

Bharathidasan University, Tiruchirappalli, Tamil Nadu

Programme: M.Tech Geoinformatics Course: Resources Evaluation (Practical)

Change Detection Analysis

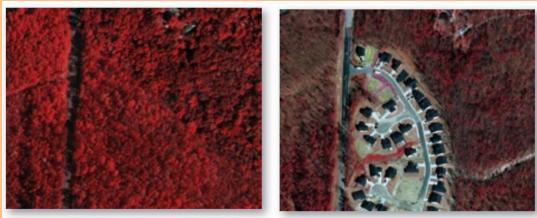
Dr. R. Jegankumar. M.Sc., M.Tech., Ph.D Professor & Head Department of Geography Bharathidasan University, Tiruchirappalli

- Where and when has change taken place in the landscape?
- How much change, and what type of change has occurred?
- What are the cycles and trends in the change?

TABLE 12–1 Common human-made and natural resource attributes or indicators that are often the focus of land-use planning and natural resource monitoring programs (expanded from Kennedy et al., 2009).

Man-made and/or Natural Resource Attributes or Indicators	Process of Interest or Threat
Change in the size or shape of areal patches (polygons) of related cover types	Urban expansion (sprawl); vegetation expansion; sea-level rise; consolida- tion, fragmentation; infilling; encroachment; erosion/dilution
Change in width or character of linear features	Densification of road, utility, or hydrologic network; impact of use of paths or roads; impact of flooding on riparian vegetation; dynamics of terrestrial and submerged near-shore aquatic vegetation
Slow changes in surface cover types or species composition	Succession, competition, eutrophication, consolidation, fragmentation, exotic species invasion
Abrupt changes in surface cover, water, and/ or atmospheric condition	Catastrophic event (e.g., hurricane, flood, tornado, volcanic eruption, fire, wind, landslides), disturbance, human activity (e.g., land clearing; urban and/or environmental terrorism), land management practices (e.g., no-till farming; prescribed burning)
Slow changes in condition of a single cover type	Climate-related changes in vegetation species composition and/or pro- ductivity; sea surface temperature; slowly-spreading forest mortality caused by insect or diseases; changes in moisture regime
Changes in timing or the extent of diurnal and/or seasonal processes	Coastal zone dynamics, snow cover dynamics, natural vegetation and agri- culture phenology

Remote Sensing System Change Detection Considerations
Remote Sensor System Considerations,
Environmental Characteristics
Temporal Resolution
Spatial Resolution
Spectral Resolution
Radiometric Resolution


Environmental / Developmental Considerations
Atmospheric Conditions
Cloud / Cloud Shadow
Moisture
Phonological

Techniques	Specific Methods
Algebra (Image Enhancement)	 Image differencing Vegetation index differencing Change vector analysis Image regression Ratioing
Transformation (Image Enhancement)	 Selective principal component analysis (SPCA) PCA Tasselled Cap (KT) Gramm-Schmidt (multi-date KT) Chi-square
Classification	 Direct multi-date unsupervised classification Post-classification change differencing Unsupervised change detection Expectation maximization (EM)
Advanced Models	 Li-Strahler reflectance model Spectral mixture model Biophysical parameter method
GIS	GIS + Remote Sensing GIS
Visual analysis	
Image Enhancement + Post-Class Comparison	Hybrid change detection

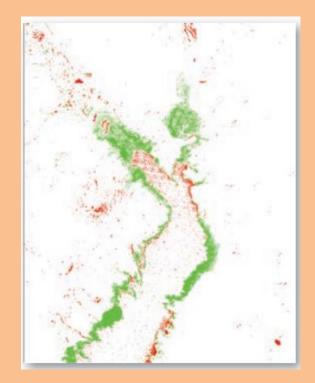
Binary Change Detection Algorithms Provide "Change/ N o-Change" Information

Band differencing and rationing
 Principal Components Analysis (PCA) composite image analysis

Analog "On-Screen" Visualization Change Detection

a. 2004 color-infrared 1×1 ft. color composite.

b. 2007 color-infrared 1×1 ft. color composite.


Binary Change Detection Using Image Algebra Image Differencing Change Detection

$$\Delta BV_{i,j,k} = BV_{i,j,k}(1) - BV_{i,j,k}(2) + c$$

<section-header>

a. Landsat ETM⁺ data of Lake Mead, NV, obtained on May 🛛, 🖾 🖾 (🖾 GB = bands 🖾, 🖾 , 🖾).

b. ASTEX data obtained on April XX, XXXX(X GB = bands X, X, X).

