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Peak of Inflated Expectations

Flu Trends Criticized

Big Data Analytlcs doption

Trough fDlSlIIUSlonment
oogle Flu Trends (2 08
Technology Trigger

Plateau of Productivity

Where are we today?

main-stream study being established
e Realization of what subfields are
really doing “big data” (i.e. data
mining, ML, Statistics,
computational social sciences).
e Best practices being established.

TIME

(Gartner Hype Cycle)



What's the BIG deal?!

Figure 3: Main challenges with big data projects

What are the main challenges to implementing big data in your company?

Security
Budget

Lack of talent to implement big data

Lack of talent to run big data
and analytics on an ongoing basis

Integration with existing systems
Procurement limitations on big data vendors

Enterprise not ready for big data

Source: Accenture Big Success with Big Data Survey, April 2014




What's the BIG deal?!

Figure 6: Big data's competitive significance

Big data will revolutionize the way we
do business to a degree similar to the 38%
advent of the Internet in the 1990s

1%

Big data will dramatically change the

; : 2%
way we do business in the future

Companies that do not embrace big

and may even face extinction

We feel we are ahead of our peers in
using big data and this creates a
competitive advantage for us

4%

data will lose their competitive position 2%

. Strongly Agree Agree . Neither Agree nor Disagree Disagree

Source: Accenture Big Success with Big Data Survey, April 2014




What's the BIG deal?!

Adoption of Big Data 2015-2018
(Copyright 2018 — Dresner Advisory Services)

70%
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10%

Yes. We use big data today We may use big data in the future  No. We have no plans to use big data
atall

H2015 m2016 w2017 m2018

https://www.forbes.com/sites/louiscolumbus/2018/12/23/big-data-analytics-adoption-soared-in-the-enterprise-in-2018/
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What's the BIG deal?!

Peak of Inflated Expectations

Plateau of Productivity

Reasons to be skeptical

Slope of Enlightenment

e Hype machine

Trough of Disillusionment
Technology Trigger . o
gy Trigg .llll

e Downside of many tools:
o Creates obfuscation: encourages seeing as magic black boxes

o Less “standards”: difficult to translate between, understand results il Microsoft
Wl Azure

e Downside of large amounts of data: & Google Cloud
o Harder to “view”
o Training takes longer
o  More prone to errors: rounding; heterogeneity

Combat with:

e Understanding how it works (theory)
o When/where it works (applied; experience)
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What is Big Data?

N

data that will not fit
Lin main memory.

J/

traditional
raditiona - N

computer science data with a Jarge —

number of observations

and/or features.
\_

statistics

\

non-traditional sample size
(i.e. > 100 subjects); can't
analyze in stats tools (Excel). )

other fields




Figure 2: Sources of big data

Which of the following do you consider part of big data (regardless of whether your company uses each)?

What is Big Data? Industry view:

Large data files (20 terabytes or larger)
Advanced analytics or analysis

Data from visualization tools

Data from social networks

Unstructured data (e.g., video, open text, voice)
Geospatial/location information

Social media/monitoring/mapping

Telematics

Unstructured data/log files/free text

Source: Accenture Big Success with Big Data Survey, April 2014




@ THE WORLD BANK  (2016)

1.

What is Big Data? Government view:

IBRD « IDA | WORLD BANK GROUP n
®

Survey of SDG-related Big Data projects

Type of data source(s)

Mobile phone data

Satellite imagery data and geodata
Web data

Twitter data

Other social networks
Financial transaction data
Scanner data

Facebook data

Sensor data

Smart meter data

Health records

Ships identification data
Public transport usage data
Credit card data

o

5 10 15 20 25

* BigData ®

UN Global Working Group

* Mobile (23), Satellite imagery (20) and social media (12+12+8) are the most prominent sources




What is Big Data?

Short Answer:

Big Data = Data Mining = Predictive Analytics = Data Science (Leskovec et al., 2014)

This Class:

How to analyze data that is mostly Analyses only possible with a large
too large for main memory. number of observations or features.




What is Big Data?

Goal: Generalizations
A model or summarization of the data.

How to analyze data that is mostly
too large for main memory.

Analyses only possible with a large
number of observations or features.




What is Big Data?

Goal: Generalizations
A model or summarization of the data.

E.g

° summarizes web pages by a single number.

° Models the stock market
according to shifts in sentiment in Twitter.

° Summarizes millions of
pixels into clusters.

° Models presence of
diagnosis as a distribution (a summary) of linguistic patterns.

