M.Tech Geoinformatics

Geographic Information System (24CC03) Unit I: Introduction to GIS

Prakash. K

Guest Faculty Department of Geography Bharathidasan University, Tiruchirappalli.

Introduction to GIS

What is GIS

- A GIS is a computer-based system to aid in the collection, maintenance, storage, analysis, output, and distribution of spatial data and information. Data Collection
- Data vs Information

GIS History

- 1960s: John Snow, Minard's Map (Napoleon)
- First GIS Roger Tomlinson 1960, operational from 1971
- USA Government Organisations: USGS, US Forest Services, others incl. CIA
- Academia
 - Edinburgh GIMMS 1970s (Sold from 1973), MSc GIS 1985
 - Harvard Computer Graphics and Spatial Analysis Lab 1965
- ESRI 1969 Env. Consultancy Arc/Info 1982 ArcView Desktop 1995 ArcGIS 1999
- Demographics Consultancy MapInfo 1986
- OpenSource GRASS, Quantum GIS (QGIS), gvSIG, ...
- Web GIS WMS, WFS, Google Maps, Google Earth, OGC, OpenStreetMap

Components of GIS

Data Models

Vector Data

Point

- Discrete locations in 0-dimension with a single x,y coordinate pair and zero area.
- Eg. tree, oil well, label location

Polyline

- Set of atleast two ordered, connected coordinates in I-dimension.
- Eg roads, water pipelines

Polygon

 Closed figures that encompass a homogenous area in 2 dimensions. It should have three or more ordered and connected x,y pairs.

• Eg - lakes, districts

Attributes & Field Data Types

Geodatabase / File Geodatabase

Shapefile

• Integer • Float • Double • String • Date • Integer • Float • Double • String • Date • Blob GUID ulletRaster \bullet

Data Type	Examples
Short Integer (16 Bits)	-32,768 to 32,767
Integer (32 Bits)	4,29,49,67,296
Long Integer (64 Bits)	1,84,46,74,40,73,70,95,51,616
Float (32 Bits)	3.4E+/-38
Double (64 Bits)	I.7E+/-308
String	"A", "GIS World"
Date	09.08.2024 14:15:00
Blob	Unstructured data in binary format
GUID	{12345678-1234-1234-1234}
Raster	.jpg, .PNG, .TIF

Raster Data

- Raster data is generally represented in a grid format and the cells are generally called pixels.
- Attributes are recorded by assigning each cell a single value
- easy to do overlays/analyses, just by 'combining' corresponding cell values: "yield = rainfall + fertilizer"
- simple data structure: directly store each layer as a single table

Attributes

- Vector Multiple Attributes (Properties)
 - Attributes are of each feature (point, line, poly)
- Raster Single Attribute (Value) e.g. pH
 - Each cell has a different value of this attribute
 - BUT! Can also have in turn Value Attributes e.g. I = Acid, 7 = Neutral, I4 = Alkaline
 - BUT! Again only one per value!

Attributes Table			
Point ID	model	year	
1	а	90	
2	b	90	
3	b	80	
4	а	70	
5	С	70	

Coordinates Table			
Point ID	X	У	
1	1	3	
2	2	1	
3	4	1	
4	1	2	
5	3	2	

Also there is a geometry/shape definition file/table for each features.

Shape of the Earth

• Geoid is the shape that the *surface of the oceans* would take under the influence of Earth's gravity and rotation

Datum

- In geodesy, a datum is a set of reference points on the earth's surface and an associated model of the shape of the earth (reference ellipsoid) to define a Coordinate System
- Horizontal datum: are used for describing a point on the earth's surface, in latitude and longitude or another coordinate system
- Vertical datum: measure elevations or depths

Map Projections & Coordinate Systems

Map Projection

- Map projections in surveying are methods used to transform the spherical surface of the earth into a two-dimensional plane.
- A map projection minimizes distortions in the representation of the earth's surface

Coordinate System

- Coordinate systems are sets of mathematical rules used to locate positions on the earth's surface.
- A coordinate system provides a consistent and standardized way to locate and measure positions

Spatial Data can be measured/located in:

- <u>Angular Units</u> Latitude, Longitude, e.g. 56°23'4" (DMS) / 56.38° (DD)
- <u>Linear Units</u> Flat Grid-based: Easting, Northing, e.g. 100025 metres / feet

Coordinates:

- Spherical (Angular)/Geographic Coordinate = 'Geographic' CRS e.g. Polyconic
- Cartesian (Linear)/Projected Coordinate = 'Projected' CRS e.g. UTM
- All CRS are based on a reference datum -a model of the Earth's surface/shape. This MUST be correctly defined, for any later projection (curved to flat) to work correctly.

Thank You!