CORE COURSE — Il MECHANICS SUBIJECT CODE: 16SCCPH2

UNIT I Projectile, Impulse and Impact

Projectile - particle projected in any direction - Path of a projectile is a
parabola - Range of a projectile on plane inclined to the horizontal -
Maximum range on the inclined plane - Impulse of a force - Laws of impact -
Direct impact between two smooth spheres - oblique impact between two
smooth spheres - Impact of a smooth sphere on a smooth fixed horizontal
plane - Loss of KE due to direct impact - Oblique impact.

PROJECTILE MOTION

An object may move in both x and y directions simultaneously. The form of two —
dimensional motion we will deal with is called projectile motion. The free fall acceleration is constant
over the range of motion, it is directed downwards, it is reasonable as long as the range is small
compared to the radius of the earth. The effect of air friction is negligible. These are few assumptions,
an object in projectile motion will follow a parabolic path, this path is called the trajectory.

Projectile Motion Diagram










=arly an equation of the second degree ip x and the first degree in y and thus
a. with its axis vertical. The trajectory of the particle is thus a parabola.

" izontal Range of a Projectile. Clearly, the time taken by the body to reach the
% = u sin B/g", its vertical velocity being u sin 6.

of ascent is equal to time of descent, the total time taken by the body for the
& sin 0/g.
hus ume, the #orizontal distance covered by the body, with its uniform horizontal

sgivenby -
2msin® _ 2u” sin6.cos® _ usm29. [ 2 i Ooos @ = pin 28

- 4 g

I distance covered by a projectile is called its horizontal range, or, more
s range. Denoting it by R, therefore, we have R = u? s5in 20/g

imum Height attained by a Projectile. We have the kinematic relation, v*— #*
: symbols have their usual meanings.

¢ (the body being projected upwards), and, at the highest point, obviously, v = 0.
maximum height atiained by the projectile be h, (i.e., S = h), we have

-

§sin 0 = 2.(-g).h,
R
. 8in“®
LRI ;g ; [ . the initial upward velocity here is 4 sjn 8 and not .

of Projection for Maximum Range. It is obvious that for a given initial
body, its horizontal range (R ) will depend upon its angle of projection (6).
W2, sin 26 ;

ze R, as we know, is given by R =
u?sin 20
8

hat the value of © for maximum (horizontal) range of the projectile wduld be that
= 1, i.e., when 26 = 90°, and, therefore, 6=45°. :

el range, the angle of projection shoulti be 45°.

Lwehave x =

sg mteresting result follows from the relation R = u* sin 20/g.

ame of an angle is the same as that of its
28 = sin (180-20)

that the projectile will have the same
sum), for the angles of projection 6 and
1aken being, however, different, and

| and the low (L) trajectories respectively,
13 m view of the different maximum

ol.an Inclined Plane. We
{ § 2.15) that the equation to

o a projectile is







IMPULSE OF A FORCE

Impact

12-1. Impulsive force. A large force which, acting on a body
for an infinitesimally small period, produces a finite change of
momentum in that interval, is called an impulsive force. The period
in which the impulsive force acts should be so short that, during this
period, the change of position of the point of application and the
cffects of the finite forces are negligible. The force experienced

by a ball due to a hit by a bat is an example for an impulsive
force.

12:2. Impulse. The effect of the action of an impulsive
force is measured by the change in momentum produced by the
force. This change is called the impulse of the impulsive action,
So the defining equation of an impulse imparted to a particle of mass

m is
I=mv —mv, (12:21)
where v and v’ are the velocities of the particle immediately bef|

and immediately after the impulsive action. If ¢ is the short ti
during which the impulsive force acts, then.

2 i 7 T x
I-mv’-—-mv:[ mv ]=I mdv= I-m g—:- dt= I ma dt
0 0 i 0

Remark 1. The integral‘\(lz-z-Z) may also be de
the impulse. : |



,. Remark 2. Care should be taken to differentiate impulse from
i an impulsive force, for impulsive force is a force whereas impulse is
. thechange in momentum. Hence impulse is measured by the unit
l, of momentum but not by the unit of force.