° Summarize billions of purchases

as items that frequently are bought together.



What is Big Data?

Goal: Generalizations
A model or summarization of the data.

1. Descriptive analytics
Describe (generalizes) the data itself

2. Predictive analytics
Create something generalizeable to new data




Preliminaries

ldeas and methods that will repeatedly appear:

e Bonferroni's Principle
e Normalization (TF.IDF)

e Hash functions
e |O Bounded (Secondary Storage)
e Unstructured Data

e Parallelism
e [unctional Programming



Statistical Limits. Goal: Generalization

Bonferroni's Principle
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Statistical Limits. Goal: Generalization

Bonferroni's Principle

Roughly, calculating the probability of any of n findings being
true requires n times the probability as testing for 1 finding.

https://xkcd.com/882/

In brief, one can only look for so many patterns (i.e. features)
In the data before one finds something just by chance
(i.e. finding something that does not generalize).

“Data mining” is a bad word in some communities!



Normalizing

Count data often need normalizing -- putting the numbers on
the same “scale”.

Prototypical example: TF.IDF of word i in document j:

Term Frequency: Inverse Document Frequency:
count;; . docs, 1
tfii = J idfi = loga(——") X G
maxy county; z docs,
tf.aidfi; = tfi; x idf; where docs is the number of documents

containing word /.



Normalizing

Count data often need normalizing -- putting the numbers on
the same “scale”.

Prototypical example: TF.IDF of word i in document j:

Term Frequency: Inverse Document Frequency:
count;; . docs, 1
tfii = J idfi =|loga(~—") X e
maxy county; z docs,
tf.aidfi; = tfi; x idf; where docs is the number of documents

containing word /.



Normalizing

Standardize: puts different sets of data (typically vectors or
random variables) on the same scale with the same center.

e Subtract the mean (i.e. “mean center”) —

L; — X

——
S —

e Divide by standard deviation ZZ

Sz



Hash Functions and Indexes

Review:
h: hash-key -> bucket-number
Objective: uniformly distribute hash-keys across buckets.

Example: storing word counts.
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Example: storing word counts.

h(word) = ( Z ascii(cha'r)) % #buckets

charcword



Hash Functions and Indexes

Review:
h: hash-key -> bucket-number
Obijective: uniformly distribute hash-keys across buckets.

Example: storing word counts.

h(word) = ( Z ascii(cha'r)) % #buckets

charcword

Data structures utilizing hash-tables (i.e. O(1) lookup; dictionaries, sets
in python) are a friend of big data algorithms! Review further if needed.




Hash Functions and Indexes

Review:
h: hash-key -> bucket-number
Objective: uniformly distribute hash-keys across buckets.

Example: storing word counts.

Database Indexes: Retrieve all records with a given
value. (also review if unfamiliar / forgot)

Data structures utilizing hash-tables (i.e. O(1) lookup; dictionaries, sets
in python) are a friend of big data algorithms! Review further if needed.




|O Bounded

Reading a word from disk versus main memory: 10° slower!

Reading many contiguously stored words
Is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

|O Bound: biggest performance bottleneck is reading / writing to disk.

(starts around 100 GBs; ~10 minutes just to read).



Data

Structured Unstructured

e Unstructured = requires processing to get what is of interest
e F[eature extraction used to turn unstructured into structured
e Near infinite amounts of potential features in unstructured data



Data

Structured Unstructured
mysql table email header satellite imagery images
vectors matrices facebook likes text (email body)

e Unstructured = requires processing to get what is of interest
e Feature extraction used to turn unstructured into structured
e Near infinite amounts of potential features in unstructured data



Streaming Algorithms




Motivation

One often does not know when a set of data will end.

Can not store

Not practical to access repeatedly

Rapidly arriving

Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize
the data?




Motivation

One often does not know when a set of data will end.

Can not store

Not practical to access repeatedly

Rapidly arriving

Does not make sense to ever “insert” into a database

Can not fit on disk but would like to generalize / summarize
the data?

Examples: Google search queries
Satellite imagery data
Text Messages, Status updates
Click Streams




Motivation

Often translate into O(N) algorithms.

4 )

‘ Process




We will cover the following algorithms:

e General Stream Processing Model
e Sampling

e Filtering data according to a criteria

e Counting Distinct Elements
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Standing Queries:
Stored and permanently executing.

"

B /Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams
RN




4 D

Process
for
stream queries

L

- h Ad-Hoc:
Standing Queries: One-time questions
Stored and permanently executing. -- must store expected parts /
summaries of streams

E.g. How would you handle:
What is the mean of values seen so far?




