Bharathidasan University

Programme: MSc Environmental Science and Sustainable Management

Course Title: ENVIRONMENTAL IMPACT ASSESSMENT (EIA) Course Code: 21PGCC04

Unit- II Types of EIA and Ecological Impacts

Prof. R. Mohanraj Dept. of Environmental Science and Management

Introduction

- Eventual goal of much environmental toxicology is ecological risk assessment (ERA)
- Developed as a management tool to aid in making environmental decisions (area of much uncertainty)
- Estimates risk of producing new product, releasing a pesticide or effluent into the environment, etc.
- May not be scientific → assessment endpoints often set by societal perceptions and values

Purpose of ERA

EPA/630/R-95/002F April 1998

- Purpose is to enable risk managers to make informed environmental decisions.
- Conducted to transform scientific data into meaningful information about the risk of human activities to the environment.

Guidelines for Ecological Risk Assessment

(Published on May 14, 1998, Federal Register 63(93):26846-26924)

Risk Assessment Forum U.S. Environmental Protection Agency Washington, DC

Note: full text of above contained in Appendix B (p. 419 -463)

Framework for Environmental Risk Assessment

-Previously risk assessment seen only as hazard assessment and fate

-But above not easily separated in ecological systems → when release chemical starts to change ecosystem while ecosystem is changing chemical

- Need to go beyond and predict probability of ecological effects of chemical or action

Environmental risks in the sea

- Interaction among risk assessors, risk managers, and interested parties all phases of an ERA is critical to ensure that the results can be used to support a management decision.
- Because of the diverse expertise required (especially in complex ecological risk assessments), risk assessors and risk managers frequently work in multidisciplinary teams.

Schematic of Framework

Outline of Phases of an ERA

- 1. Problem formulation
 - Beginning of dialogue between risk managers and risk assessors.
 - Selection of assessment endpoints (what is important?)
 - Risk assessors evaluate goals
 - Prepare the conceptual model
 - Develop an analysis plan.
- 2. Analysis phase
 - Assessors evaluate exposure to stressors and the relationship between stressor levels and ecological effects.
- 3. Risk characterization,
 - assessors estimate risk through integration of exposure and stressor-response profiles,
 - describe risk by discussing lines of evidence and determining ecological adversity, and prepare a report.

Problem formulation

- Start of iterative process of defining the question under consideration
- Directly affects the scientific validity and policy-making usefulness of the ERA
- Composed of several six subunits

1. Discussion between risk assessor and risk manager

- Sets boundaries created by societal goals and scientific reality (data)
- Consolidates ambiguous goals
 - Protection of endangered species
 - Protection of fishery
 - Preserve structure and function of ecosystem

2. Stressor characteristics?

- Can be biological, physical, chemical
- Characterized by
 - intensity (conc. or dose)
 - -duration
 - frequency
 - timing
 - -scale Spatial aspect

Temporal aspects

3. Ecosystems Potentially at Risk?

- Difficult to address → transport often difficult to predict
- Need to look at
 - Abiotic-biotic factors
 - History
 - -Size

– Geographic relationships

4. Ecological Effects?

- Includes any impact upon any level of ecosystem
- Derived from hazard assessment (acute/chronic toxiciy) and consideration of:
 - Biotransformations
 - Biodegradation
 - Reproductive effects
 - Predator-prey interactions
 - Production
 - Community biomass
 - Anything which has a direct role in the functioning of the ecosystem

5. Endpoint selection

- Most critical aspect of problem formulation → sets stage for remainder of process
- Two types of endpoints
 - Assessment endpoints
 - Set by ecological relevance, policy goals/societal values (i.e. protect ecosystem structure/function)
 - Often can only infer from measurement endpoints
 - Measurement endpoints
 - Measurable factors that respond to stressors and describe characteristics of ecosystem important to assessment endpoints
 - Design and selection based on relevance, practicality, etc

6. Conceptual Model

- Framework into which data are placed
- Defines how data will be interpreted (what is likely to be affected:
 - Migratory birds?
 - Temporary pond amphibians?
 - Etc

Note: all above subject to revision based on collected information from data acquisition, verification, monitoring (DVM)

Analysis

- Comes into play as problem formulation is completed
- Most important part

 → characterization
 of ecosystem(s) of
 concern
- Composed of five subunits

1. Ecosystem Characterization

- Often difficult to perform because
 - Ecosystem no longer there?
 - Boundaries?
 - Climate changes?
 - Biotic interactions?

2. Stressor characteristics and evaluation of relevant effects

- Chemical properties?
- Toxicity?
- Usually evaluate from published data
- May do own tests but expensive → only do if absolutely necessary

- 3. Exposure analysis
- Determine environmental concentration
 - Difficult → end of pipe
 →biotransformation →
 media heterogeneity →
 now how much toxic stuff
 is there?
 - Non-point sources can be even more difficult
 - Where to measure?
 - When to measure?

4. Ecological response analysis

- Most difficult stage of ERA because as test system becomes more environmentally realistic the ability to accurately predict effects decreases
- Can use
 - Toxicity data
 - Microcosms
 - Field data/observations
 - Etc.

5. Stressor/response analysis

- Analogous to dose/response but using single species toxicity to extrapolate to population/community level responses
- Have to take other (natural) stressors into account

Note: DVM critical for best results

Risk Characterization

- Final stage of an ERA
- Combines ecological effect and environmental concentration to provide likelihood of effects given distribution of stressor within ecosystem
- Composed of two parts:

1. Risk estimation

A. Integration

- 1) Integrate exposure with toxicity
- 2) Use quotient method of estimating environmental risk
- B. Uncertainty analysis how much confidence (certainty) in data/information
 - 1) Can have formal mathematical analysis or informal "best guess" analysis

Quotient Method

Quotient = <u>Expected environmental concentration</u> Concentration producing an unacceptable environmental effect

Quotient	Risk
>1	Potential of high risk
~1	Potential risk
<< 1	Low risk

2. Risk description

- Ecological risk summary
 - "what are the potential effects and *do I believe them*?
- Interpretation of ecological significance
 - "how big a problem is this really going to be"

Discussion between Risk Assessor and Risk Manager

- Report from risk assessor to risk manager
- Risk manager may take information and perform a risk/benefit analysis

Discussion between Risk Assessor and Risk Manager

- Report from risk assessor to risk manager
- Risk manager may take information and perform a risk/benefit analysis→ is the economic benefit worth the environmental cost?
- Report may generate multiple vituperative displays of acrimony among interested parties

Risk Management

- Manage risk taking environmental, social, economic effects into account
- Management usually implemented in the form of policy and legislation

Monitor Results

- Usually need to implement an on-going monitoring plan to determine if management objectives are being met
- Often not performed as extensively as necessary until a problem arises

