

DATA BASE SYSTEMS
 UNIT - II

UNIT-V - RELATIONAL DATABASE DESIGN

Relational database design:

· It is used to create set of relations. Relations are used to store information without redundancy.

· Without redundancy in relation we are the concept of normalization.

Features of good relational designs:

· The goodness or badness of the resulting set of schemas depends on how good the E-R design was in the first place.
· Same following relations:
 Department (dept=name, building, budget)

 Course (course-id, title, dept=name, credits)

 Instructor (id, name, salary, dept-name)

Design alternatives:

 It has two types:

· Larger schema

· Smaller schema

Larger schema:

· Two relations combined into one relation.

· Inst-dept relations derived from the relation instructor & department

· Inst-dept (id, name, salary, dept-name, building, budget)

· Features changed in the following manners.

i)Redundancy:

 * In alternate design ins-dept the information is replaced.
Example:

In department relation.

	Dept-name
	Building
	Budget

	-
	-
	-

	-
	-
	-

	CS
	A
	70000

· Here ‘cs’ dept has are tuple but in ins-dept relations suppose ‘cs’ dept instructors are 2 persons then we have to repeat ‘cs’ dept details in 2 times.

· This leads redundancy.

	Id
	Name
	Salary
	Dept-name
	Building
	budget

	101
	X
	10000
	CS
	A
	70000

	102
	Y
	12000
	CS
	A
	70000

	103
	Z
	15000
	CS
	A
	70000

ii) Not direct representation:

· Suppose we are creating a new dept the university we can’t represent directly the alternate design (inst-dept).

· We can insert a new department into the instructor we should have at least are instructor in the department otherwise it can’t.

· We can add null values but null values are having some troubles in SQL.

 Smaller Schemas;

· One relation divided into two is more relations.
· For smaller schema you’re taking the relation ins-dept in that information’s are repeated. To avoid this we must specify that every dept must have are building and one budget.
· In smaller schema the database designer decompose relation into two are more schemas.

Example:

Employee relation can be decomposed

· Employee(id, name, street, city, salary)

· Employee1 and Employee2
· Employee1(id, name)
· Employee2(name, street, city, salary)
· Incase employee name may be same for two persons we can identify by using their Id.

· There are two types of decomposition

· Lossy decomposition

· Lossless decomposition

Lossy decomposition: Some values missed.
Lossless decomposition: No values missed.

Normalization

If a database design is not perfect. Normalization is used to avoid redundancy.

· Update anomalies − If data items are scattered and are not linked to each other properly, then it could lead to strange situations.
· Deletion anomalies − we tried to delete a record, but parts of it was left undeleted because of unawareness, the data is also saved somewhere else.

· Insert anomalies − we tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a consistent state.

· First Normal Form (INF) - The multi-valued attributes (called repeating groups) should be removed, i.e., elimination of repeating groups.

· Second normal form (2NF) - The partial functional dependencies have to be removed, i.e., elimination of redundant data.

· Third normal form (3NF) - The transitive dependencies have to be removed, i.e., elimination of columns not dependent on the key.

· Boyce-Code Normal Form (BCNF) - The remaining anomalies that result from functional dependencies are removed.

· Fourth Normal Form (4NF) - Multi-valued dependencies are removed, i.e., isolation of independent multiple relationships.

· More Normal Form (5NF) - Any remaining anomalies are removed. In this normal form, we isolate semantically related multiple relationships.

Atomic Domains and First Normal Form

· The E-r Model allows entity sets and relationship sets to have attributes that have some degree of substructure.

· It allows multivalued attributes and composite attributes.

· When we create table from E-R designs that contain these types of attributes, we eliminate this substructure.

· A domain is atomic if elements of the domain are considered to be indivisible units.
· We say that a relation schema R is in first normal form (1NF) if the domains of all attributes of R are atomic.
First Normal Form

· First Normal Form is defined in the definition of relations (tables) itself.

· This rule defines that all the attributes in a relation must have atomic domains. The values in an atomic domain are indivisible units.

