

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu India

Programme: M.Sc., Biotechnology (Environment)

Course Title : Plant and Animal Biotechnology Course Code: CO 03

Unit-III Stress tolerance and resistance

Dr T Sivasudha Professor Department of Environmental Biotechnology

1

- Plants are constantly exposed to biotic stress factors that affect their growth, development, and productivity.
- This interaction involves complex molecular mechanisms of resistance, tolerance, susceptibility, and sensibility
- plants are limited by biotic factors that are constantly challenging their integrity, such as viroids, viruses, bacteria,fungi, oomycetes, protists, mycoplasmas, nemato des, invertebrates and other plants.
- The interaction of plants with these biotic factors has been a focus of attention because of their phytosanitary impact for crop production.
- How plants defend themselves against diseases and pests is the basis to develop sustainable control methods

- Biotic stress triggers loss of essential nutrients that finally lead to cell death.
- Plants have a series of defense mechanisms to combat ill effects of biotic stress.
- **Phytohormones** strengthen plant immunity by regulating stress responsive compounds.
- Induced mutation enhances gene expression patterns thereby tolerance to stressors.
- Gene editing by CRISPR-Cas9 is an efficient approach for site-specific mutation.
- **TILLING** is an effective process to characterize single base pair change in genome.

Altering metabolic pathways Quality improvement Development of seedless fruit Improvement of nutritional quality

Drought Tolerance Osmotic stress Abscisic acid (ABA) response Salt stress response Heat/ Cold shock response Plant Architecture Abiotic Stress Improvement

Altering

RNAi in Crop Improvement Biotic Stress Improvement

Altering Plant Architecture Fungal resistance Insect resistance Nematode resistance Virus resistance

Biomass production Enhancement of self-life Flower colour manipulation Male sterility Reduced toxicity and allergenicity

Genome engineering is a term used to describe the process of making

specific, targeted alterations in the genome of a living organism.

- Genetic engineering is the direct manipulation of an organism's DNA using any number of methods.
- **GMO** is the genetic modification of organisms. It's been around for a while and uses imprecise methods of genetic engineering.
- Genome editing/engineering is now a more precise method of genetic engineering which hopes to avoid any bad associations with GMO.

CRISPR-Cas9 Application

Plant	Gene	Pathogen	Plant	Gene	Pathogen	Plant	Gene	Pathogen
Rice	OsSWEET 11/13/14 OsCUL3a	Bacterium	Tomato	SIJaz2 SIDmr6 SIPMR4	SIJaz2 SIDmr6 SIPMR4 SIMI01 SIyFRG4 miR482b miR482c SIWAT1	Arabidopsis	AtIAN9	
	OsERF922 OsBSR-K OsSec3A OsPid2 Osmes1 OsPP2A-1	:		SImlo1 SlyFRG4 miR482b miR482c SIWAT1			AtErf019 AtRaf36	×.
		Fungus		Virus DNA,			AtEIF4E	
	Viral RNA OselF4G	*** Virus		SleIF4E1 SIPelo SleIF4E2	*			*
	OSCYP7A1	Insect		SIMAX1	*		AtelF4E1	
Wheat	TaMLO-B1 TaMLO-A1 TaFdr1	.: ***	Grape	VvMlo6 DMR VvWRKY52	:æ	Potato	StDND1 StCHL1 StDMR6-1 StDMR6-2	:
	TaNFXL1			VVMI0-7 VvMI03 VvPR4b			Viral P3,CI Nib,CP <i>StCoillin</i>	*
6	GmF3H1/2, GmFNSII-1	*	Maize	LOX3	: Refe	Oilseed rape	BnWRKY11 BnWRKY70 BnCRT1a BnHK BnF5H	: Xet
Soybean				ZnGD1a			BNQCRB	
Cotton	Gh14-3-3d	:20%-	Cocoa	TcNPR3	Oomycete	Apple	MdDIPM 1/2/4	
*	Viral RBS,IR hairpin,RCRII Rep,IR,CP,Hc-Pro	*	Barley	HvMorc1 HvMorc 6a	:æt	Banana	MusaDMR6	
Tobacco	P3,CI, NIB,CP,1A, 3'UTR-A CLC-Nb1a/b CLCuMuV C1			HvEIF4E MP/CP, Rep/RepA, LIR	***		Viral DNA	*
Cucumber	CselF4E	***	Citrus	CsLOB1 CsWRKY22	(arisas)	Watermelon	Clpsk1	: me
Sorghum	SbLGS1	SbLGS1 Parasitic plant	ET T	MeSWEET10a		J	ObHSK	:set
			Cassava	MenCBP-1,2 Men-elF4E	*	Sweet Basil	ObDMR1 ObDMR6	×.