Image Differencing

8	10	8	11					
240	11	10	22	Image Date 1				
205	210	205	54		3	1	1	1
220	98	88	46		143	2	2	0
					107	110	0	-168
5	9	7	10		117	0	-166	-164
97	9	8	22					
98	100	205	222	Image Date 2	D	iffere	nce Im	age =
103	98	254	210	1	Ir	mage (1 - Ima	ge 2

Change Detection: Methods

- Image Ratioing
 - Date 1 / Date 2
 - No-change = 1
 - Values less than and greater than 1 are interpretable
 - Pick a threshold for change

Change Detection

Image Difference (TM99 – TM88)

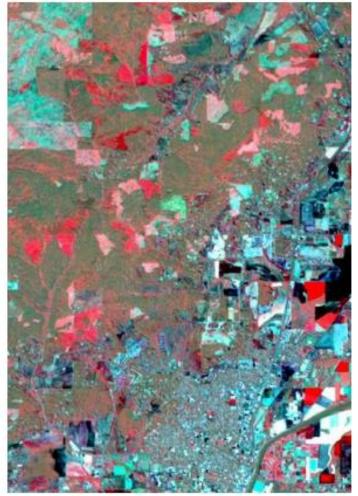
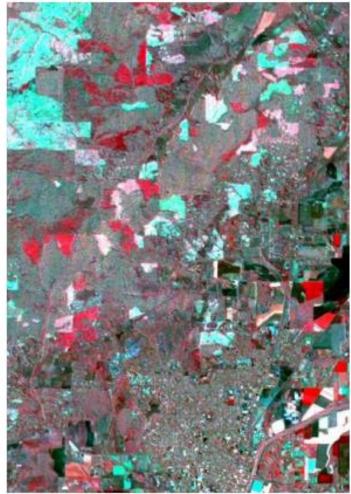
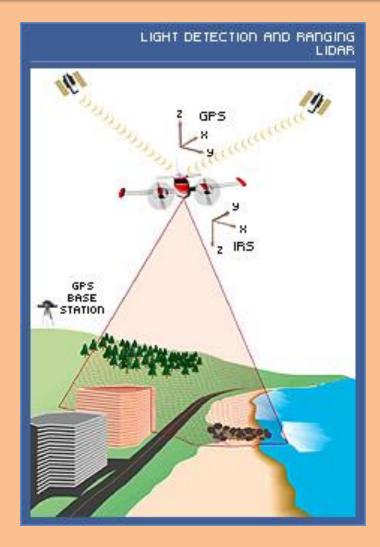
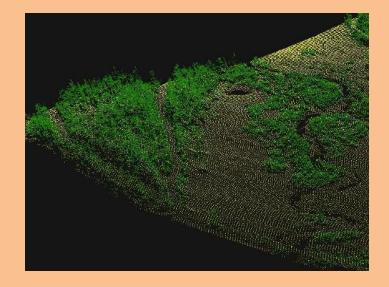



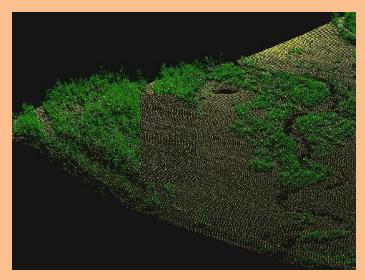
Image Ratio (TM99 / TM88)

Thematic "From–To" Change Detection Algorithms

Photogrammetric Change Detection

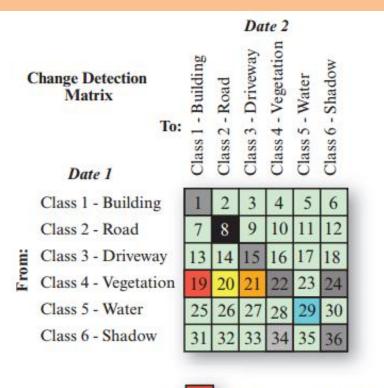

Photogrammetric Structural Change Detection




a. Date 1 and Date 2 building footprints.

b. Date 2 building footprint.

LiDARgrammetric Change Detection


Post-classification Comparison Change Detection using Object-Based Image Analysis (OBIA)

a. 2007 Bluffton, SC, classi@cation map.

b. 2011 Bluffton, SC, classi@cation map.