[image: image1.png]Course

Programming

Content

Java, c++

Web

HTML, PHP, ASP

We re-arrange the relation (table) as below, to convert it to First Normal Form.

[image: image2.png]Programming Java

Programming CH++
Web HTML
Web PHP
Web ASP

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following −

· Prime attribute − an attribute, which is a part of the prime-key, is known as a prime attribute.

· Non-prime attribute − an attribute, which is not a part of the prime-key, is said to be a non-prime attribute.

· If we follow second normal form, then every non-prime attribute should be fully functionally dependent on prime key attribute.

· That is, if X → A holds, then there should not be any proper subset Y of X, for which Y → A also holds true.

[image: image3.png]Student_Project

T SuD POl SwNeme ProjNamo
T~~~

· We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID.

· According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both and not on any of the prime key attribute individually.

· But we find that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj_ID independently.

· This is called partial dependency, which is not allowed in Second Normal Form.

[image: image4.png]Student
Stu_ID Stu_Name Proj_ID

Project

Proj_ID Proj_Name

· We broke the relation in two as depicted in the above picture. So there exists no partial dependency.

Third Normal Form

· A relation is in 3NF if it is in 2NF and no non-prime attribute transitively depends on the primary key.

· In other words, a relation R is in 3NF if for each functional dependency X ⟶ A in R at least one of the following conditions are met:

For a relation to be in Third Normal Form it must be in Second Normal form and the following must satisfy.

· No non-prime attribute is transitively dependent on prime key attribute.

· For any non-trivial functional dependency, X → A, then

· X is a super key or,

· A is prime attribute.

[image: image5.png]Student_Detail

Stu_ID Stu_Name City Zip

· We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute.

· We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a prime attribute.

· Additionally, Stu_ID → Zip → City, so there exists transitive dependency.

· To bring this relation into third normal form, we break the relation into two relations as follows −

[image: image6.png]Student_Detail
Stu_ID Stu_Name Zip

ZipCodes
Zip City

Decomposition using functional dependencies

 This methodology is based upon the concept of keys and functional dependencies.

Keys and Functional dependencies

Keys and more generally functional dependencies or constrains on the database that require relations to satisfy certain property relations that satisfied all such constrains are legal relation.
Boyce-Code Normal Form

· A relation R is in BCNF if it is in 3NF and for each functional dependency X ⟶ A in R, X is a key or super key in R.

· For any non-trivial functional dependency, X → A, X must be a super-key.
[image: image7.png]Student_Detail
Stu_ID Stu_Name Zip

ZipCodes
Zip City

· In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City.

· Which confirms that both the relations are in BCNF.

BCNF and dependence reservation

We have see several base of expressing database consistency constraints

I. Primary key constrains

II. Functional dependency

III. Check constrains

IV. Assertion and triggers.

Fourth Normal Form

· The redundancy that comes from MultiValued Dependency is not removable by putting the database schema in BCNF.

· There is a stronger normal form is called 4NF, that (intuitively) treats MultiValued Dependency as Functional Dependency when it comes to decomposition, but not when determining keys of the relation.

· A relation R is in 4NF if whenever X‐>‐>Y is a nontrivial MVD, then X is a superkey.

· Nontrivial means that:
1. Y is not a subset of X, and
2. 2. X and Y are not, together, all the attributes.
· Note that the definition of super key” still depends on FD’s only.

Example:

	Loan-No
	Cus-name
	Amount

	L-17
	Adams
	2000

	L-17
	Smith
	1000

	L-18
	Rose
	5000

Loan-no L-17 (Adams and L-17 (Smith It is not possible

We re-arrange the relation (table) as below, to convert it to Four Normal Form.

	Loan-No
	Cus-name
	Amount

	L-17
	Adams
	2000

	L-18
	Smith
	1000

	L-19
	Rose
	5000

Comparison of BCNF and 3NF

Our goals of database design with functional dependencies are

I. BCNF

II. Lossless

III. Dependency preservation
Different Between BCNF and 3NF.

· A relation R is in BCNF if it is in 3NF and for each functional dependency X ⟶ A in R, X is a key or superkey in R.