4 N

Process
for

stream queries
" J

—

Important difference from typical database management:

e Input is not controlled by system staff.

e |nput timing/rate is often unknown, controlled by users.

E.g. How would you handle:
What is the mean of values seen so far?
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Process
for

stream queries
" A J

v 4 -

gement:
Might hold a sliding window of

_ records instead of single record.
e Inputis

,Lhglf,e d cb,a

e |nput timing/rate olled by users.

E.g. How would you handle:
What is the mean of values seen so far?




General Stream Processing Model

(Leskovec et al., 2014)

4 )
Processor
,4,3,11,2,0,5,8,1,4 Output
Input stream (Generalization,
\_ v, Summarization)

stream of records
(also often referred to as “elements” or “tuples”)
Theoretically, could be anything! search queries, numbers, bits, image files, ...




General Stream Processing Model
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General Stream Processing Model

,4,3,11,2,0,5,8,1,4
Input stream

N~ —

ad-hociqueries

[

Processor

standing
queries

\

/

j> Output

(Generalization,
Summarlzatlon)

-- asked at all times.




General Stream Processing Model

N~ —

ad-hociqueries

4 )
Processor
...,4, 3,11,2, 0, 5, 8,1,4 _ Output
: . standing :||>
INput stream queries (Generalization,
\_ v, Summarlzatlon)
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(s ()




General Stream Processing Model

,4,3,11,2,0,5,8,1,4
Input stream

/

N~ —

ad-hociqueries

-

&

Processor

\

S " output

queries

limited
memory

@

\
. S

archival storage

‘\—//

(Generalization,
v, Summarlzatlon)

not suitable for
fast queries.




Sampling

Create a random sample for statistical analysis.

4 )
Process




Sampling

Create a random sample for statistical analysis.
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Sampling

Create a random sample for statistical analysis.

é )

X"

sometime in
limited . future____ | run statistical
memory analysis




Sampling

Create a random sample for statistical analysis.

Simple Solution: generate a random number for each arriving record




Sampling

Create a random sample for statistical analysis.
Simple Solution: generate a random number for each arriving record

record = stream.next()
if random() <= .05: #keep: true 5% of the time
memory.write(record)

random() < .057

N

limited
memory




Sampling

Create a random sample for statistical analysis.
Simple Solution: generate a random number for each arriving record

record = stream.next()
if random() <= .05: #keep: true 5% of the time
memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses

E.g. user_ids for searches, tweets; location_ids for satellite images

sometime in
limited . future____ | run statistical
memory analysis




Sampling

Create a random sample for statistical analysis.
Simple Solution: generate a random number for each arriving record

record = stream.next()
if random() <= perc: #keep: true perc’ks of the time
memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images
Solution: hash into N = 1/perc buckets; designate 1 bucket as “keep”.

if hash(record[ ‘user_id’]) == 1: #keep




Sampling

Create a random sample for statistical analysis.
Simple Solution: generate a random number for each arriving record

record = stream.next()
if random() <= perc: #keep: true perc’% of the time
memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images
Solution: hash into N = 1/perc buckets; designate 1 bucket as “keep”.

if hash(record[ ‘user_id’]) == 1: #keep

only need to store hash functions; may be part of standing query




Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
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Given:
|S| keys to filter; will be mapped to |B] bits
hashes = ht h, ..., h, independent hash functions




Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
|S| keys to filter; will be mapped to |B] bits
hashes = h, h,, ..., h,_independent hash functions
Algorithm:
set all B to ®© #B is a bit vector

for each i in hashes, for each s in S:
set B[h.(s)] = 1 #all bits resulting from




Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
|S| keys to filter; will be mapped to |B] bits
hashes==h1h2 ..., h, independent hash functions
Algorithm:
set all B to ®© #B is a bit vector
for each i in hashes, for each s in S:
set B[h.(s)] = 1 #all bits resulting from
... #usually embedded in other code
while key x arrives next in stream #filter:
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S




Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:
|S| keys to filter; will be mapped to |B] bits
hashes==h1h2 ..., h, independent hash functions
Algorithm:
set all B to ©
for each i in hashes, for each s in S:
set B[h.(s)] =1
... #usually embedded in other code
while key x arrives next in stream
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S




_ _ What is the probability of a false
Fllterlng Data positive?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:
|S| keys to filter; will be mapped to |B] bits
hashes==h1h? ..., h, independent hash functions
Algorithm:
set all B to ©
for each i in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S

