UNIT- IV

Probability Distributions and Graphs

Normal Probability Curve. Meaning of probability- Principles of normal curve – Properties of normal curve. Divergence from normality – Skewness and Kurtosis. Grading Scales. Graphical Representation in Statistics; Line diagram, Bar diagram, Histogram, Frequency Polygon, Ogive Curve and Pie chart.

PRINCIPLES AND PROPERTIES OF NORMAL CURVE

Symmetry

Bell-Shaped Curve

Mean, Median, and Mode Equality

Standard Deviation

Z-Scores

SKEWNESS

• Skewness is a statistical measure that describes the asymmetry of a probability distribution or a set of data points.

• In simpler terms, it quantifies the extent and direction of skew (departure from horizontal symmetry) in a dataset.

Positive Skewness:

If the distribution of data is skewed to the right, it has a long right tail.

This means that the majority of the data points are concentrated on the left side, and there are a few extremely high values on the right side.

- Negative Skewness:
- If the distribution of data is skewed to the left, it
 - has a long left tail.
- This indicates that the majority of data points are
- concentrated on the right side, and there are a few
- extremely low values on the left side.

KURTOSIS

- Kurtosis is a statistical measure that describes the shape, or peakedness, of a probability distribution or a set of data points.
- It provides information about the tails of a distribution and how much data is concentrated near the mean.
- In particular, kurtosis helps to identify whether the tails of a distribution are heavy or light compared to a normal distribution.

Mesokurtic (Normal Kurtosis):

A mesokurtic distribution has kurtosis equal to 0.

This means that its tails are similar to those of a normal distribution.

The majority of statistical distributions, including

the normal distribution, fall into this category.

Leptokurtic (Excess Kurtosis > 0): A leptokurtic distribution has "fat" tails, indicating that it has more extreme values than a normal distribution. The excess kurtosis value (kurtosis minus 3) is positive.

• Leptokurtic distributions are more peaked at the center and have heavier tails.

center and have lighter tails.

Graphical Representation in Statistics

Pie Graph

- A pie Graph is a type of graph that represents the
 - data in the **circular graph**.
- A pie Graph requires a list of **categorical variables** and the **numerical variables**.
- Here, the term "pie" represents the whole and the
 - "slices" represents the parts of the whole.

Bar Diagram

Also known as a column graph, a bar graph or a bar

diagram is a pictorial representation of data.

- It is shown in the form of rectangles spaced out with equal spaces between them and having equal width.
- The equal width and equal space criteria are important

characteristics of a bar graph.

Histogram

Histogram is a non-cumulative frequency graph, it is drawn on a natural scale in which the representative frequencies of the different class of values are represented through **vertical rectangles drawn** closed to each other. Measure of central tendency, Mode can be easily determined with the help of this graph.

A frequency polygon is a graphical representation of a frequency distribution.

- It is created by connecting the midpoints of the intervals in a histogram with straight line segments.
- This type of graph is particularly useful for displaying the shape and central tendency of a dataset.

Cumulative Frequency Curve

- To plot this graph first we have to convert, the class
 - intervals into their exact limits.
- Then we have to calculate the cumulative frequencies of the distribution.
- Now we have to plot the cumulative frequencies in
 - respect to their corresponding class intervals.

Cumulative Percentage Curve

Cumulative percentage is another way of

expressing frequency distribution.

It calculates the percentage of the cumulative frequency within each interval, much as relative frequency distribution calculates the percentage of frequency.