As the remark 1 and remark 2 says about the difference between impulse and impulsive force. Lets
have a keen understanding on this.
Impulsive force ---- is a force
Impulse -------------- is the change in the momentum

LAWS OF IMPACT
They are the conservation of linear momentum and elasticity.

12-3. Cbnservatitjn of linear momentum. From the equation
. of motion of a particle of mass m,

m r=F.
- we see that, if F=0, then

L3}

mr Or myv

is a constant vector ; that is, the linear momentum is conserved.
Thus we obtain the principle of conservation of momentum for a
varticle that, if the applied force on a particle is zero, then the linear
momentum of the particle is conserved.

From (7-2-2) it is evident that in the case of a rigid body or a
ystem of particles, if the sum of the applied forces is zero, then

my r1+mg re4-......=2a constant vector.
t is, the linear momentum of the system is conserved.

When the explosive charge in a gun forms a large amount of
, the gun and the shot are subject to the action of a very high
ssure. But this pressure is an internal force and not an external
. Therefore, when a gun is fired, the gun and the shot are not
)¢t to any external force. So, by the principle of conservation
near momentum, if the gun is at rest before firing, that is, if the
entum of the gun and the shot is zero before firing, then
ediately after firing the sum of the momenta of the gun and the
will also be zero. So, in firing a shot of mass m with a velocity
gun of mass M gains a velocity V given by



: m
mv+4+MV=0 as V=—M~ Y.

As in explosion, the forces exerted in collision of two smooth
are purely internal if the bodies are thought of to form a

unit. Hence the momentum aofter collision is the same as the
m before collision. (12:3-1)

§. Elasticity. When two balls collide, during the time
the balls are in contact, they become distorted losing their
ipes. Though this distortion is a complicated process, it
ed from experiments by Newton that the relative speed
line of centres of the balls after collision, bears a constant
relative speed before collision. This constant which
fly on the materials of which the balls are composed and
ze, is called the coefficient of restitution and is usually
¢. Further, it was observed that 0<<e<1. In the ideal

cases, where e=0 and e=1, the ball are said to be inelastic and per-
fectly elastic respectively. Now Newton’s experimental law may be
stated as follows :

Component of the component of the
relative velocity after %= —e < relative velocity (12:4:1)

impact : before impact
both the components being along the line of the balls.

DIRECT IMPACT BETWEEN TWO SMOOTH SPHERES, OBLIQUE IMPACT BETWEEN TWO SMOOTH
SPHERES

12-5. Impact of two smooth spheres. Suppose that two smooth
spheres collide with each other. In the infinitesimal interval of time
during which the spheres are in contact, each is subject to the action
of an impulsive force which is towards its centre. Thus there will
be two impulsive forces acting on the spheres. By N. 3, they are
equal in magnitude but opposite in direction. So also are the
impulses imparted to the spheres. :



Owect Direct Oblique

Oblque Oblique
Fig. 12:5°1.

Impact of spheres can be classified into two groups, namely
direct and oblique impacts. If C; and C, are the positions of the
centres of the spheres at the time of impact and if the centres of the
spheres had been moving before the impact along the straight ling
through C, and C,, then the impact is said to be direct ; otherwise, ( |
is said to_be oblique (Fig. 12:5-1).

Lire ol
TS |

Direct Central [mpaci

Obligue Central npact



IMPACT OF A SMOOTH SPHERE ON A SMOOTH FIXED HORIZONTAL PLANE — LOSS OF KINETIC ENERGY
DUE TO DIRECT IMPACT — OBLIQUE IMPACT

12:6. Direct impact of two smooth spheres. In this section,
given the motion before the impact of two smooth spheres, we
obtain e

(i) the motion after impact
(ii) the impulse imparted to each sphere due to impact and

(i) the change in K.E. due to impact.