(Leskovec et al., 2014)




_ _ What is the probability of a false
Fllterlng Data positive?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter ¢ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h, ..., h, independent hash functions = e are 0s

Algorithm:
set all B to ©
for each i in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S

(Leskovec et al., 2014)




_ _ What is the probability of a false
Fllterlng Data positive?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter ¢ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n
|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0
hashes = h, h,, ..., h_independent hash functions
Algorithm:

= 6'1

set all B to ©
for large n

for each i in hashes, for each s in S:
set B[h.(s)] =1
. #usually embedded in other code
while key x arrives next in stream
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S

(Leskovec et al., 2014)




_ _ What is the probability of a false
Fllterlng Data positive?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter ¢ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h,, ..., h, independent hash functions = e are 0s

Algorithm:

set all B to ©
for each i in hashes, for each s in S:

set B[h.(s)] =1 probability all k being 17?

thus, (1 - e9") are 1s

. #usually embedded in other code
while key x arrives next in stream
if B[h,(x)] == 1 for all 1 in hashes:
do as if x is in S
else: do as if x not in S

(Leskovec et al., 2014)




_ _ What is the probability of a false
Fllterlng Data positive?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter ¢ Analogy:

The Bloom Filter (approximates; allows FPs) Throw |S| * k darts at n targets.
Given: 1 dart: 1/n

|S| keys to filter; will be mapped to |B| bits d darts: (1 - 1/n)? = prob of 0

hashes = h, h, ..., h, independent hash functions = e are 0s

Algorithm:

set all B to ©
for each i in hashes, for each s in S:

set B[h.(s)] = 1 probability all k being 17?
' (1 - (Sl )k

thus, (1 - ") are 1s

. #usually embedded in other code
while key x arrives next in stream Nsize @ eeid) © e S

if B[h;(x)] == 1 for all 1 in hashes: continues as long as |B| has room
do as if x 1s in S (e.g. adding verified email addresses)

else: do as if x not in S

(Leskovec et al., 2014)




Counting Moments

Moments:

e Suppose m.is the count of distinct element i in the data

"
e The kth moment of the stream is Z i

1€ Set

e (Oth moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares
(measures uneveness; related to variance)




Counting Moments

Moments:

e Suppose m.is the count of distinct element i in the data
ok
o The kil Lo 2™

1ESet

Trivial: just increment
a counter

e (Oth mome _ ct elements
e 1st moment: length of stream
e 2nd moment: sum of squares
(measures uneveness; related to variance)




Applications \
Counting...
. distinct words in large document.
Counting Moments distinct websites (URLS).
users that visit a site.
unique queries to Alexa.

e 0th moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares

(measures uneveness; related to variance)




Applications \
Counting...
. distinct words in large document.
Counting Moments distinct websites (URLS).
users that visit a site.
unique queries to Alexa.

0th moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow

e 0th moment: count of distinct elements
e 1st moment: length of stream
e 2nd moment: sum of squares

(measures uneveness; related to variance)




Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
n -- suspected total number of elements observed
pick a hash, h, to map each element to log,n bits (buckets)

(measures uneveness; related to variance)




Counting Moments

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
n -- suspected total number of elements observed
pick a hash, h, to map each element to log,n bits (buckets)

R = @ #potential max number of zeros at tail

for each stream element, e:
r(e) = trailZeros(h(e) #num of trailing 6s from h(e)
R =r(e) if r[e] > R

(measures uneveness; related to variance)




Mathematical Intuition \
P(trailzZeros(h(e)) >=i) = 27
#P(h(e) ==__0) =.5; P(h(e) ==__00) =.25; ...
P( trailZeros(h(e)) <i) =1-2"
for m elements: = (1-27)"
0th moment P( one e has tailZeros >i)=1-(1-2")"
Streaming Solution: Flajolet-Martin ~ 1 - @M
General idea: If 28 >>m, then1-(1-27)"=0
n -- suspected total number of SEIPAREN NN @ 22 LA

Counting Moments

R = @ #potential max number of at tatil

for each stream element, e:
r(e) = trailZeros(h(e) #num trailing s from h(e)
R =r(e) if r[e] > R

estimated distinct _elements = 2R # m

(measures uneveness; related to variance)




Mathematical Intuition \
P(trailzZeros(h(e)) >=i) = 27
#P(h(e) ==__0) =.5; P(h(e) ==__00) =.25, ...
P( trailZeros(h(e)) <i) =1-2"

for m elements: = (1-27)"
0th moment P( one e has tailZeros >i)=1-(1-27)"
Streaming Solution: Flajolet-Martin ~ 1 - @M
General idea: If 28 >>m, then1-(1-27)"=0
n -- suspected total number of SEIPAREN NN @ 22 LS
pick a hash, h, to map each elemernitic

Counting Moments

R = @ #potential max number of Problem:

for each stream element, e: Unstable in practice.
r(e) = trailZeros(h(e) #num
R =r(e) if r[e] > R Solution:

Multiple hash functions
but how to combine?