· In other words, the only difference between 3NF and BCNF is that in BCNF it is not present the second condition of the 3NF.

· This makes BCNF stricter than 3NF as any relation that is in BCNF will be in 3NF but not necessarily every relation that is in 3NF will be in BCNF.

Example

Given the following relation:

STUDENT_COURSE(studentNumber, socialSecurityNumber, courseNumber)

A student can assist to many courses and in a course there can be many students.

The candidate keys are:

1. socialSecurityNumber, courseNumber
2. studentNumber, courseNumber
Consider the following functional dependencies:

1. studentNumber ⟶ socialSecurityNumber

2. socialSecurityNumber ⟶ studentNumber

· Given the definition above it is possible to conclude that STUDENT_COURSE is not in BCNF as at least studentNumber is not a key or superkey in STUDENT_COURSE.

· BCNF as at least studentNumber is not a key or superkey in STUDENT_COURSE.

The 3NF problem:

· The partial key/prime attribute "Court" is dependent on something other than a super key.

· Instead, it is dependent on the partial key/prime attribute "Rate Type".

· This means that the user must manually change the rate type if we upgrade a court, or manually change the court if wanting to apply a rate change.

· But what if the user upgrades the court but does not remember to increase the rate? Or what if the wrong rate type is applied to a court?

The BCNF solution:

· If we want to place the above table in BCNF we can decompose the given relation/table into the following two relations/tables.

Functional Dependency

· Functional dependency (FD) is a set of constraints between two attributes in a relation.

· Functional dependency says that if two tuples have same values for attributes A1, A2,..., An, then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

· Functional dependency is represented by an arrow sign (→) that is, X→Y, where X functionally determines Y.

· The left-hand side attributes determine the values of attributes on the right-hand side.

Armstrong's Axioms

· If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all functional dependencies logically implied by F.

· Armstrong's Axioms are a set of rules, that when applied repeatedly, generates a closure of functional dependencies.

· Reflexive rule − If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds beta.

· Augmentation rule − If a → b holds and y is attribute set, then ay → by also holds. That is adding attributes in dependencies, does not change the basic dependencies.

· Transitivity rule − same as transitive rule in algebra, if a → b holds and b → c holds, and then a → c also holds. a → b is called as a functionally that determines b.

· Union: If X → Y and X → Z, then X → YZ
· Decomposition: If X → YZ, then X → Y and X → Z
· Pseudotransitivity: If X → Y and WY → Z, then WX → Z
· The union and decomposition rules can be combined in a logical equivalence stating that X → YZ, holds if X → Y and X → Z.
· This is sometimes called the splitting/combining rule.

Trivial Functional Dependency
· Trivial − If a functional dependency (FD) X → Y holds, where Y is a subset of X, then it is called a trivial FD. Trivial FDs always hold.

· Non-trivial − If an FD X → Y holds, where Y is not a subset of X, then it is called a non-trivial FD.

· Completely non-trivial − If an FD X → Y holds, where x intersect Y = Φ, it is said to be a completely non-trivial FD.

Closure of Functional Dependency
· The closure is essentially the full set of values that can be determined from a set of known values for a given relationship using its functional dependencies.

· You use Armstrong's axioms to provide a proof - i.e. Reflexivity, Augmentation, and Transitivity{\displaystyle F}.

 ? (use 0 or 1.

+ (use 1 or more.

 *(use 0 or more

Closure of a set of attributes
To compute F+ is the set of all functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when applied repeatedly, generates a closure of functional dependencies.

Example
Imagine the following list of FD's. We are going to calculate a closure for A from this relationship.

1. A → B
2. B → C
3. AB → D
The closure would be as follows:

a) A → A (byArmstrong’s reflexivity)
b) A → AB (by 1. and (a))
c) A → ABD (by (b), 3, and Armstrong's transitivity)
d) A → ABCD (by (c), and 2)

The closure is therefore A → ABCD. By calculating the closure of A, we have validated that A is also a good candidate key as its closure is every single data value in the relationship.

Lossless Decomposition

· A decomposition {R1, R2,…, Rn} of a relation R is called a lossless decomposition for R if the natural join of R1, R2,…, Rn produces exactly the relation R.