BOOK WORK 12:1. To find the velocities of two smooth
spheres after a direct impact between them.

Let us have the following assumptions (Fig. 12:6'1) :

m,, my : masses of the spheres
uy, ug - velocities of the spheres before impact
(1> tg). (12:6°1)
e : coefficient of restitution
v;, v : velocities of the spheres after impact

L]
g v2
Before —* s

Fig. 12:6°1.




y From the p’t:inciple of conservation of linear momentum the
omentum after impact equals the momentum before impact. So

, My vy Mgy =Nty - Malls, (12:6°2)
d, from the Newton’s experimental law, we have
V;— Vo= —e(Uy—Us)- (12+6°3)

(12:6:2)+m;y x (12:6:3) and (12:6:2)—my X (12:6-3) respectively give

(my+ M) vi=myuy Mg |- emy(uz —ti)
(my+mg) vo=myu, + mytiy-+emy(thy— Us)
conscquenﬂy,fthe velocities v, and v, after impact.
~ Corollary. In the ideal case in which e=1, if m;=m,, then
equations (12°6-2) and (12-6-3) become
: v1+'i’3= Uy + Uz,
Vy—Vp=—Ust Uk

, on solving, gives that v,=u, and v,=u; showing that the
ties of the spheres are interchanged by impact. |

BOOK WORK 12:2, When two smooth spheres collide directly,

the impulse imparted to each sphere and the change in the
cinetic energy of the spheres, (both in terms of the velocities

‘impact).

“

)
v



-11 3 T

Fig. 12:6°2. |
Let us make the same assumptions as in (12:6:1). Furthermore
let C, and G, be the centres of the spheres at the time of impact and
i, the unit vector in the-direction of C,C,. Then, if I is‘the magnitude
‘of the impulse imparted to each of the spheres, then the impulse
imparted to the sphere C,, is
Ili= m’V'i e m,u,i
since the im

. pulse imparted is the change in momentum. The
1mpulse imparted to the sphere C, is

I(—i)=my, i—mu, i.

Thus we get the scalar relations

I=my(v;—uy), —I=my(v;—u,) (12:6-4)
Dividing them respectively by m, and m, and subtracting, we get

I (r}% +51!;)=(v’—u’)_("1—“1)



= — (V1= Va)+(Ur—us)
=e(u, —us)+ (43 —us) by experimental law
=(1+e) (—us). .

1= m’:’_;"";. (1+€) (ur—us) (12:6:5)

The total kinetic energies of the spheres after and before
impact are !

dmyvt - dmgv ety dmyugd 4 dmgugt,

The increase in the kinetic energy due to impact is
H{(mav1® +mave®) — (myuy® + maust)}
= H{(m (V1 — 1y ®) + my(vet—u,t)}
=H{m(vi—u;) (V14u;) +my(vs— us) (V2 +ug)}
=4(—D+u)+(1)(v2+us)} by (12:6:4)
= —1 [{(vi—u) — (va+us)}.
= —} [{(vi—vs)+ (u1—us)}
=—4 I{- -e(ur—us)+ (u—us)} by experimental

f =—} I(1—e) (1—uy) :

mym 9.6
g=oug m—l_ﬁ_—;” (1-+e) (1—¢) (u1—uy)? by (12:65)

! =—3 nT':'-_‘;”T’z (1—e?) (uy— uy)?. (12:66)

‘Since it is a negative quantity,
eénergy, that is, a loss in kinet;

‘ Remark 1. Th
by using the identity

there is actually a decrease in kinetic
¢ energy due to impact.

