

Earth's Atmosphere-structure and composition.

(L.2)

Dr.N.D.Shrinithivihahshini Assoc.Prof. Dept. of Envtl.Sci. & Mgmt., BDU

LO

- Topic: Earth's Atmosphere Structure and Composition
- **Subtopic:** Structure, Gases, Climate Relevance, and Human Influence

SCOPE

- Understand the layered structure of the Earth's atmosphere.
- Know the composition of atmospheric gases and trace elements.
- Explore the functions and importance of each atmospheric layer.
- Discuss **recent changes** in atmospheric composition due to anthropogenic activities.
- Analyze case studies related to atmospheric phenomena.
- Identify how climate and pollution affect atmospheric balance?

LO

- Define and describe different atmospheric layers
- Explain the percentage and role of gases in the atmosphere
- Correlate human activities to changes in atmospheric composition
- Apply knowledge to real-world scenarios through case studies.
- Critically assess the global implications of atmospheric change.

ATMOSPHERE:OVERVIEW

- Envelope of gases surrounding Earth
- Extends up to 10,000 km, becomes very thin beyond ~500 km
- Crucial for life, weather, radiation protection
- Regulates climate and heat balance

COMPOSITION OF EARTH'S ATMOSPHERE

- Gas Percentage by Volume
- Nitrogen (N₂) 78.08%
- Oxygen (O₂) 20.95%
- Argon (Ar) 0.93%
- Carbon dioxide (CO₂) 0.0416% (~416 ppm)
 Neon, Helium, Methane, etc. Trace

NOAA Earth System Research Laboratories (2024)

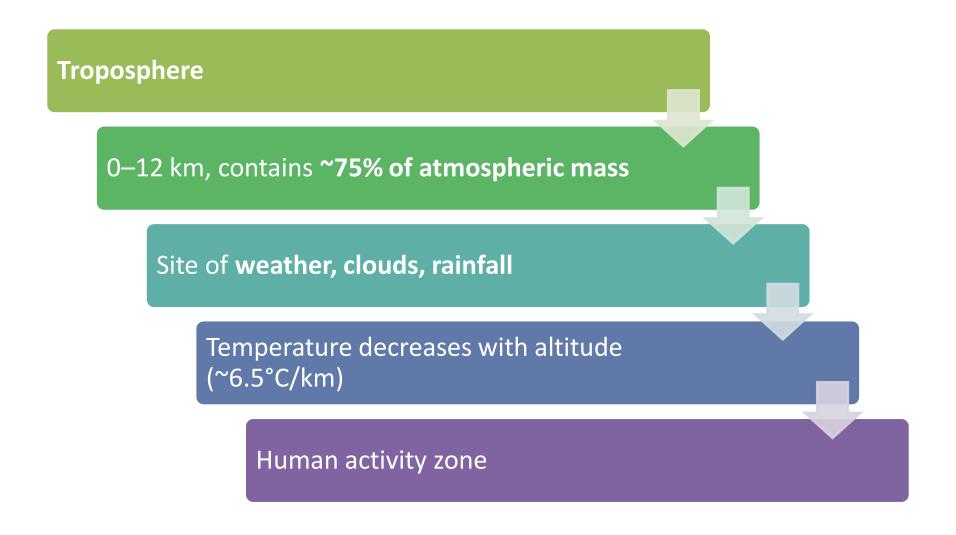
COMPOSITION OF EARTH'S ATMOSPHERE

Variable Components

- Water Vapor (0–4%) affects weather and climate
- Ozone (O₃) absorbs harmful UV in stratosphere
- Dust particles, Pollen, Soot
- Anthropogenic pollutants: CO, SO₂, NOx
 NOAA Earth System Research Laboratories (2024)

