
KM

Dr. M. KAMAL

Visiting Faculty

Asst. Professor of Computer Applications

Jamal Mohamed College

Tiruchirappalli-20

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024

Tamil Nadu, India

Programme: MBA (Financial Management)

Course Title : R and Python for Finance (NSE)

Course Code : FMEC2/24

Unit V : Financial Analytics and Development

Spreadsheet Interaction
in Python
This presentation explores the power of Python for

interacting with spreadsheets, covering key libraries and

practical examples.

by Dr. M. K AMAL

As s t. Prof. Computer Applications (Vis iting Faculty)

J amal Mohamed College, Tiruchrappalli-20

Key Libraries for Spreadsheet Interaction

openpyxl

Works with Excel files (.xlsx and

.xlsm). Supports reading,

writing, and modifying Excel

workbooks.

pandas

Ideal for working with tabular

data in spreadsheets. Provides

easy reading/writing of Excel

files using read_excel and

to_excel.

xlrd and xlwt

Used for older Excel formats

(.xls). Deprecated in many cases.

Reading Excel Files with
Pandas

import pandas as pd

Read the spreadsheet into a DataFrame

data = pd.read_excel('example.xlsx')

Display the first few rows

print(data.head())

Display the last few rows

print(data.tail())

Writing to a Spreadsheet

import pandas as pd

Example DataFrame

data = pd.DataFrame({

'Name': ['Jamal', 'Balaji', 'Charlie'],

'Age': [25, 30, 35],

'Salary': [50000, 60000, 70000]

})

data.to_excel('output.xlsx', index=False)

print("Data written to output.xlsx")

Creating a New Spreadsheet

from openpyxl import Workbook

Create a new workbook

workbook = Workbook()

Select the active sheet

sheet = workbook.active

Add data to the sheet

sheet['A1'] = 'Name'

sheet['B1'] = 'Age'

sheet['C1'] = 'Salary'

sheet.append(['Jamal', 25, 50000])

sheet.append(['Balaji', 30, 60000])

Save the workbook

workbook.save('new_file.xlsx')

print("New spreadsheet created.")

Object Orientation: Basics
of Python Classes

class ExampleThree(object):

def __init__(self, a, b):

self.a = a

self.b = b

def addition(self):

return self.a + self.b

c = ExampleThree(10, 15)

print(c.addition()) # Output: 25

c.a += 10

print(c.addition()) # Output: 35

Simple Short Rate Class

import numpy as np

def discount_factor(r, t):

"""

Function to calculate a discount factor.

Parameters

==========

r : float

positive, constant short rate

t : float, array of floats

future date(s), in fraction of years;

e.g. 0.5 means half a year from now

Returns

=======

df : float, array of floats

discount factor(s)

"""

df = np.exp(-r * t)

use of NumPy universal function for vectorization

return df

Cash Flow Series Class

class cash_flow_series(object):

"""

Class to model a cash flow series.

Attributes

==========

name : string

name of the object

time_list : list/array-like

list of (positive) year fractions

cash_flows : list/array-like

corresponding list of cash flow values

short_rate : instance of short_rate class

short rate object used for discounting

Methods

=======

present_value_list :

returns an array with present values

net_present_value :

returns NPV for cash flow series

"""

Cash Flow Series Class with
GUI

Design the Class

Hold a list of cash flows, each

associated with a specific time

period.

Create the GUI

Use Tkinter to create a window

for user interaction.

Link the Class and GUI

Allow user input, display cash

flows, and calculate financial

metrics.

Key Takeaways

1 Python for
Spreadsheets

Python offers powerful

tools for interacting

with spreadsheets,

enabling

programmatic data

manipulation.

2 Object-Oriented
Programming

Classes provide a

structured approach to

modeling financial

concepts, such as cash

flow series.

3 GUI Development

Tkinter allows for the creation of user-friendly

interfaces for interacting with financial models.