-

e loss in kinetic energy can also be obtained



e
by

1
Py {;(m1v1+m,v.)‘+m1m(vx-—v3)' }

!
- §m1"1’+}msva'=}ml T [ ' (m1v1+m.v,)'+m,m.(v1-v.)' ]
be So also

o |

- dmaut =} ml_ll_";. [ (M2t~ Mgug)® - mymg(uy — ) ]

btraction of the second from' the first gives the change in kinetic
Crgy as g

4 ; i‘ m ’{MIMg(Vl-—Vg)’—::"l]_m:(ul—Ug)..}

| SInCe myvy +mave=myuy +myu,
4 1

'==} o { mlmge’(ul—-u,)'—mlm,(ul-u,)’}

by Newton’s experimental law

i mym
e Y

" Remark 2. Only in the ideal case when e=], the loss in
IC energy is zero.

127, Impact of a smooth sphere on a fixed smooth plage.
puere collides with a plane with its centre moving along a

al to the plane, then the collision is said to be direct ; otherwise,
aid to be obligue.



UNIT 11 Motion on a plane curve

Centripetal and centrifugal forces - Hodograph - Expression for normal
acceleration - Motion of a cyclist along a curved path - Motion of a railway
carriage round a curved track- upsetting of a carriage - Motion of a carriage
on a banked up curve - Effect of earth’s rotation on the value of the
acceleration due to gravity - Variation of ‘g’ with altitude, latitude and
depth.

CENTRIPETAL FORCE AND CENTRIFUGAL FORCE

2.10. Centripetal Force. According to Newton’s first law of motion, a2 body must continue |
to move with a uniform velocity in a straight line, unless acted upon by a force. It follows,
therefore, that when a body moves along a circle, some force is acting upon it, which continually
deflects it from its straight or linear path; and since the body has an acceleration towards the centre.
it is obvious that the force must also be acting in the direction of this acceleration, i.e., along the
radius, or towards the centre of its circular path. It is called the centripetal force, and its value is
given by the product of the mass of the body and its cenmpetal acceleration. Thus, if m be the
mass of the body, we have

centripetal force = mv® = mv*/r = mrw?* = 4 nn’mr,

in dynes if m be in gm., v in cm/sec and r in ¢cm and in newtons if m be in kg, v in m/ sec and
r in metres.

Numerous examples of centripetal force are met with in daily life. Thus, (i) in the case of &
stone, whirled round at the end of a string whose other end is held in the hand, the centripetal force
is supplied by the tension of the string ; (i) in the case of a motor car or a railway train, negotiating
a curve, it is supplied by the push due to the rails on the wheel of the train and (iii) in the case of
(a) the’ planets revolving round the sun, or (b) the moon revolving round the earth, by the
gravitational attraction between them.

- 2.11. Centrifugal Force. The equal and opposite reaction to the centripetal force is called
centrifugal force, because it tends to take the body away from the centre, (from ‘fugo’ — I flee).
Centripetal force and centrifugal force being just action and reaction in the sense of Newton’s third
law of motion, the numerical values of the two are the same, viz., mv?/r = mrey* = 4n’n’mr dynes or
newtons according as the C.G.S. system or the M.K.S (or the §..) system is used.

Thus, in the case of a stone, whirled round at the end of a string, not only is the stone acted -
upon by a force, ( this centripetal force), along the string towards the centre, but the stone also
exerts an equal and opposite force, (the centrifugal force), on the hand, away from the centre, also
along the stnng, the two balancing each other and keeping the stone in dynamic ethbnum
constraining it to move with a constant speed along the tangent to its circular path at every point. In

the event of the string getting snapped or getting loosened, this pair of constraining forces disappears
and the stone flies of tangentially to the circular path at the point where the string snaps.



T
.'... ...c
. ‘e » .
- -
- ‘e
. »*
» »
. »
.' »
-
»
» L
» .
. -
. -
» .
. .
® s
« .
- “
. L
- .
» .
.
.. .
* .
- o "
- o ..
. o . '
. . .
. . )
.’ . o’
-

Centripetal force

/" Centripetal
! force ‘ .