LAYERS OF THE ATMOSPHERE — OVERVIEW

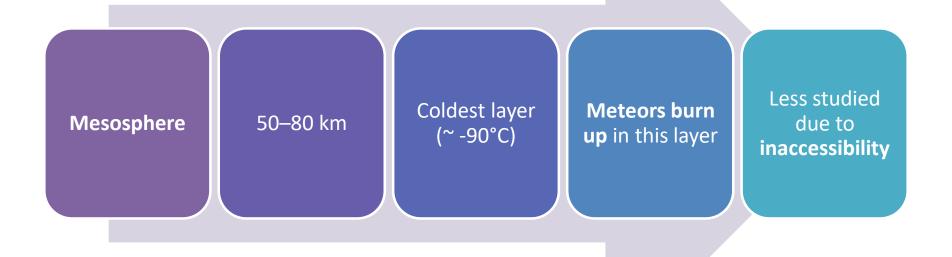
Layers:


- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- Exosphere

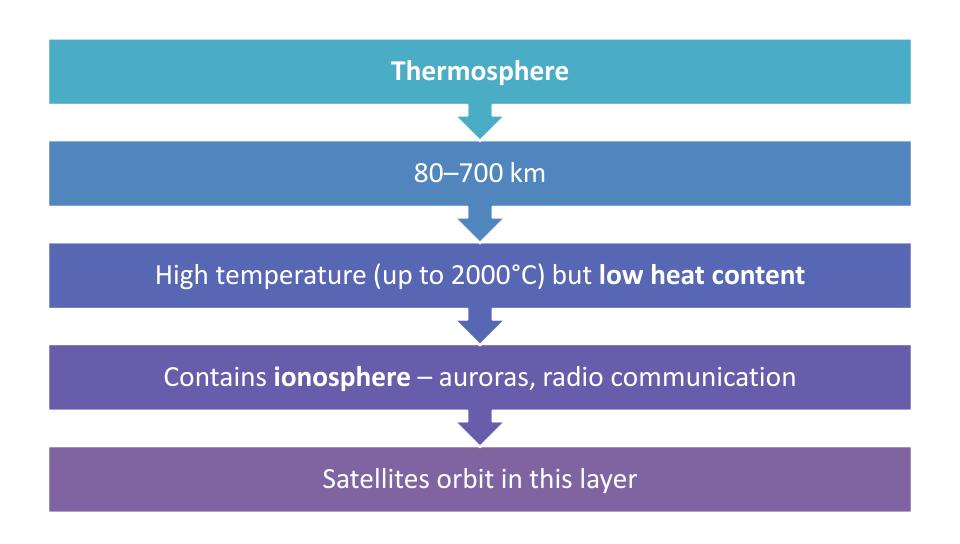
Based on temperature, chemical composition, and function

