SCHOOL OF COMPUTER SCIENCE, ENGINEERING AND APLICATIONS
BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI - 620023

DEEP LEARNING
M.SC Al (I1)

Dr. S. KALAIVANI
GUEST LECTURER

UNI

Deep learning is a type of

artificial intelligence () that imitates the way
humans knowledge. It uses multi-layered
structures of algorithms called neural networks to

analyzing data.

WHAT IS MACHINE LEARNING?

- WHAT IS ARTIFICIAL INfEL IGENCE?

\

HOW DOES DEEP LEARNING WORKS?

Most deep learning methods use neural network architectures, which is why deep learning models are
often referred to as deep neural networks.

The term “deep” usually refers to the number of hidden layers in the neural network.

Deep learning models are trained by using large sets of labeled data and neural network architectures
that learn features directly from the data without the need for manual feature extraction. One of the
most popular types of deep neural networks is known as convolutional neural networks (CNN)

input layer

hidden layer 1 hidden layer 2

3 T

CHALLENGES IN DEEP LEARNING

1. Data availability: It requires large amounts of data to learn from.

2. Computational Resources: For training the deep learning model, it is computationally
expensive because it requires specialized hardware like GPUs and TPUs.

3. Time-consuming: While working on sequential data depending on the computational
resource it can take very large even in days or months.

4. Interpretability: Deep learning models are complex, it works like a black box. It is very difficult
to interpret the result.

5. Overfitting: when the model is trained again and again, it becomes too specialized for the
training data, leading to overfitting and poor performance on new data.

* Deep learning algorithms are constructed S =
with connected layers. NEURAL NETWORKS 4

IN HEALTHCARE

(N
a :
A o - LSRN LoPPaTs IO S s SRt P SO
e All lavers in between are called
- LELEN S AR A AL i - 1 ol A

Layers or Neurons.
®
* The word deep means the network join

/> neurons in more than two layers.

neurons

input layer

hidden layer 1 hidden layer 2

* Theano

\s a result, network

- =

* One of the deep learning algorithms responsible for changing network weights with the
goal of lowering network error is the backpropagation algorithm. It's quite significant.

ensures lower error rates, 1
generalization.

* Tteration

UNIT |1

Bias-Variance Trade Off

* The Bias-Variance Trade-Off is a key concept in machine learning that
deals with the balance between two types of errors that a model can

make:
* bias error and variance error.

* Understanding this trade-off helps in building models that generalize
well to new, unseen data.

Bias

e Definition: Bias is the error due to overly simplistic models that cannot capture
the underlying patterns in the data.

eHigh Bias: This leads to underfitting, where the model is too simple to learn from the
data effectively. An underfit model makes strong assumptions about the data
and ignores the complexities.

eExample: A linear model trying to fit non-linear data.

Variance

Definition: Variance is the error due to a model that is too complex and sensitive
to the specific training data.
*High Variance: This leads to overfitting, where the model learns not only the
underlying patterns but also the noise in the training data.
As a result, the model performs well on the training set but
poorly on new data.
 Example: A decision tree with many branches capturing noise instead of the actual signal.

The Trade-Off

e|ncreasing model complexity reduces bias (improves accuracy on training data),
but increases variance (worse generalization on new data).

eDecreasing model complexity reduces variance but increases bias.

eThe goal is to find a sweet spot where both bias and variance are balanced,

minimizing the total error (i.e., test error).

Graphical Representation:

In many cases, the relationship between model complexity and error can be visualized
as two curves:

*Bias decreases as model complexity increases.

*Variance increases as model complexity increases.

*The total error is the sum of bias and variance, and the minimum of this curve is the

optimal model complexity.

‘Low Bias, High Variance: Overfitting (too complex).
*High Bias, Low Variance: Underfitting (too simple).

*The Bias-Variance Trade-Off is about finding the right balance to reduce overall prediction error.

Overfitting:

The model performs very well on the training data (low training error) but poorly on the test
or unseen data (high test error).

Causes:

*The model is too complex (e.g., too many features, deep trees, or high-degree polynomials).
Insufficient training data.

*Training the model for too long or without regularization.

Solution:

*Use a simpler model.

eReduce the number of features.
eGet more training data

*Example:

A decision tree that splits deeply on every minor variation in the data, creating a complex tree that
perfectly fits the training data but performs poorly on new, unseen data.

2. Underfitting:
*Definition: Underfitting occurs when a model is too simple to capture the underlying patterns in the data. The model
fails to learn the important relationships and performs poorly on both the training data and new data.
*Symptoms:
 The model has high error on both training data and test data.
* It cannot capture the complexities of the data, leading to poor predictions.
*Causes:
 The model is too simple (e.g., linear regression on non-linear data).
* Insufficient features or low model capacity.

* Training the model for too few epochs (in the case of neural networks).

eSolution:

eUse a more complex model.

e Add more relevant features to the model.

eTrain the model for longer.

eReduce the amount of regularization if too much has been applied.

eExample: Fitting a straight line (linear regression) to data that has a quadratic or non-linear relationship.