. . .
L ey 3
A ’/ 'l
‘ X ”'

s o

(a) Spinning a ball on a string or twirling a lasso

I n
Centripetal \Y
force

(d) Planets orbiting around the Sun

(c) Going through a loop on a roller coaster



Centripetal Force Vs Centrifugal Force

Check the table below to learn the detailed comparison between Centripetal and Centrifugal Force
Differences Between Centripetal And Centrifugal Force
Centrifugal Force Centripetal Force
If an object moving in a circle and experiences an

outward force than this force is called the
centrifugal force

If the object travels in a uniform speed in a
circular path is called centripetal force.

The object has the direction along the centre

The object has the direction along the centre of the of the circle from the object approaching the

circle from the centre approaching the object

centre.
Mud flying of a tire is one example of the A satellite orbiting a planet is an example of
centrifugal force. the centripetal force.

The Centripetal Force Formula is given as the product of mass (in kg) and tangential velocity (in meters per
second) squared, divided by the radius (in meters). Which implies that on doubling the tangential velocity, the
centripetal force will be quadrupled. Mathematically it is written as:

m’
T

F =ma,.=

Where,

+ Fisthe Centripetal force.

+ a.is the Centripetal acceleration.

« mis the mass of the object.

+ ¥is the speed or velocity of the object.

« ris the radius.

Centrifugal Force Formula is given as the negative product of mass (in kg) and tangential velocity (in meters per
second) squared, divided by the radius (in meters). Which implies that On doubling the tangential velocity, the
centripetal force will be quadrupled. Mathematically it is written as:

Where,
s F_.is the Centrifugal force
+ mis the mass of the object
« visthe velocity or speed of the object.

« ris the radius.



W ater outlet = mer =

Impeller
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HODOGRAPH

The Hodograph may be defined as an auxiliary curve obtained by joining the free ends of a moving
vector representing the velocity of a moving partlcle along any | path.
The Hodograph. When a body describes a curvilinear path, so that its motion is
and also changes in direction, its acceleration and its path may easily be determined by
what is called the hodograph of its motion.

hodograph may be defined as an auxiliary curve, obtained by jbining the free ends of a
wector representing the velocity of a moving particle along any path.

instance, if a point P moves along a curve ABC, [Fig. 2.4 (a)] such that its velocities are
and vs.... respectively at A, B and C etc., then, if we take any point O and draw strmght~
e, vectors, Oa, Ob and Oc, [Fig. 2.4(b)], represenung the velocities of P at A, B and C, in
as well as in direction, the curve passing through a, b and c is the hodograph of the
of P.

Blurred on the left edge are — accelerated, means, moving vector, v1,v2 and v3, lines ,magnitude,

motion

A hodograph is a diagram that gives a vectorial visual representation of the movement of a body
or a fluid. 1t is the locus of one end of a variable vector, with the other end fixed. The position of
any plotted data on such a diagram is proportional to the velocity of the moving particle.



@ e (5)

% : Fig. 2.4
Now, different cases arise : X

(i) If point P be moving with a uniform velocity along the same direction, points a, b, ¢ ¢
will all lie in the same place and the hodograph will therefore, be a single point.

(@) Ifpoint P be moving with a variable velocity, but in the same direction, the hodogra
- will be a straight line, passing through O. For example, in the case of a body falling freely un
the action of gravity, the hodograph will be a vertical line, passing through O.

(zid) If P be projected with a horizontal velocity, the path described will be a paralola, (
§2.14), and both the direction and the magnitude of the velocity will change. The huriz
velocity will throughout remain constant and equal to the initial horizontal velocity, because
acceleration due to gravity acts vertically downwards. The points a, b, ¢, etc. will, theref
always be at the same horizontal distance from O, and the hodograph, in this case, will thus
vertical line, not passing through O.