Divided by temperature gradients

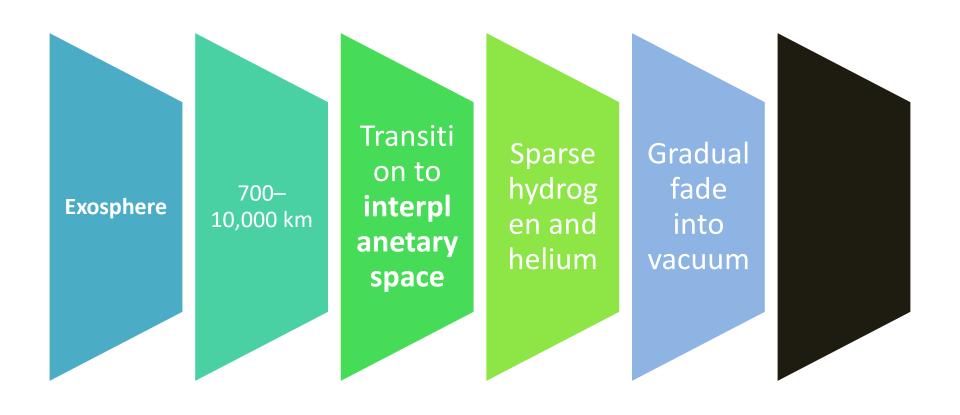
LAYERS OF THE ATMOSPHERE-TROPOSPHERE



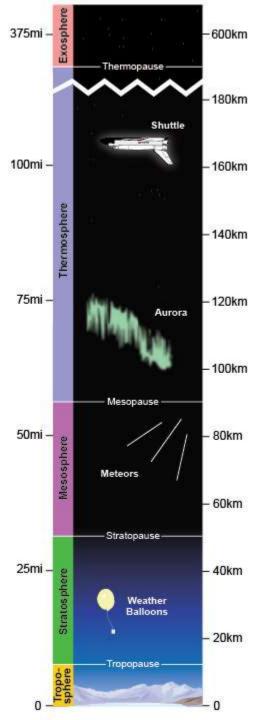
STRATOSPHERE

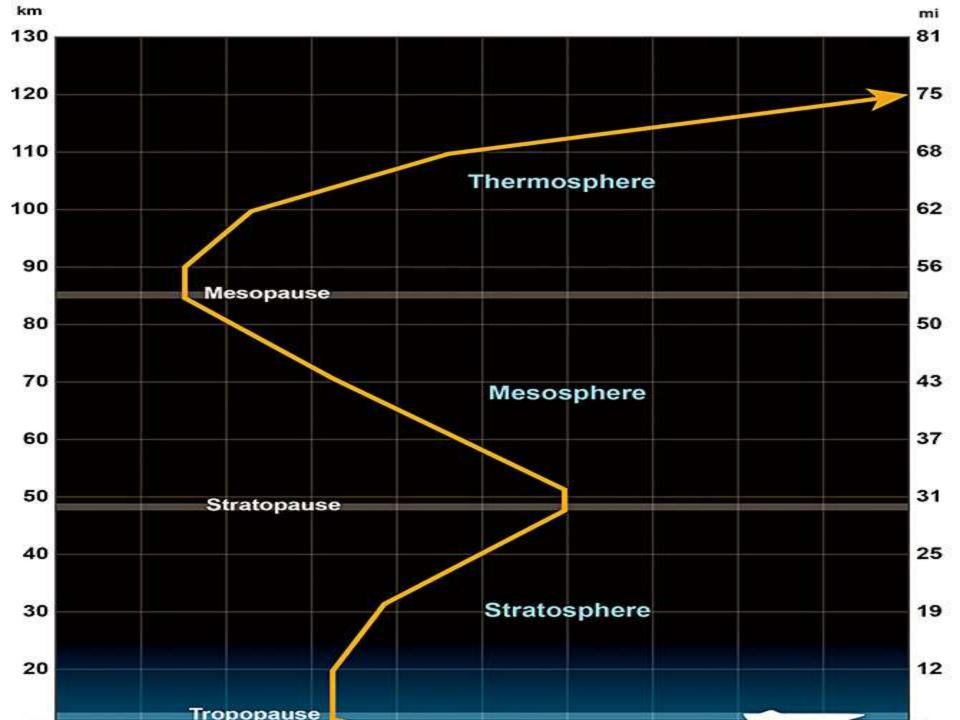

Stratosphere

- 12-50 km
- Contains the ozone layer (20–30 km)
- Temperature increases with height due to UV absorption
- Jet aircraft fly in lower stratosphere


MESOSPHERE

THERMOSPHERE




EXOSPHERE

Atmospheric Pressure & Temperature Profile

- Atmospheric pressure decreases exponentially with altitude
- Temperature profile shows alternating cooling and warming zones
- IMAGE SOURCE:NOAA

GREEN HOUSE GASES

GhGs and Climate Regulation:


Major GHGs: CO₂, CH₄, N₂O, H₂O vapour

Role in **Earth's energy budget**

IPCC 2023 report highlights:

- CO₂: 50% of radiative forcing.
- Methane: 25x more potent than CO₂ (over 100 years).