Plant species	Technologies	Targets	Resistance against
Arabidopsis thaliana	Artifical miRNA	TuMV coat protein sequences	Turnip yellow mosaic virus (TYMV) and turnip mosaic virus (TuMV) [114]
	CRISPR/Cas9	elF(iso)4E	Turnip mosaic virus (TuMV) [115]
Solanum lycopersicum	Artificial miRNA	CMV 2a/2b genes and the 3' UTR [44]; coat protein (AV1) and the pre-coat protein (AV2) gene sequences	Cucumber mosaic virus (CMV) [44]; Tomato leaf curl New Delhi virus (ToLCNDV) [116]
	CRISPR/Cas9	Mlo genes	Powdery mildew fungus (Oidium neolycopersici) [117]
	Hair-pin RNA	AC1 and AC4 genes [118]; mature viroid RNA	Tomato Leaf Curl Virus [118]; Potato spindle tuber viroid [119]
Triticum aestivum	Artificial miRNA	5' UTR region, ORF pipo region of P3 cistron, P1 gene, P3 cistron and HCpro gene	Wheat streak mosaic virus (WSMV) [30]
	CRISPR/Cas9	Mlo genes	Powdery mildew fungus (Blumeria graminis) [120]
Nicotiana tabacum	Artificial miRNA	HC-Pro and p25 gene	Potato Virus X (PVX) and Potato Virus Y (PVY) [29]
	Hair-pin RNA	acetylcholinesterase 2 coding gene (MpAChE2)	Myzus persicae [111]
Nicotiana benthamiana	Artificial miRNA	V2 gene sequence; P1 and NIb genes; nucleoprotein (N) and silencing suppressor (NSs) genes; L (replicase) gene	Cotton leaf curl Burewala virus (CLCuBuV) [121]; Cassava brown streak virus (CBSV) [122]; Tomato spotted wilt virus (TSWV) [123]; Watermelon silver mottle virus (WSMoV) [124]
	CRISPR/Cas9	tomato yellow leaf curl virus (TYLCV); AGO genes	Tomato yellow leaf curl virus (TYLCV) [125]; Cymbidium ringspot virus (CymRSV), Carnation Italian ringspot virus (CIRV) and turnip crinkle virus (TCV) [126]
	Hair-pin RNA	MP gene and Rep gene	Tobacco mosaic virus and Cucumber mosaic virus [127]

 Table 2 Technologies in use of improving biotic stress-tolerant agricultural plants.

Plant species	Technologies	Targets	Resistance against
Hordeum vulgare	Artificial miRNA	Rep and/or RepA proteins (C1 and/or C2 genes) and movement protein (MP) (V1 gene)	Wheat dwarf virus (WDV) [128]
	Hair-pin RNA	hpBYDVpol gene	Barley yellow dwarf virus-PAV (BYDV-PAV) [129]
Vitis vinifera	Artificial miRNA	CP gene [130]; GVA ORF1 and ORF5	Grapevine fanleaf virus (GFLV) [130]; Grapevine virus A (GVA) [131]
Glycine max	Artificial miRNA	Rhg1 genes; Glyma18g02680.1 gene; J15, J20, and J23 genes	Soybean cyst nematode (SCN) [132-134]
	Hair-pin RNA	Rhg1 genes	Soybean cyst nematode (SCN) [132]
Oryza sativa	Artificial miRNA	xa13 gene	Rice bacterial blight (Xanthomonas oryzae) [135]
	CRISPR/Cas9	OsERF922 gene	Rice blast (Magnaporthe oryzae) [136]
Solanum tuberosum	Artificial miRNA	Avr3a avirulence effector	Phytophthora infestans [137]
	Hair-pin RNA	coat protein gene	potato virus Y(PVY) [138]
Citrus sinensis	CRISPR/Cas9	CsLOB1 promoter	Citrus canker (Xanthomonas citri) [139]

Table 2 Technologies in use of improving biotic stress-tolerant agricultural plants—cont'd

Thank You