Overfitting and Underfitting are common problems in machine learning

that occur when a model does not generalize well to new data.

Penalty-based regularization is a method used to prevent overfitting by adding a penalty to the model’s loss
function, discouraging overly complex models.
Types:
1.L1 Regularization (Lasso):

1. Adds the sum of the absolute values of the coefficients.

2. Encourages sparsity, driving some weights to zero (feature selection).
2.L2 Regularization (Ridge):

1. Adds the sum of the squared coefficients.

2. Shrinks coefficients but doesn’t set them to zero, reducing model complexity.
3.Elastic Net:

1. Combines L1 and L2 regularization.

2. Balances between feature selection (L1) and shrinkage (L2).

These techniques help models generalize better by preventing overfitting to training data.

Ensemble methods combine multiple machine learning models to improve overall performance and robustness. The
idea is that multiple models working together can produce better predictions than a single model.
Key Types:
1.Bagging (Bootstrap Aggregating):
1. Trains multiple models on different subsets of the data (with replacement) and combines their predictions
(e.g., Random Forest).
2. Reduces variance and helps prevent overfitting.
2.Boosting:
1. Sequentially trains models, each focusing on the mistakes of the previous one (e.g., AdaBoost, XGBoost).
2. Reduces bias and improves accuracy.
3.Stacking:
1. Combines predictions from multiple models by training a meta-model to make the final prediction.
2. Leverages the strengths of different models.

Ensemble methods improve accuracy, reduce overfitting, and generalize better to unseen data.

Early stopping is a regularization technique used to prevent overfitting in machine learning, particularly in neural
networks. It monitors the model's performance on a validation set during training and stops the training process
when the performance stops improving (e.g., when validation loss starts increasing), indicating that the model is
beginning to overfit.

Key Points:

*Prevents overfitting by halting training before the model starts memorizing the training data.

*Monitors validation performance to determine the optimal stopping point.

*Reduces training time while ensuring better generalization on unseen data.

Unsupervised pre-training

Unsupervised pre-training is a machine learning technique that uses unlabeled data to train
a model that can later be refined with a smaller amount of labeled data. This technique is
especially useful when labeled data is hard to find or expensive to get.

It's been used in a variety of domains, including natural language processing (NLP) and computer vision.

What Is Principal Component Analysis?

* Principal component analysis, or PCA, is a dimensionality reduction method that
is often used to reduce the dimensionality of large data sets, by transforming a
large set of variables into a smaller one that still contains most of the information
in the large set.

* Principal Component Analysis (PCA) is a statistical procedure that uses an
orthogonal transformation that converts a set of correlated variables to a set of
uncorrelated variables. PCA is the most widely used tool in exploratory data
analysis and in machine learning for predictive models. Moreover,

e Principal Component Analysis (PCA) is an unsupervised learning algorithm
technique used to examine the interrelations among a set of variables. It is also
known as a general factor analysis where regression determines a line of best fit.

https://www.geeksforgeeks.org/supervised-unsupervised-learning/

* The main goal of Principal Component Analysis (PCA) is to reduce the
dimensionality of a dataset while preserving the most important
patterns or relationships between the variables without any prior
knowledge of the target variables.

* Principal Component Analysis (PCA) is used to reduce the

dimensionality of a data set
than the original set of varia
information, and useful for t

oy finding a new set of variables, smaller
ples, retaining most of the sample’s

ne regression and classification of data.

https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/

Area
A

Principal
 Component Transformation
PG, 2D—1D
PC, > PC,
Variance
» Radius

Variance

Principal Component Analysis (PCA) is a technique for dimensionality reduction that
identifies a set of orthogonal axes, called principal components, that capture the
maximum variance in the data. The principal components are linear combinations of the
original variables in the dataset and are ordered in decreasing order of importance. The
total variance captured by all the principal components is equal to the total variance in
the original dataset.

The first principal component captures the most variation in the data, but the second
principal component captures the maximum variance that is orthogonal to the first
principal component, and so on.

Principal Component Analysis can be used for a variety of purposes, including data
visualization, feature selection, and data compression. In data visualization, PCA can be
used to plot high-dimensional data in two or three dimensions, making it easier to
interpret. In feature selection, PCA can be used to identify the most important variables
in a dataset. In data compression, PCA can be used to reduce the size of a dataset
without losing important information.

In Principal Component Analysis, it is assumed that the information is carried in the
variance of the features, that is, the higher the variation in a feature, the more
information that features carries.

https://www.geeksforgeeks.org/python-statistics-variance/
https://www.geeksforgeeks.org/orthogonal-and-orthonormal-vectors-in-linear-algebra/

Reinforcement Learning

* Reinforcement Learning is a feedback-based Machine learning technique in which an
agent learns to behave in an environment by performing the actions and seeing the
results of actions. For each good action, the agent gets positive feedback, and for

each bad action, the agent gets negative feedback or penalty.