CHANGES IN ATMOSPHERE

ANTHROPOGENIC CHANGES IN ATMOSPHERE

- ANTHROPOGENIC CHANGES IN THE ATMOSPHERE REFER TO ALTERATIONS TO THE EARTH'S ATMOSPHERE CAUSED BY HUMAN ACTIVITIES
- •The most significant contributor is the burning of fossil fuels for energy, industry, and transportation
- Deforestation and agriculture

Consequences of GhGs

Increased global temperatures:

 Greenhouse gases trap heat in the atmosphere, leading to a rise in global temperatures, known as global warming.

Changes in weather patterns:

 Warming temperatures can lead to more frequent and intense heat waves, droughts, and extreme weather events like hurricanes.

Melting glaciers and ice sheets:

Warmer temperatures cause glaciers and ice sheets to melt at an accelerated rate, contributing to sea-level rise.

Ocean acidification:

 Increased CO2 in the atmosphere dissolves into the ocean, causing it to become more acidic.

Who is the Major driver of CC?

- The overwhelming majority of climate scientists agree that human activities are the primary driver of recent climate change.
- This consensus is supported by extensive research and data analysis, including observations of increasing greenhouse gas concentrations and rising global temperatures.
- Case Study 1 Ozone Hole over Antarctica
- CFCs led to stratospheric ozone depletion
- Montreal Protocol (1987) → 99% reduction in CFCs
- NASA 2024: gradual recovery but not full yet
- Role of stratospheric cooling in persistence

CASE STUDY 2 – DELHI SMOG (INDIA)

• PM2.5 levels peaked at **400+ μg/m³ in Nov 2023**

Sources: stubble burning, vehicle exhaust, Diwali fireworks

Health impacts: respiratory, cardiovascular

Action: Odd-even schemes, GRAP measures

GRAP

- தரப்படுத்தப்பட்ட மறுமொழி செயல் திட்டம் (GRAP) என்பது காற்று மாசுபாட்டை எதிர்த்துப் போராட டெல்லி-NCR இல் செயல்படுத்தப்படும் நடவடிக்கைகளின் தொகுப்பாகும், இது காற்று தரக் குறியீட்டால் (AQI) தூண்டப்படுகிறது . GRAP காற்றின் தரத்தை நான்கு நிலைகளாக வகைப்படுத்துகிறது, அதிகரிக்கும் தீவிரத்தன்மை மேலும் கட்டுப்பாட்டு நடவடிக்கைகளுக்கு வழிவகுக்கிறது.
- GRAP என்றால் என்ன?
 - GRAP என்பது டெல்லி-NCR இல் காற்று மாசுபாட்டைக் குறைப்பதற்காக வடிவமைக்கப்பட்ட நடவடிக்கைகளின் தொகுப்பாகும்.
 - இது AQI அடிப்படையில் குறிப்பிட்ட செயல்களைச் செயல்படுத்தும் ஒரு அடுக்கு
 அமைப்பாகும்.
 - கட்டுப்பாடுகளை அமல்படுத்துவதன் மூலமும், தூய்மையான நடைமுறைகளை
 ஊக்குவிப்பதன் மூலமும் மாசு அளவைக் குறைப்பதே இதன் இலக்காகும்.

AQI மற்றும் RAP நிலைகள்:

- 1. **நல்லது (0-50):** எந்த நடவடிக்கையும் எடுக்கப்படவில்லை.
- 2. **திருப்திகரமானது (51-100):** எந்த நடவடிக்கையும் எடுக்கப்படவில்லை.
- 3. **மிதமான (101-200):** எந்த நடவடிக்கையும் எடுக்கப்படவில்லை.
- 4. மோசமானது (201-300): GRAP நிலை I செயல்படுத்தப்படுகிறது.
- 5. **மிகவும் மோசமானது (301-400):** GRAP நிலை II செயல்படுத்தப்படுகிறது.
- 6. **கடுமையான (401-450):** GRAP நிலை III செயல்படுத்தப்படுகிறது.
- 7. **கடுமையான + (450 க்கு மேல்):** GRAP நிலை IV செயல்படுத்தப்படுகிறது. :

GRAP STATUS

• நிலை । (மோசம்):

கட்டுமான நடவடிக்கைகளுக்கான கட்டுப்பாடுகள்.