(iv) 1If the path of P be a closed curve, the hodograph will also be a closed curve.
example, if 7 moves in a circle with a uniform speed v, the hodograph will also be a circle
radius v, because all the lines, Oa, Ob, Oc, etc. will be of the same length v. If, on the other h
it moves in a circle with a variable speed, the hodograph might be an oval curve about the point

2.8. Velocity in the Hodograph. An important property of the hodograph is that
acceleration of P at any point on the curve ABC is represented, in magnitude as well as directi
by the velocity of the corresponding point on the hodograph, as can be seen from the following :

Let A and B be two points, close together, [Fig. 2.4(a)], and let 7 move from A to B in tim
such that its velocity v; at A is changed to v, at B.

Further, let another point p describe the hodogrpah abc, [Fig. 2.4(b)], while P describes
curve ABC.

Then, clearly, the point p moves from a to b in time 7, and its velocity is, therefore, eq
ablt.

But, since oa represents the velocity of P at A and ob, that at B, ab represents, in accor:
with the law of triangle of velocities, the change in velocity of P in time ¢, and, therefore, the
of change of velocity, or the acceleration of P, is represented by abl/t, i.e., by the velocity of p
the hodograph.

We thus see that, at any instant, the acceleration of P is given by the velocity of p in
hodograph of its motion.



Hodograph

A hodograph is a line connecting Altitude
the tips of wind vectors between (kilometers)
two arbitrary heights in the

atmosphere

Each point on a hodograph
represents a measured wind
direction and speed at a certain
level from RAOB data (or forecast
data from a model)

A hodograph is a plot of vertical
wind shear from one level to
another

The points are then connected to

form the hodograph line (red) (%irection)
egrees

Green arrows drawn from the origin
allows one to better assess (visualize)

wind field and wind shear Altitude

(kilometers)

Length of red line between 2 points
shows amount of speed shear if line is
parallel to radial, amount of

shear if line is / to radial, and
amount of speed and directional shear
if line is at angle to radial

Total vertical shear = speed and
directional

Green lines represent “ground-
relative” winds, i.e., the actual wind at
various levels

To determine total shear (in kts), lay
out length of line along a radial

Direction

Common layers assessed for severe (knots) (degrees)

weather — 0-1 km, 0-3 km, 0-6 km




EXPRESSION FOR NORMAL ACCELERATION

I be clear from the following. -

P move in a cn'cle,.

pendicular to OA and (a) (b)
to OB and ZAOB = y
ular measure). i el
{ to describe the arc AB, its velocity v = AB/t = rflt , whence, 0 = wiir.
: 'ity of the corresponding point p, in the hodograph, is ab/t = v o/t

i

_:_n ity of p in the hodograph gives the acceleration of P in its actual path, we

,;,eleration of . Fos ik Bt 5¢

..’ *‘s small itis, in the llmlt perpendicular to oa, or parallel to AO.

ration of P is v¥/r and is directed along the radius or towards the centre of
\ which it is movmg
¢ v = r. ® (where o is the angular velocity of P), we have

acceleration of P, also = r2. ©Yr = ro?.



MOTION OF A RAILWAY CARRIAGE ROUND A CURVED TRACK , UPSETTING OF A CARRIAGE, MOTION
OF A CARRIAGE ON A BANKED UP CURVE, MOTION OF A CYCLIST ALONG A CURVED PATH

BANKING OF RAILWAY LINES AND ROADS

When a railway train goes round a level curve on a railway track the necessary
centripetal force is provided only by the force between the flanges or the rims of the wheels and the
rails, the normal reaction of the ground or the track acting vertically upwards and supporting its weight.
This result in a grinding action between the wheels and the rails, resulting in their wear and tear.







and the rails, resulting in their wear and tear. Not only that, it may also prove dangerous in the |
sense that it may bring about a displacement of the rails and hence a derailment of the train.

To avoid these eventualities, the level of the outside rail is raised a little above that of the
inside one. This is known as the banking of railway lines, and the angle that the track makes with
the horizontal is called the angle of banking.

With the track thus banked, i.e., with the outer rail thus raised above the level of the inner
one, the reaction R acts perpendicularly to the track, as before, but is now inclined to the vertical at
an angle equal to the angle of banking and its horizontal component (and not the lateral thrust of
the wheel flanges on the outside rail) now supplies the necessary centripetal force to keep the train
moving along the curve, thercby eliminating all unnecessary wear and tear.