Legend

Vegetation to building

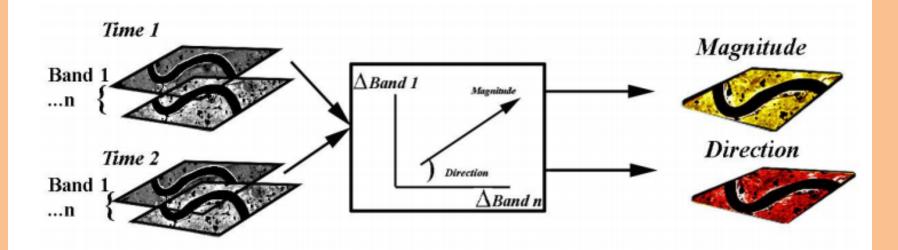
Vegetation to road

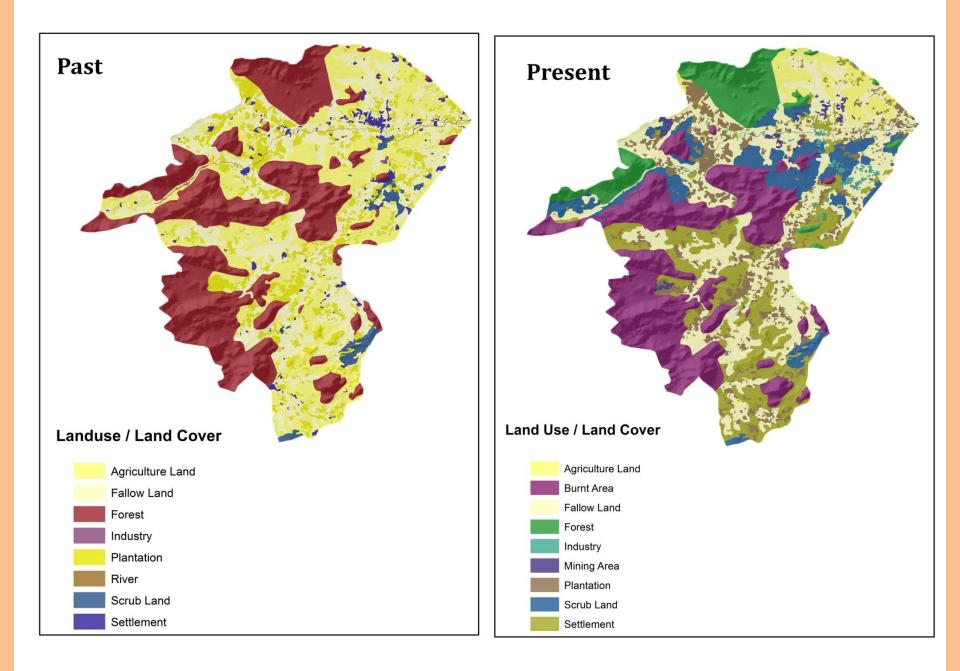
Vegetation to driveway

Cross-Correlation Analysis (CCA)

Cross-Correlation Analysis (CCA) uses a land cover map to delineate spectral cluster statistics between the baseline image year (Time 1) and each scene in the temporal sequence (Time 2). Calculating the Z-statistic deviations from the cluster mean identifies change pixels within each land cover cluster.

Land cover, Time 1 (circa 2000)


Landsat image Time 2


Histogram under each land cover

Z-score map showing large deviations from the mean

Change Vector Analysis (CVA)

Change Vector Analysis (CVA) uses two spectral channels to map both the: 1) magnitude of change and, 2) the direction of change between the two (spectral) input images for each date.

Change Past to Present

Change Past to Present

Agriculture Land <-> Agriculture Land Agriculture LandScrub Land Agriculture Land --> Settlement Fallow LandFallow Land Fallow LandPlantation ForestBurnt Area ForestForest IndustryIndustry PlantationFallow Land PlantationIndustry PlantationMining Area PlantationPlantation PlantationScrub Land PlantationSettlement **RiverScrub Land** Scrub LandScrub Land Scrub LandSettlement SettlementSettlement

	Agriculture Land	Fellow Land	Forest	Industry	Plantation	River	Scrub Land	Settleme	Burnt Area	Mining Area	Area (Sqkm)
Agriculture Land	11.93						20.78	31.78			64.5
Fellow Land		70.45									70.4
Forest			24.74						72.59		97.3
Industry				0.36							0.4
Plantation				1.50	26.11		0.28	3.04		2.60	33.5
River							0.78				0.8
Scrub Land							3.45	1.22			4.7
Settlement								5.32			5.3
Burnt Area											0.0
Mining Area											0.0
Area (Sqkm)	11.93	70.45	24.74	1.85	26.11	0.00	25.28	41.36	72.59	2.60	276.91

lulc	Lulc_Pr	change
Agriculture Land	Agriculture Land	11.93
Agriculture Land	Scrub Land	20.78
Agriculture Land	Settlement	31.78
Fallow Land	Fallow Land	70.45
Forest	Burnt Area	72.59
Forest	Forest	24.74
Industry	Industry	0.36
Plantation	Industry	1.50
Plantation	Mining Area	2.60
Plantation	Plantation	26.11
Plantation	Scrub Land	0.28
Plantation	Settlement	3.04
River	Scrub Land	0.78
Scrub Land	Scrub Land	3.45
Scrub Land	Settlement	1.22
Settlement	Settlement	5.32
		276.91

Past		Present	
Landuse	Area	Landuse	Area
Agriculture Land	64.49	Agriculture	11.93
Fellow Land	71.18	Fellow Lan	71.18
Forest	97.32	Forest	24.74
Industry	0.36	Industry	1.85
Plantation	34.26	Plantation	26.84
River	0.78		
Scrub Land	4.67	Scrub Land	25.28
Settlement	5.32	Settlement	41.36
		Burnt Area	72.59
		Mining Are	2.60

Thank You