போக்குவரத்து மேலாண்மை மற்றும் பொது போக்குவரத்தை மேம்படுத்துதல்.

சில மாசுபடுத்தும் தொழில்கள் மீதான கட்டுப்பாடுகள்.

குடிமக்கள் பொது போக்குவரத்தைப் பயன்படுத்த ஊக்குவித்தல் மற்றும் பழைய வாகனங்களைப் பயன்படுத்துவதைத் தவிர்க்கவும்.

• நிலை ॥ (மிகவும் மோசமானது):

கட்டுமானம் மற்றும் தொழில்துறை நடவடிக்கைகள் மீது கடுமையான நடவடிக்கைகள்.

வாகன இயக்கத்திற்கு அதிகரித்த கட்டுப்பாடுகள்.

டீசல் ஜெனரேட்டர்களைப் பயன்படுத்துவதற்கான சாத்தியமான தடை (இரட்டை எரிபொருள் அல்லது உமிழ்வு கட்டுப்பாடு உள்ளவை தவிர).

• நிலை III (கடுமையானது):

தொழில்துறை செயல்பாடு மற்றும் கட்டுமானத்தில் மேலும் கட்டுப்பாடுகள்.

வாகனப் போக்குவரத்துக்கு மேலும் கடுமையான நடவடிக்கைகள்.

• நிலை IV (கடுமையான +):

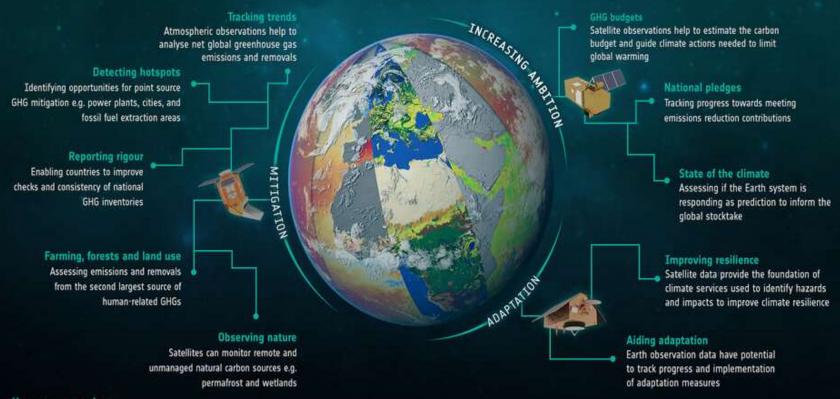
அத்தியாவசியமற்ற தொழில்துறை செயல்பாடுகளுக்கு தடை விதிப்பது உள்ளிட்ட விரிவான நடவடிக்கைகள்.

வாகனப் புகை மீதான தடை தீவிரப்படுத்தப்பட்டது.

அத்தியாவசியப் பொருட்களை ஏற்றிச் செல்லும் லாரிகள் தவிர, உள்ளே நுழைவதற்கான கட்டுப்பாடுகள். GRAP-ஐ யார் செயல்படுத்துகிறார்கள்?

