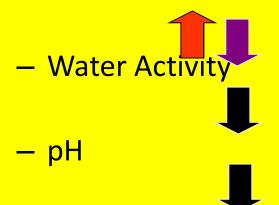
Food Preservation Methods

Core Course: Food and Industrial Microbiology M.Sc., Microbiology III Semester Course Code: 24MICCC8

Dr.D.DHANASEKARAN Professor Department of Microbiology Bharathidasan University, Tiruchirappalli- 620 024

- How a food is processed can affect its appearance, odor, flavor, and texture.
- Over the years many food preservation methods have been improved to increase the shelf-life of foods while minimizing changes to the quality and nutritional content.

IQF or Individual Quick Freezing has improved the quality of frozen fruits and vegetables



- Many food preservation methods have also been used to create foods for astronauts and for the armed forces.
 These foods must remain safe to eat over a long shelf-life.
- It is reported that M & M's were developed when Forrest Mars, Sr. saw soldiers eating candy coated chocolate. The chocolate pellets that the soldiers were eating were coated in sugar to increase their shelf-life in hot climates and prevent the chocolate from sticking to the soldier's fingers!

Bags of Space Station food and utensils on a tray.

- So, how does food preservation work?
- All of the food preservation processes work by slowing down the activity and growth of disease causing bacteria, or by killing the bacteria all together. They also slow down or stop the action of enzymes which can degrade the quality of the food.
 - Temperature

- How a food is packaged also influences its shelf-life.
- It is also important that foods are handled properly by the consumer at home.
 - Check "Use By" or expiration dates.
 - Follow storage or preparation

Controlling Food Spoilage

Table 41.4Basic Approaches
to Food Preservation

Approach	Examples of Process		
Removal of microorganisms	Avoidance of microbial contamination; physical filtration, centrifugation		
Low temperature	Refrigeration, freezing		
High temperature	Partial or complete heat inactivation of microorganisms (pasteurization and canning)		
Reduced water availability	Water removal, as with lyophilization or freeze drying; use of spray dryers or heating drums; decreasing water availability by addition of solutes such as salt or sugar		
Chemical-based preservation	Addition of specific inhibitory compounds (e.g., organic acids, nitrates, sulfur dioxide)		
Radiation	Use of ionizing (gamma rays) and nonionizing (UV) radiation		
Microbial product– based inhibition	The addition of substances such as bacteriocins to foods to control food-borne pathogens		

Removal of Microorganisms

- usually achieved by filtration
- commonly used for water, beer, wine, juices, soft drinks, and other liquids

Low Temperature

- refrigeration at 5°C retards but does not stop microbial growth
 - psychrophiles and psychrotrophs can still cause spoilage
 - growth at temperatures below -10°C has been observed

High Temperature

- canning
- pasteurization

Canning

- food heated in special containers (retorts) to 115 °C for 25 to 100 minutes
- kills spoilage microbes, but not necessarily all microbes in food

Spoilage of canned goods

- spoilage prior to canning
- underprocessing
- leakage of contaminated water into cans during cooling process

Pasteurization

- kills pathogens and substantially reduces number of spoilage organisms
- different pasteurization procedures heat for different lengths of time
 - shorter heating times result in improved flavor

Water Availability

Table 41.4Basic Approaches
to Food Preservation

Approach	Examples of Process		
Removal of microorganisms	Avoidance of microbial contamination; physical filtration, centrifugation		
Low temperature	Refrigeration, freezing		
High temperature	Partial or complete heat inactivation of microorganisms (pasteurization and canning)		
Reduced water availability	Water removal, as with lyophilization or freeze drying; use of spray dryers or heating drums; decreasing water availability by addition of solutes such as salt or sugar		
Chemical-based preservation	Addition of specific inhibitory compounds (e.g., organic acids, nitrates, sulfur dioxide)		
Radiation	Use of ionizing (gamma rays) and nonionizing (UV) radiation		
Microbial product– based inhibition	The addition of substances such as bacteriocins to foods to control food-borne pathogens		

Chemical-Based Preservation

GRAS

– chemical agents "generally recognized as safe"

 pH of food impacts effectiveness of chemical preservative

Preservatives	Approximate Maximum Use Range	Organisms Affected	Foods
Propionic acid/propionates	0.32%	Molds	Bread, cakes, some cheeses, inhibitor of ropy bread dough
Sorbic acid/sorbates	0.2%	Molds	Hard cheeses, figs, syrups, salad dressings, jellies, cakes
Benzoic acid/benzoates	0.1%	Yeasts and molds	Margarine, pickle relishes, apple cider, soft drinks, tomato ketchup, salad dressings
Parabens ^a	0.1%	Yeasts and molds	Bakery products, soft drinks, pickles, salad dressings
SO ₂ /sulfites	200–300 ppm	Insects and microorganisms	Molasses, dried fruits, wine, lemon juice (not to be used in meats or other foods recognized as sources of thiamine)
Ethylene/propylene oxides	700 ppm	Yeasts, molds, vermin	Fumigant for spices, nuts
Sodium diacetate	0.32%	Molds	Bread
Dehydroacetic acid	65 ppm	Insects	Pesticide on strawberries, squash
Sodium nitrite	120 ppm	Clostridia	Meat-curing preparations
Caprylic acid	<u> </u>	Molds	Cheese wraps
Ethyl formate	15–200 ppm	Yeasts and molds	Dried fruits, nuts

Table 41.5 Major Groups of Chemicals Used in Food Preservation

From James M. Jay. 2000. Modern Food Microbiology, 6th edition. Reprinted by permission of Aspen Publishing, Frederick, Md.

^aMethyl-, propyl-, and heptyl-esters of *p*-hydroxybenzoic acid.

Radiation

- ultraviolet (UV) radiation
 - used for surfaces of food-handling equipment
 - does not penetrate foods
- Gamma radiation
 - use of ionizing radiation (gamma radiation) to extend shelf life or sterilize meat, seafoods, fruits, and vegetables