Tuberculosis

Core Course: Medical Microbiology M.Sc., Microbiology II Semester Course Code: 24 MICCC5A

> Dr.D.DHANASEKARAN Professor Department of Microbiology Bharathidasan University Tiruchirappalli- 620 024

A Brief History of Tuberculosis (TB)

- Tuberculosis (phthisis) described since the time of **Hippocrates (460 BC 370 BC)**
- 1689: Doctor Richard Morton used the term "consumption" to denote TB.
- Second half of the 17th century: high death rates from TB in Europe.
- **1722: Doctor Benjamin Marten** proposed that TB could be transmitted in the air and described TB as being caused by "wonderfully minute living creatures"
- End of 19th century to the start of 20th century: Principal cause of death in Europe was TB.
 - The romantic Era of TB

"Queen Guinevere" painted by William Morris

A Brief History of Tuberculosis (TB)

- **1865 Jean-Antoine Villemin:** confirmed that TB is contagious.
- Robert Koch:
 - **1882:** Isolated and cultured *M*. *tuberculosis*.
 - **1890:** Announced the discovery of tuberculin.
 - Developed staining methods used to identify the bacteria.
 - 1905: Received the Nobel Prize
- Bacteriologist **Paul Ehrlich** developed **Ziehl**-**Neelsen staining**.
- Late 1800's: Edward Livingston Trudeau established "Adirondack Cottage Sanatorium", first TB sanatorium in the US.

Visualization of *M. tuberculosis* using the Ziehl-Neelsen stain

A Brief History of Tuberculosis (TB)

- 1896 Theobald Smith demonstrated that bovine TB is caused by *M. bovis*.
- 1908 Albert Calmette and Camille Guérin isolated *M. bovis* and grew it in ox bile.
 - Identified a morphological variant of M. bovis found to be avirulent, conferred immunity against M. tuberculosis.
 - Lead to the BCG vaccine (bacilli Calmette-Guérin).
- Development of antibiotics to combat infection:
 - 1947: streptomycin, 1952: isoniazid
 - The majority of drugs used to combat infection were identified between 1945 and 1967.
 - No new drugs developed since the 1980's
- Reoccurrence of TB for two main reasons:
 1)HIV/AIDS pandemic
 2)Development of drug resistance

M. bovis

Tuberculosis in Humans

- **Reservoir:** Humans
- Transmission: Airborne disease (aerosol transmission)

- Symptoms:

Latent TB infection: No symptoms *Cannot spread TB

Active TB infection:

Bad cough Coughing up blood/sputum Chest pain Loss of appetite Weight loss Fever Chills Night sweats Swollen glands *Contagious

Extra-pulmonary TB: Symptoms depend on location of infection **General symptoms:** fatigue, fever, loss of appetite, weight loss.

TB of **lymph nodes**: swelling of lymph nodes TB **meningitis**: neurological symptoms including headache **Spinal** TB: Mobility impairments, pain

Mycobacterium Tuberculosis

SEM of M. tuberculosis

M. Tuberculosis (stained in purple)

General Characteristics

- Family Myobacteria
- Gram-positive aerobic rod-shaped bacilli
- "Acid fast" bacteria
- Lack of spore formation and toxin production
- No capsule, flagellum (non-motile)
- Generation time of 18-24 hours but requires 3-4 weeks for visual colonies

Pathological Features

- Principle cause of Human Tuberculosis
- Intracellular pathogen (alveolar macrophages)
- Waxy, thick, complex cellular envelope
- Cell envelope components ex) sulfolipids
- Produces **tubercles**, localized lesions of *M*. *tuberculosis*

Mycobacterial Cellular Envelope

General Features

- Thick, waxy and complex
- Higher fluidity in more external regions than internal regions
- Relatively impermeable to hydrophilic solutes
- Contain porins (selective cationic channels)

Main Components

- Peptidoglycan
 - → contains N-glycolylmuramic acid instead of N-acetylmuramic acid
- Arabinogalactan
- Mycolic Acids (60% of cellular envelope)
- Lipoarabinomannan (LAM)

Mycobacterial Cellular Envelope

Contribution of Mycobacterial Cellular Envelope to Pathogenesis

Resistance to Drying and Other Environmental Factors

- Thick, waxy nature of cellular envelope protects M. tuberculosis from drying, alkali conditions, and chemical disinfectants
- Hinders entrance of antimicrobial agents