* In Reinforcement Learning, the agent learns automatically using feedbacks without

any labeled data, unlike supervised learning.

* Since there is no labeled data, so the agent is bound to learn by its experience only.

* RL solves a specific type of problem where decision making is sequential, and the

goal is long-term, such as game-playing, robotics, etc.

https://www.javatpoint.com/supervised-machine-learning

* Reinforcement learning is a type of machine

learning method where an intelligent agent Environment
() h th i "ﬂ;
computer rogram interacts wit the -
P prog o il
environment and learns to act within that. Reward. Actions
State ‘..
. . . ‘AN
* The agent continues doing these three things (take »“ Ny
i gvmasl
action, change state/remain in the same state, ‘;ji;;

and get feedback), and by doing these actions, he

learns and explores the environment.

Markov decision process (MDP)

* The Markov decision process (MDP) is a mathematical tool used for
decision-making problems where the outcomes are partially random
and partially controllable. It's a framework that can address
most reinforcement learning (RL) problems.

https://builtin.com/machine-learning/reinforcement-learning

What is Markov Decision
Process?

Markov Decision Process (MDP) is a S'z‘e ;""a“‘ action
a | |5 A

mathematical framework to describe an
environment in reinforcement learning. - {

: * 5., | Environment
What is Reinforcement |
Learning?

Reinforcement Learning (RL) is a learning technique by

which the learner learns to behave in an interactive
environment using its own actions and rewards for its

actions. The learner, often called, agent, discovers which agent

actions give the maximum reward by exploiting and

environment

3)\

exploring them. |

_ocfions
_
observations

The Components of Reinforcement Learning

* Environment: The outside world with which the agent

interacts
« State: Current situation of the agent Agent
» Action: The choice that the agent makes at the current

time step (For instance, Move left, Move right). Side | |reward

« Reward: Numerical feedback signal from the dly

environment uf
. ; . 5., | Environment
* Policy: Method to map the agent’s state to actions. A

policy is used to select an action at a given state

+ Value: Future reward (delayed reward) that an agent
would receive by taking an action in a given state

Back to Markov Decision Process(MDP)...

* We need to understand MDP, we need to understand, Markov
Property.

A state S, is Markov if and only if

P[$g+1 | S(] == ?[S¢+1 I S].....S(]

* Let us assume that a Robot was seated on a chair, it stood up and
picked up the object.

* Current state= picking up object.

* Next state would depend only on the probability of this current state
and not on the previous states.

Markov Process or Markov Chain

* The state transition probabillity is the - S —
probability of jumping to a state s’ from the Pss' =P [St+1 m— Sl I st _‘ S]
current state s.

* A Markov Process is defined by (S, P) where S are the states, and P is the state-

transition probability. It consists of a sequence of random states S, S,, ... where
all the states obey the Markov Property.

The Difference between the Markov
process and the Markov Decision
Process

Markov Decision Process: Pr(s’ | s, a)'

Markov Process Pr(s’ | s)

Markov Reward Process

Pssl — P[St+1 = S, | St = S]
* An MRP is defined by (S, P, R, y), B -
where S are the states, P is the state- Rs=E [Rt+1 | 5t = Sl
transition probability, R is the reward,
and y is the discount factor.

* The state reward R is
the expected reward over
all the possible states that
one can transition to from
state s.

* This reward is received for
being at the state S. By
convention, it is said to be
received after the agent
leaves the state and hence,
regarded as R(t+1).

Markov Decision Process

* An MDP is defined by (S, A, P2 =PI[S;.1=6]|S =5A =2
P, R, y), where A is the set of ss’ [t+1 | Gl]

actions. It is essentially MRP —_ = = =
with actions. Rg =K [Rt-l-l I St =5, At = 3]

* The rewards and the next
state also depend on what
action the agent picks.

Policy (m)

A policy defines the thought behind making a
decision (picking an action). It defines the
behavior of an RL agent. w(als) =P[A=a| S =3
A policy is a probability distribution over the

set of actions @, given the current state s i.e.,

it gives the probability of picking an

action @ at state s.

A policy 7 is a distribution over actions given states,

Utility Function
it»'R(S:)

f=0)

* The reward function just captures the U*(s) = Epr(fag,s1,...]Iso=s.7)
immediate or short-term consequences of
executing actions.

7*(s) = arg max Z P(s'|s,a)U(s")
* What we need instead is a function that a€A(s) o
captures the long-term consequences.
Such a function is called a utility function.
’ ! v |
* Intuitively, the utility of taking an Uls) = R(s) + a‘;‘;‘(t,z Pls]s,a)U(s)
action in some state is the expected
immediate reward for that:action plus the Bellman equation
sum of the long-term rewards over the
rest of the agent's lifetime, assuming it
acts using the best policy.

3'

