

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu India

Programme: M.Sc., Biotechnology (Environment)

Course Title : Genetic Engineering Course Code: CC 07

> **Unit-I** Restriction Enzymes

> > Dr T Sivasudha

Professor

Department of Environmental Biotechnology

1

Learning Objectives

- ¹ What is a Restriction enzyme?
- ² Restriction enzymes Discovery, Biological Significance
- 3. Mode of Action
- 4. Types of Cuts
- **Applications**

Definition

• A restriction enzymes are endonucleases that cleaves DNA sequence at

specific sites known as restriction/ recognition sites.

• Example: EcoRI – 5`.....G*AATTC.....3`

3`.....5`

- It recognizes restriction sites within DNA or RNA molecule and cleave it by breaking the internal phosphodiester bonds.
- They are also called as 'Molecular Scissors'

History

- The first restriction endonuclease enzyme *Hind* II was isolated in 1970.
- In 1978 Daniel Nathans, Werner Arber, and Hamilton O. Smith were awarded Nobel Prize (Medicine) for discovery and characterization of restriction endonucleases.

Restriction & Modification System

- Restriction-modification system as a defense mechanism of bacteria.
- Recognition sites present on bacterial DNA are methylated by methylases thus recognised as self and not acted upon by its own restriction endonucleases .
- The phage genome lacking methylation of restriction sites is identified as nonself and thus cleaved by Restriction Endonucleases.

Source: <u>http://mmbr.asm.org/content/77/1/53.full</u>

Activity of Restriction and Methylase Enzymes

Restriction enzyme *EcoR*I cleaves within the recognition sequence if the DNA is unmethylated. On methylation by methylases, the restriction enzyme *EcoR*I is inhibited from cleaving within the restriction site. Methylation normally occurs on cytosine (C) residue in DNA sequence

SOURCE:https://nptel.ac.in/courses

ΤΤΑΑ

G

G

Mode of Action

Restriction Enzyme recognizes specific sites and makes one cut in each of the sugar phosphate backbones of the double helix by hydrolyzing the phosphodiester bond , in particular it breaks the bond between the 3^o atom and the P atom.

Staggered & Blunt Cuts

EcoRI - Staggered Cuts- Sticky Ends

EcoRV -Blunt Cuts- Flushy ends

5'...GAT ATC...3' 3'...CTA TAG...5'

5'...GAT 3`...CTA ATC...3` TAG...5`

Sticky Ends

- In a staggered cut, two strands of a dsDNA are not cut at the same position, but at a position 2 to 3 bases away from each other.
- This causes the formation of a small single stranded overhangs called '5' overhangs' or '3' overhangs'.
- These ends are called as 'sticky ends' or 'cohesive ends' as they are complementary to each other & stick back via transient base pairing

Blunt Ends

- In a blunt cut, two strands of a dsDNA are cut at the same position to produce flushy ends
- Blunt-end ligation is covalently joining two double-stranded DNA fragments with flush ends by the enzyme DNA Ligase .

Types of Restriction Enzymes

	Cleavage site	Location of methylase	Examples
Type I	Random Around 1000bp away from recognition site	Endonuclease and methylase located on a single protein molecule	EcoK I EcoA I CfrA I
Type II	Specific Within the recognition site	Endonuclease and methylase are separate entities	EcoR I BamH I Hind III
Type III	Random 24-26 bp away from recognition site	Endonuclease and methylase located on a single protein molecule	EcoP I Hinf III EcoP15 I

Isoschizomers and Neochischizomers

- Restriction enzymes that have the same recognition sequence as well as the same cleavage site are Isoschizomers.
- SphI (CGTAC/G) and BbuI (CGTAC/G)
- Restriction enzymes that have the same recognition sequence but cleave the DNA at a different site within that sequence are Neochizomers. Eg:Smal and Xmal

CCCGGG GGGCCC Xmal Smal

Applications

- They are used in the process of insertion of genes into plasmid vectors during gene cloning and protein expression experiments.
- RFLP analysis (Restriction Fragment Length Polymorphism) for identifying individuals or strains of a particular species
- DNA sequencing Experiments
- Construction of Genomic DNA and cDNA libraries