Entry into Host Cells

- Lipoarabinomannan (LAM) binds to mannose receptors on alveolar macropages leading to entry into the cell

Interference of Host Immune Response

- Glycolipids and sulfolipids decrease the effects of oxidative cytotoxic mechanism
- Inhibition of phagosome and lysosome fusion inside macrophage
- Waxy cellular envelope prevents acidification of the bacteria inside the phagosome

Factors Affecting Pathogenicity

Active Infection

- Only individuals with an active infection can transmit the disease

Transmission

 Aerosolized droplets need to be <10µm in order to evade the ciliated epithelium of the lung to establish infection in the terminal alveoli

Growth & Structure

- Only require a very few number of bacteria to establish an infection (1-10 bacteria)
- Slow generation time

M. Tuberculosis in sputum (stained in red)

Variability of Infection Rates

Exposure Time

- Most infected individuals expel relatively few bacilli, transmission of TB usually occurs only after prolonged exposure to someone with active TB.
- On average, 50% of people are likely to become infected with TB if they spend 8hrs/day for six months or 24hrs/day for two months working or living with someone with active TB.

Health of Individuals

 Active TB typically occur in individuals whose immune systems have been weakened by age, disease, improper nutrition or use of immunosuppresive drugs.

Tuberculosis – Disease Progression <u>Primary Infection</u>

In healthy individuals...

- *M. tuberculosis* phagocytosed by alveolar macrophages leading to intracellular proliferation and **tubercle** formation
- Cell-mediated response develops and eliminates most of the bacilli in 2-6 weeks
- Commonly asymptomatic

OR

- M. tuberculosis can remain **dormant** intracellularly

Tuberculosis – Disease Progression

Primary Infection

Immunocomprimised Individuals...

- Infection leads usually leads to progressive primary tuberculosis, where the pathogen breaks out of the tubercles in the alveoli and cause active disease
- Active disease leads to chronic inflammation
- Death of pathogen and pulmonary cells can lead to **Gohn complex** and **granuloma** formation
- May lead to extrapulmonary tuberculosis (TB infection outside the lung in the CNS and lymph nodes)

Latent Tuberculosis Infections

- Following exposure to TB: Inhaled bacilli usually destroyed by host's immune system (90-95% of the time).
 - Healthy person: Recruitment of **T-cells** and **macrophages** which results in controlling the infection.
- Some bacilli can establish infection in **macrophages** (**phagosomes**) leading to host immune response
- Bacilli forced into an inactive (latent), non-replicating state.
 - Survive intracellularly: prevent phagosome-lysosome fusion.
 - Infection contained but not eradicated.
- The dormant bacteria are still viable, can be reactivated: Approximately 10% of latent infections will develop into active TB if left untreated.
- Factors that lead to re-activation of the bacteria: HIV co-infection, aging, cancer, diabetes etc

M. Tuberculosis colonies

Tuberculosis – Disease Progression

Note...

- Infection does not mean disease!
- Infection can lead to active disease or dormant state of pathogen
- Active disease develops differently (Healthy individuals VS. Immunocomprimised individuals)

Summary of TB Infection in Alverolar Macrophages

http://www.nature.com/nrmicro/animation/imp_ani mation/index.html

Treatment

Antibacterial chemotherapy:

- Combination of **first** and **second line** drugs for the first 2 months which could include:
 - Isoniazid
 - Rifampicin
 - Pyrazinamide
 - Streptomycin or Ethambutol
- Next 4 months, combination of:
 - Isoniazid
 - Rifampicin

- Early resistance to isoniazid: other first-line drugs such as ethambutol, streptomycin, pyrazinamide and fluoroquinolones can be added to drug arsenal (treatment period also extended).
- These drugs are relatively effective in killing the bacteria, however, they also produce a wide variety of side effects.

Treatment

First line drugs:

- **Bactericidal agents**: kill active bacteria, important in the early stages of infection.

Second line drugs:

- Bacteriostatic: hinder bacterial growth.
 - Strengthen treatment in the case of resistant bacteria.
 - Less efficient and generally more toxic than first line drugs.

Inappropriate chemotherapy:

- Monotherapy (single drug treatment)
- Decreased treatment period
- Low absorption of drugs