Thus, if © be the angle of banking [Fig. 2.9(a)] and R, the normal reaction acting
perpendicular to it, we have
vertical component of R=R cos©

and horizontal component of R = R sin 6
The former component balances the weight
mg of the train and the latter supplies the required
centripetal force mv?/r, where v is the speed of the
train and r, the radius of the curve it negotiates.

. So that, ;
_ R sin © =mv¥r
and Rcos® =mg.
R sin© i mv?/r
R cos© mg
Or, tan® =v*/rg ...(I8
Or, 0 = tan? (V¥rg).
The angle of banking thus depends upon the:

Ty speed (v) of the train and the radius (r) of the

curve of the track. Obviously, therefore, a track

can be banked correctly only for a particular speed

Fig. 2.9(a) of the train, — in practice, naturally for its average

speed, given by v = Vrg tan0 from

relation (i) above. At higher or lower speeds than this, there is again a lateral thrust due 1o t
wheel flanges on the outer or the inner rail of the track respectively.

Clearly, the angle that the track makes with the horizontal is equal to 0, i.e., equal to
angle of inclination of the train with the vertical, (Fig. 2.8).

Further, it will be readily seen that if the distance between the rails be d and the height of tk
outer rail above the inner one be 4, we also have sin 6= h/d. Or, sine of the angle of banking

_ height of the outer rail over the inner one
distance between the rails

In the above discussion, we have neglected the frictional force betwee o
rails. If this 100 be taken into account, the centripetal force

s !
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| ¢ of a car moving
r, the centrifugal force is
aw friction between the road
. That is why, when the
the frictional force not
s 1o slide or skid. Here, t00,

a saucer —

lower speeds

the following :

Fig.2.10

" ards, with the force of friction F
1¢ ground and the tyres and the centrifugal
r in the direction shown, where

’ .R =mgand F = mv¥r.

- for equilibrium, clearly, we have
of mg about P equal and opposite 10
of mv¥/r about P.
mg X PQ = (mv¥r)x GQ. '
~ mgx PG.sin®=(mv’[r). PG. cos ©
. 8in®/cos® = tan® =v*/rg.

u'e ‘banked’, the slope being generally steeper outwards, — more or less like
, the outer parts being meant to be
used at higher speeds and the inner ones, at

Agam, an aeroplane in order to turn, must
also bank, the centripetal force here being
supplied by the horizontal component of the lift
L, (Fig. 2.10)

mry? - The same applies to a cyclist, when

' negotiating a curve or a corner, and he has to
lean inwards, (i.e., towards the centre of the
curve), by an angle 6 = tan ' v¥rg; so that the
faster his speed and the sharper the curve, the
more must he lean over. This will be clw from

Let Fig. 2.11 represem a cycliSt turning to
A circle of radius r, at a speed v. Then, the normal reaction R of the ground acts

Fig. 2.9 (b)




In other words, in order to keep himself in equilibrium, the cyclist must lean inwards fro
the vertical at an angle 6 = tan™! (v2/ rg). :

If he were to remain vertical, his weight would act through P, having no moment about it, so
that the moment of mv?/r about # would remain unbalanced. In fact it will be readily seen that
system of forces acting on the cyclist form two pairs of couples, one du> to F and mv?/r and
other due to R and mg. So that, in the event of the latter couple vanishing (i.e., if the cyclist were
vertical), the former alone will remain operative, resulting in the cyclist toppling over. (See alsc
under "Gyroscope", Chapter I11.) :

Further, since the maximum value of F = umg, (where 1 is the coefficient of fn’ction‘betwlee
the ground and the tyres), the cyclist will skid when mv?/r > wng, or when v2 > pirg.

