k +i ]

Generated by CamScanner



N—-—k

304 Electromagnetic Theory

is a vector equation so must be satisfied for each

As above equations .
component of B it reduces to

component of B. For z-

o°B, J'B
Ly —2+k B, =0 ..(a)
ox” dy
with boundary condition [9B_/dn/s=0 iLe.
JB.
S at x=0 and x=a.
58
and ——=0 at v=0 and y=>b.
Iy
Such a solution is
£ i
B.=B(,cos(i—"—1E )cos 2_72) ..(H)
# a LD
with i =nf{ﬂ;+"ﬂ A1)
g b

where the indices m and n specify the mode. The cut of wavelength 1s

given by :
( 1 ) thal £ @ ( 2% )
— R ask=—
L‘ mn 2 a- b- k
z

e

i' €. {\ Ar)nm 3E T

BEH]

while cut off frequency will be

2 2mc
w,, =Tc ?_l_;; as (DT -(K)

o m and n are designated as TE ., mode.

The modes corresponding t
The case m =n=0 gives a static field which do not represent a wave

propagation. So TEoo mode does not exist. If a <b the lowest cut off
frequency result for m= Oand n=lie.
4

e
(W)= K =
The TE,, mode is called the principal or dominant mode.

The fields in the guide for TE mode will be obtained from eqn. (8) by
substituting the solution for B, which is

—i(ot —kg2)
e g
B:(r.l) ey B:(.\'. ) €

e

"R I
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gxample 7 Find (a) what transmission modes are pos._sib.’e at an
,,,,(,m,,-,,g_[requency of3 GH;ina hollow rectangular wave guide of inner
dimension 3.44x7.22 ¢m and (b) the corresponding values of phase

constant, phase velocity and group velocity-
Solution. (a) In this problem
A, =(c/f)=0BX 10'°/3 x10°)=10 cm
Now as
¥ don =

a particular mode can be transmitted ifits corresponding A . is greater than

A, i.e. 10 cm.
(1) For TEq mode m= 0, n=0and there will be no propagation.

2y ¥Yor TE,, o mode m =L n =0and so
A, =2a=2 x 3.44 = 688 cms.
Thus (A,.) 0 < A, hence TE) 0 mode does not exist.
(3) For TEn mode m=0, n=1 and so
A, =2b=2X 722 =1444 cm.
Thus (A ) < Ao, hence T, mode will propagate.
Now as we will see higher TE modes does not propagate because in

every case (A . ) > Rogs
Also since for a TM wave to propagate the lowest mode is TM |, mode

for which A, < A, i.e. TM mode will not exist in this guide at all.
From above it is clear that at 3 GH. frequency given guide can

propagate only To; mode.
(b) As guide wavelength
A

e ¢ - 10 __1_
E T Stk bR QG4 8

phase constant

=143 cm

=2n =2x3-l4___0_45 o
Ag 14-3
phase velocity ‘
g 3x10° 3
" = = =43 x10" m/s
TR S

group velocity
v, =yl - (10/14.4)*] =3 x10" x-7=21 x10* m/s .
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of EM.W. with Matter on Macroscopic Scale i

- azB: aZB . mz
e Bt 2B =0
2°’B azg. oy’ h . s
or g
ox? o o> ek B.o=0
- kc.Z] ...(4)

& [with @/c =k, and k,” — K¢
e boggdary condition | 9B/dn|s=0i.e.

3x 7 at x=0 and x=a

b T ¥
| ay i at y=0 and y=b

when applied to equation (4) yields

B. =B, cos (”"".‘) cos (EEJ_’) | 45
2
s T LA 2] - (6)
a’ b :

So substituting the value of B; from (5) in (3) we get

: ik,c( nr mrx) . (7
Ex(x.'_v) - kcoz ( b )B COS( % )Sln (—??)

: ik,c( mm . [ mnx nmy
) kcoz(a )B sm( g )cos(—;—]

The above equation when substituted in egns. (2) results
2k c mTx nmy PRz ) —iot
Egop= e ( 5 )B cos( = )sm( . )sm(T) ¢ ..(A)
: 2k c mmx nny) . (P72 | —iot
o gl o) ()
as  waveisTE )

with - Ez(r-. 5 = 0 :
f magnetic field in this will be obtained by usmg

The components 0
the Maxwell s curl E = (—0B/0¢) in terms of components i.e.

3E, 9OE, 9B, e ;
= s ) B b
: A X0 L
aE,_gfz—-———— or —ag——w)B ' -(7)
R z :
> ; aEy aEx __?__B;I_' aE}’ __aEx B <
s 5 5

[as E=0ard (3/3t)— —iw]

“ -
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So equation ( 11)in the light of (H) and (I) and with tp/d = kg yields
2iw E, (nm ) . [ mMTX (m'cy) (PTCZ) —it
=2 _—]|— s cos| — [cos| —— |€¢ . &
2 k?c"(b)bm(a) b d .
. 9 g TTZ i
B :._gf_(?ég(ﬂ)cos(mmJsin(ﬂ)cos(pd )e - gy S (K)
. : k(- ¥ s 4 b
T Kz Y
and E =2E,sin (ﬂ)sin(%)cos(%’)e el o1
a

components of field vectors angd
TMoo1, TM)o0, TMoio, TMy,,,
lowest mode is TM .

ndition

Equations (H) to (L) represents the
from these it is evident that modes TMooo,

TM,0; do not exist. The physically possible
The resonant frequency will be given by the co

K=K+ Kk

2 2 22
m n p
.. . — — + — + =
o ' ’w[(a) (b) (d) ]
QUESTIONS AND PROBLEMS

Fresnel Formulae :
1. Determine the boundary conditions
fields at the interface between two me

and permitivities.
[Hint : See § 6.1].
2. (a) A plane electromagnetic wave is incident normally at the
boundary of two non-conducting media.  Discuss the

phenomenon of reflection and refraction.
[Hint: See § 6.6 to prove equation’s (4) and (5). Note also that same
results are obtained by using equation’s (A) and (B’) or (C" and (D)
with 6, =0, =6, =0 in § 6.3). '
(b) Prove that for glass-air interface (n, =15 and n, =10) for
normal incidence the reflection and transmission coefficientare
R, =0-04and T, =096. |

satisfied by electromagnetic
dia of different permeabilities

S, cos 0 A ‘
Hint: R = 5 R = R g Ay = |
[ S cos ) S (as9; =0, =0)
L R=(—E—:R——J ’ (as S = n E? =_’_’_EJ
E 2 urZO ZO
b 2
. R____(”z nx) ____(1-5-—1 sabd ER_:nz—n1
; n, +n 15 +1 Ei n, +n,
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