
Applet in JAVA

Submitted By,
M.Jancypriya,
Asst. Prof., Dept of CA
Bon Secours college for Women,
Thanjavur.

Java Applet Basics

• Applet is a Java program that can be
embedded into a web page. It runs inside the
web browser and works at client side.

• Applet is embedded in a HTML page using the
APPLET or OBJECT tag and hosted on a web
server.

• Applets are used to make the web site more
dynamic and entertaining.

Important points

• All applets are sub-classes (either directly or
indirectly) of java.applet.Applet class.

• Applets are not stand-alone programs. Instead,
they run within either a web browser or an
applet viewer. JDK provides a standard applet
viewer tool called applet viewer.

• In general, execution of an applet does not begin
at main() method.

• Output of an applet window is not performed
by System.out.println(). Rather it is handled with
various AWT methods, such as drawString().

https://docs.oracle.com/javase/7/docs/api/java/applet/Applet.html

Life cycle of an applet

Life cycle of an applet

• init() : The init() method is the first method to be called. This is where
you should initialize variables. This method is called only once during the
run time of your applet.

• start() : The start() method is called after init(). It is also called to restart
an applet after it has been stopped. Note that init() is called once i.e.
when the first time an applet is loaded whereas start() is called each time
an applet’s HTML document is displayed onscreen. So, if a user leaves a
web page and comes back, the applet resumes execution at start().

• paint() : The paint() method is called each time an AWT-based applet’s
output must be redrawn. This situation can occur for several reasons. For
example, the window in which the applet is running may be overwritten
by another window and then uncovered. Or the applet window may be
minimized and then restored.paint() is also called when the applet begins
execution. Whatever the cause, whenever the applet must redraw its
output, paint() is called.

Life cycle of an applet

• stop() : The stop() method is called when a web
browser leaves the HTML document containing the
applet—when it goes to another page, for example.
When stop() is called, the applet is probably running.
You should use stop() to suspend threads that don’t
need to run when the applet is not visible. You can
restart them when start() is called if the user returns
to the page.

• destroy() : The destroy() method is called when the
environment determines that your applet needs to be
removed completely from memory. At this point, you
should free up any resources the applet may be using.
The stop() method is always called before destroy().

AWT

• Java AWT (Abstract Window Toolkit) is an API to
develop GUI or window-based applications in
java.

• Java AWT components are platform-dependent
i.e. components are displayed according to the
view of operating system. AWT is heavyweight i.e.
its components are using the resources of OS.

• The java.awt package provides classes for AWT
API such as TextField, Label, TextArea,
RadioButton, CheckBox, Choice, List etc.

AWT HIERARCHY

AWT HIERARCHY
 Container

• The Container is a component in AWT that can contain another
components like buttons, textfields, labels etc. The classes that
extends Container class are known as container such as Frame,
Dialog and Panel.

Window
• The window is the container that have no borders and menu bars.

You must use frame, dialog or another window for creating a
window.

Panel
• The Panel is the container that doesn't contain title bar and menu

bars. It can have other components like button, textfield etc.
Frame
• The Frame is the container that contain title bar and can have menu

bars. It can have other components like button, textfield etc.

Creating Frame by extending Frame class
import java.awt.*;
/* We have extended the Frame class here, * thus our class "SimpleExample"
would behave * like a Frame */
public class SimpleExample extends Frame
{ SimpleExample(){
Button b=new Button("Button!!"); // setting button position on screen
b.setBounds(50,50,50,50); //adding button into frame
add(b); //Setting Frame width and height
setSize(500,300); //Setting the title of Frame
setTitle("This is my First AWT example"); //Setting the layout for the
Frame
setLayout(new FlowLayout());
/* By default frame is not visible so * we are setting the visibility to
true * to make it visible. */
 setVisible(true);
 }
 public static void main(String args[]){
 // Creating the instance of Frame
 SimpleExample fr=new SimpleExample();
 } }

output

Creating Frame by creating instance of Frame class

import java.awt.*;
public class Example2
{ Example2()
{
//Creating Frame
Frame fr=new Frame();
Label lb = new Label("UserId: "); //Creating a label
fr.add(lb); //adding label to the frame
TextField t = new TextField(); //Creating Text Field
 fr.add(t); //adding text field to the frame
 fr.setSize(500, 300); //setting frame size
fr.setLayout(new FlowLayout()); //Setting the layout for the Frame
fr.setVisible(true);
 }
public static void main(String args[])
 { Example2 ex = new Example2();
 } }

Java Exceptions

• When executing Java code, different errors
can occur: coding errors made by the
programmer, errors due to wrong input, or
other unforeseeable things.

• When an error occurs, Java will normally stop
and generate an error message. The technical
term for this is: Java will throw
an exception (throw an error).

Java try and catch

• The try statement allows you to define a block
of code to be tested for errors while it is being
executed.

• The catch statement allows you to define a
block of code to be executed, if an error
occurs in the try block.

• The try and catch keywords come in pairs

Syntax

• try {
 // Block of code to try
}
catch(Exception e) {
 // Block of code to handle errors
}

Example

public class MyClass {
 public static void main(String[] args) {
 try {
 int[] myNumbers = {1, 2, 3};
 System.out.println(myNumbers[10]);
 } catch (Exception e) {
 System.out.println("Something went wrong.");
 }
 }
}