Thus, skidding will occur (i) if v is larg
i.e., if the speed of the cyclist is large; (ii) if
is small, i.e., if the road is slippery and (iii) if
is small, i.e., if the curve is sharp.

Similar conditions apply in the case of
motor car or any other vehicle. For, here 100, i
“we imagine it to be tumning to the left (Fig
2.12), the various forces acting on it are t
normal reactions Ry and R,, the frictional
forces Fy and F,, its weight mg and the
centrifugal force mv?r, as shown, the whole
system being in equilibrium.

Obviously, in the event of the car being
about to be upset, it will be moving on t
wheels on one side only, so that the norma
reaction on the wheels on the other side will b
zero; say Ry = 0. So that, it will overturn as soon as the moment of mv%/r about P is greater than
opposing moment of mg about P, i.e., ’

Fig. 2.12

mv¥r.GQ > mg. PQ. Or, (mv¥r).h > mg.d,
where A is the height of the c.g., G, of the car above the ground and 24, the distance between (
two wheels.
For the car to be upset, therefore, we have v2 > d.rg/h.

The car is, thus not likely to be upset if 24, the distance between the two wheels is large an
if h, the height of the c.g. from the ground is small.

Again, the maximum value of the total frictional force
F“" F2= F= l—l-mg'
So that, as before, skidding will occur when mv¥/r > pmg.

when p? > prg.




EFFECT OF EARTH’S ROTATION ON THE VALUE OF THE ACCELERATION DUE TO GRAVITY

.‘ :‘ ;,,v.‘~ mdm
“g&wmm%mshmﬁuammM. u%
§ Volwrcml:omahngﬂlemc remark that he behavedasﬂmughhehm

os himself’.
VARIATION OF ‘g’ WITH ALTITUDE , LATITUDE AND DEPTH

Consider an object of mass m at a height h from the surface of the earth. Acceleration experienced by
the object due to earth is

"o

Mass at a height h from the center of the earth
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We can use Binomial expansion. Taking the terms upto first order

GM h

= V==

g R’ R
h
'—ol1-2—
i =y 2

We find that g'< g . This means that as altitude h increases the acceleration due to gravity g decreases.
Variation of g with depth:

Consider a particle of mass m which is in a deep mine on the Earth. (Example: coal mines in Neyveli).
Assume the depth of the mine as d. To calculate g’ at a depth d, consider the following points.



PARTICLE IN A MINE
The part of the Earth which is above the radius (R, — d) do not contribute to the acceleration. The result is

proved earlier and is given as

. GM'
g _(Re__—d)z

Here M’ is the mass of the Earth of radius (R,-d)

Assuming the density of Earth p to be constant,

e
P=y

where M is the mass of the Earth and V its volume. Thus.

Mn‘
P:F
ﬁ'zﬂ and M'=£V'
ViV

=



Thus

Here also g ' < g . As depth increases, g’ decreases. It is very interesting to know that acceleration due to

gravity is maximum on the surface of the Earth but decreases when we go either upward or downward.
Variation of g with latitude:

Whenever we analyze the motion of objects in rotating frames [explained in chapter 3] we must take into
account the centrifugal force. Even though we treat the Earth as an inertial frame, it is not exactly correct
because the Earth spins about its own axis. So when an object is on the surface of the Earth, it experiences a
centrifugal force that depends on the latitude of the object on Earth. If the Earth were not spinning, the force
on the object would have been mg. However, the object experiences an additional centrifugal force due to
spinning of the Earth.



Variation of g with latitude

This centrifugal force is given by mw2R’.

R'=RcosA

where 7 is the latitude. The component of centrifugal acceleration experienced by the object in the direction
opposite to g is

= o R’ cosh = w’Rcos> A
sinceR'=Rcos A

Therefore,

g'=g—w’Rcos’ A

From the expression (6.52). we can infer that at equator, . = 0; g’= g - ®°R. The acceleration due to gravity

is minimum. At poles A= 90; g’'=g, it is maximum. At the equator, g’ is minimum.