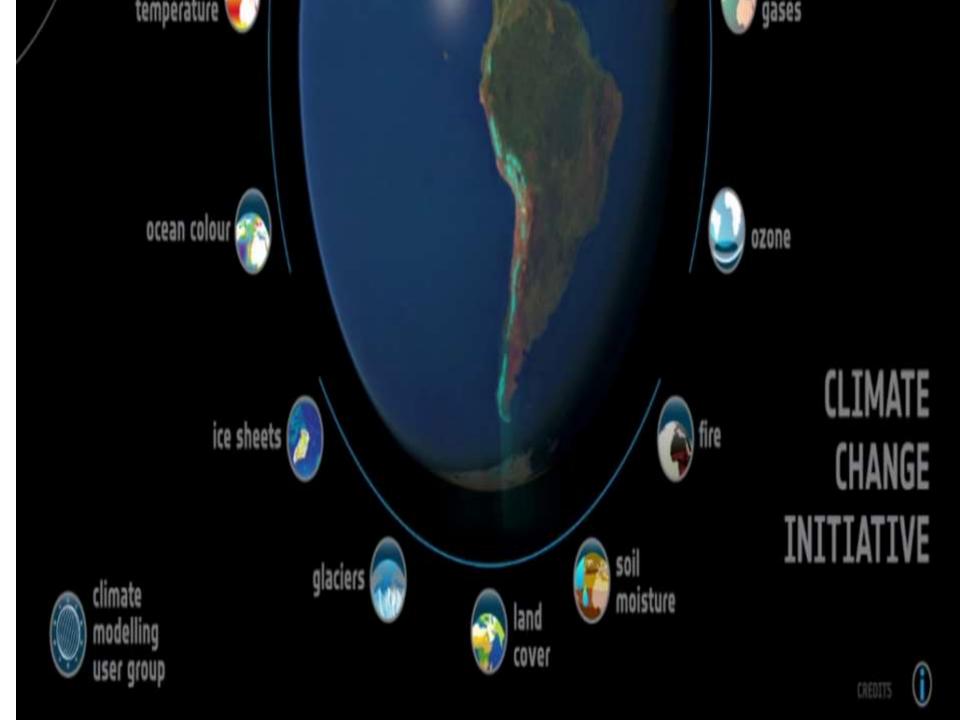
GRAP-ஐ செயல்படுத்துவதற்கு காற்று தர மேலாண்மை ஆணையம் (CAQM) பொறுப்பாகும்.

டெல்லி மாசு கட்டுப்பாட்டு குழு (DPCC) மற்றும் மத்திய மாசு கட்டுப்பாட்டு வாரியம் (CPCB) போன்ற உள்ளூர் அதிகாரிகளும் இதில் பங்கு வகிக்கின்றனர்.


ROLE OF SATELLITES AND WEATHER MONITORING

- NASA's Terra, Aqua, Sentinel, ISRO's INSAT series
- Track GHG levels, temperature, aerosols, clouds(NDIR tech.)
- Real-time data for disaster preparedness and modeling
- Ground-based measurements ,satellite observn, & aircraft measurements.
- Temperature is measured using thermometers, both on the ground (in weather stations) and at various altitudes using radiosondes (weather balloons) and satellites.
- Aerosol properties are tracked using radiometers (instruments that measure electromagnetic radiation)

Supporting the Paris Agreement from Space



The Paris Agreement aims to keep global temperatures well below 2°C and ideally 1.5°C relative to the pre-industrial period and reduce climate change vulnerability. Satellite observations are increasingly contributing to national mitigation and adaptation progress to meet these objectives.

climate.esa.int

References: [1] Deng, Z et al (2022) Earth Syst. Sci. Data, https://doi.org/10.5194/essd-14-1639-2022 [2] Hegglin M (2021) https://uniccc.int/documents/307696

SUMMARY

- Atmosphere = dynamic system with layers, gases, and functions
- Composition affected by natural and human factors.
- Understanding structure helps in climate resilience.
- Importance of policy + awareness + technology.

References

NOAA ESRL (2024) – www.esrl.noaa.gov

IPCC AR6 Synthesis Report (2023)

NASA Ozone Watch – ozonewatch.gsfc.nasa.gov

IMD & CPCB Air Quality Reports (2023–2024)

NCERT & UGC ePG Pathshala Environmental Science Modules

Britannica, NASA Earth Observatory