· A decomposition is lossless if we can recover:

Lossless Decomposition Property

R: relation

F: set of functional dependencies on R

R(A, B, C)

Decompose

R1(A, B) R2(A, C)

Recover

R’(A, B, C)

Thus,

R’ = R

Example:

Library (B-Id, B-Name, A-Id, A-name.

Book (B-Id ,B-Name.

Author (A-Id, A-Name.

Decomposition using multivalued dependency

 We must define a new of constrain called a multivalued dependency this normal form called 4NF is more restrictive then BCNF.

Multivalued Dependency

· A multivalued dependency (MVD) X ‐>‐>Y is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.

· Functional Dependencies sometimes are referred to as equality gereating dependencies.
· Multivalued dependencies sometimes are referred to as tuple generating dependencies.
· Let R be a relation schema and let α € R and β € R. α ‐>‐> β.
· All pairs of tuples t1,t2,t3,t4.
t1[α]=t2[α]=t3[α]=t4[α]

t3[α]=t1[α]

t3[R- β]=t1[R- β]

t4[α]=t2[α]

t4[R- β]=t2[R- β]

Example:

	Loan-No
	Cus-name
	Amount

	L-17
	Adams
	2000

	L-17
	Smith
	1000

	L-18
	Rose
	5000

Loan-no L-17 (Adams and L-17 (Smith It is not possible
We re-arrange the relation (table) as below, to convert it to Four Normal Form.

	Loan-No
	Cus-name
	Amount

	L-17
	Adams
	2000

	L-18
	Smith
	1000

	L-19
	Rose
	5000

Database Design process:

It includes following.

· E-R model &normalization.

· Naming of attributes and relationship.

· De-normalization for performance.

· Other design issues.

E-R model &normalization:

· When we defined relation schemas from the E-R diagram should not need much further normalization between attributes of an

For example:

Instructors entity set had attributes dept.name & dept address and there is a functional dependency.

Dept.name(dept.address

Symbol for functional dependency function dependency can help us to select E-R design.

· If the generated relation schema is not in design normal form the problem can be fixed the E-R diagram.
· It can be done during the E-R diagram design by the designer.

Functional dependency arise from

1) A many to many relation set.

2) A multivalued relationship set.

A many to many relation set

A many to many relation set related entity has its own schema and additional schema for relationship set.

A multivalued relationship set.
It has a separate schema for the attributes and the primary key of the entity set.
Naming of attributes and relationship:

 Desirable feature of database design in the Unique Role Assumption (URA) definition. It means each attributes name unique meaning in the database.

For example:

· The attributes numbers for phone number in the instructor schema and for room no in the class room schema.

· While users can carefully to ensure use of the right num is each

· To avoid the use different attribute name p- number for ph.no and
 r-number for room.

· It attributes of different relation have the some meaning it may be a good idea to use the same attributes name.

For Example:

· This attributes “name” for both instructor and student entity set has the same meaning attribute orders is doesn’t match but primary key attributes should first relationship name.

· In the database schema relationship sets are name via a concatenation of the name of related entity set with underscore.

De- normalization:

· The process of taking a normalized schema and making it non-normalization is called de-normalization.

· Designers use is to tune perform of systems to support time critical operations.

· A better alternative is materialized view it is a view whose result is stored in the database and brought up to data when the relations used in the view are updated.

· Like the normalization using materialized views have space and time over heard.
· It has the advantage that keeping the view up to data is the job of the database system not the application programs.

Other design issues:

· Database design that is not addressed by normalization can lead to bad database.

For example:

· University database where want to store the total numbers instructors in each department in different years.

· A relation total instructor (dept-name year size) could to store the desired information the function dependency on this relation is dept year size.

Alternative design:

· It uses multiple relations each storing the size information for a different year.

For example;

· Total instructor 2007, total instructor 2008 instructor2009, all relation has the attributes (dept-name, size).
· We have to write ne queries every year queries also more complicated since we have to refer to main relation.

K.BHUVANESWARI
Page 1

