DAA College

Dharmapuram

Department of PHYSICS

Class: I M.Sc.,(Physics)

Title of the paper: Quantum mechanics

QUESTION BANK

SHORT ANSWER TYPE QUESTIONS

UNIT I

- 1. Write the Schrodinger wave equation and its plane wave solution.
- 2. Give the physical meaning of wave function.
- 3. State the physical significance of time independent Schrodinger equation.
- 4. What do you mean by expectation value?
- 5. Write any two properties of Hermitian operators.
- 6. State Heisenberg's uncertainty relation.
- 7. What are called Dirac's bra and ket vectors?
- 8. Define Hilbert space.
- 9. What is Schrodinger picture?
- 10. Define Heisenberg picture.
- 11. What is interaction picture?
- 12. How does Schrodinger picture differs from Heisenberg picture?

UNIT II

- 13. Give the solution for one dimensional harmonic oscillator.
- 14. Why a particle trapped in a box cannot be at rest?
- 15. Write the admissible solution for rectangular barrier potential.
- 16. What is called a rigid rotator?
- 17. Write the solution for hydrogen atom problem.

UNIT III

- 18. What is meant by non degenerate state?
- 19. What do you mean by perturbation theory?
- 20. State Stark effect.
- 21. Define constant and harmonic perturbation.
- 22. Define transition probability.
- 23. Write a note on sudden approximation.

UNIT IV

- 24. What is scattering amplitude?
- 25. Define scattering cross section.
- 26. Give the significance of Born approximation.

- 27. Define the unit for measuring the cross sections in scattering theory.
- 28. Write the properties of L and L^2 .
- 29. Write the eigen value and eigen function of L_z.

UNIT V

- 30. Give the Klein-Gordan equation for a free particle.
- 31. Write the Dirac equation for a free particle.
- 32. Write short notes on Dirac matrices.
- 33. What is meant by charge density?
- 34. What is called current density?
- 35. Define negative energy states.
- 36. Write the consequence of negative energy states.
- 37. Define spin orbit coupling.

LONG ANSWER TYPE QUESTIONS

UNIT I

- 38. Discuss the physical interpretation of wave function.
- 39. Derive the time dependent wave function.
- 40. Derive the time independent wave equation and explain its physical significance.
- 41. What is Hermitian operator? Explain its properties.
- 42. State and explain Heisenberg's uncertainty relation.
- 43. Explain Hilbert space and obtain linear vector space in Hilbert space.
- 44. Derive the equation of motion in Heisenberg picture.
- 45. Explain Schrodinger picture in detail.
- 46. Discuss about interaction picture.

UNIT II

- 47. Derive the Schrodinger wave equation for a one dimensional harmonic oscillator.
- 48. Solve the linear harmonic oscillator problem using operator method.
- 49. Solve the Schrodinger wave equation for a particle in a box.
- 50. Obtain the Schrodinger equation for rectangular barrier penetration problem. Solve it to obtain eigen values and eigen functions.
- 51. Solve the Schrodinger wave equation for a rigid rotator with free axis.
- 52. Solve the radial part of Schrodinger's equation for the hydrogen atom and obtain its eigen values.

UNIT III

- 53. Develop first order perturbation theory for a non degenerate case.
- 54. Outline the time independent perturbation theory.
- 55. Give the theory of Stark effect for the excited state of hydrogen atom.
- 56. Explain Stark splitting of n = 2 level of the hydrogen atom in presence of an electric field using first order perturbation theory.
- 57. Derive the connection formula using WKB approximation.
- 58. What are Einstein's transition probabilities? Derive an expression for transition probability per unit time by quantum mechanical treatment.
- 59. State and prove Fermi Golden rule for the rate of transitions induced by constant perturbation.
- 60. Write a note on sudden approximation.

UNIT IV

- 61. Derive an expression for scattering cross section in terms of scattering amplitude.
- 62. Construct Green's function for a free particle.
- 63. Discuss the condition for validity of Born approximation.
- 64. Deduce an expression for scattering by screened coulomb potential.
- 65. Derive the commutation relation between orbital angular momentum with position.
- $_{66.}\,$ Obtain the generation of eigen function of (i) L and L^2 (ii) L^2 and $L_{z.}\,$

UNIT V

- 67. Mention the application of Klein-Gordan equation for a free particle. Explain in detail.
- 68. Derive Dirac's relativistic equation for a free particle and find out Dirac matrices α and β .
- 69. Describe Zitterbewegung as a peculiar motion of electrons.
- 70. Discuss the theory of Born approximation. Explain in detail.
- 71. Write short notes on (i) negative energy states
 - (ii) probability and current densities
 - (iii) spin orbit interaction