(measures uneveness; related to variance)




Problem:
0th moment Unstable in practice.
Streaming Solution: Flajolet-Martin Algorithm
General idea: Solution: Multiple hash functions
ARSI oSl SR EIRVINTEIROREIEINENIN] 1. Partition into groups of size log n
pick a hash, h, to map each element to |G EEEVCR =R 8 groups
3. Take median of group means
Rs = 1list()
for h in hashes:
R = @ #potential max number of zeros at tail
for each stream element, e:
r(e) = trailZeros(h(e) #num of trailing ©s from h(e)
R =r(e) if r[e] > R
Rs.append(2®?)

groupRs = Rs[i:i+log n] for i in range(@, len(Rs), log n)

estimated distinct elements = median(map(mean, groupRs))




Problem:
Oth moment Unstable in practice.
Streaming Solution: Flajolet-Martin Algorith
General idea: Solution: Multiple hash functions
ARSI oSl SR ERVINTEIRIREIEINENIN] 1. Partition into groups of size log n
pick a hash, h, to map each element to |@ B PV CR N EE R Re [0 o5
b. Take median of group means
Rs = 1list()
for h in hashes:
R=06" ~~ns at tail
fo A good approach anytime one
has many “low resolution” .Ling 6s from h(e)
estimates of a true value.
Rs.appe..

groupRs = Rs[i:i+log n] for i in range(@, len(Rs), log n)

estimated distinct elements = median(map(mean, groupRs))




Counting Moments

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

e (Oth moment: count of distinct elements
e 1st moment: length of stream

e 2nd moment: sum of squares (measures uneveness related to variance)




Hadoop
and

MapReduce







|O Bounded

Reading a word from disk versus main memory: 10° slower!

Reading many contiguously stored words
Is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.




|O Bounded

Reading a word from disk versus main memory: 10° slower!

Reading many contiguously stored words
Is faster per word, but fast modern disks
still only reach 150MB/s for sequential reads.

|O Bound: biggest performance bottleneck is reading / writing to disk.

ctarts around 100 GB¢: ~10 minutes just to read
200 TB¢: ~20,000 minutes = 13 days




Classical Big Data Analysis

Classical focus: efficient use of disk.
e.g. Apache Lucene / Solr

Classical limitation: Still bounded when
needing to process all of a large file.




|O Bound

/'/ow to solve?




Distributed Architecture (Cluster)

Switch
~10Gbps

Ra(/ Raadk 2

Switch Switch
~1Gbps ~1Gbps




Distributed Architecture (Cluster)

In reality, modern setups often have multiple cpus and disks
per server, but we will model as if one machi
per cpu-disk pair.




Distributed Architecture (Cluster)

Switch
~10Gbps

Ra(/ Raadk 2

Switch Switch
~1Gbps ~1Gbps




Challenges for |O Cluster Computing

1. Nodes falil
1in 1000 nodes fail a day

Network is a bottleneck

Typically 1-10 Gb/s throughput

Traditional distributed programming is
often ad-hoc and complicated




Challenges for |O Cluster Computing

1. Nodes fail
1in 1000 nodes fail a day
Duplicate Data
Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than
data to nodes.
Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed




Challenges for |O Cluster Computing

1.

Nodes falil

1in 1000 nodes fail a day
Duplicate Data  _
Network is a bottleneck

Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than

——

MapReduce

|

data to nodes.

Traditional distributed programming is
often ad-hoc and complicated
Stipulate a programming system that
can easily be distributed

— Accomplishes




Distributed File System

The effectiveness of MapReduce is in part simply due to use
of a distributed filesystem!




Characteristics for Big Data Tasks

Large files (i.e. >100 GB to TBs)

Reads are most common

No need to update in place
append preferred)

) erver | Z81Z2/11/11 BB:52:22 |
| |

INFO | buserver 2BZ/11/711 BB52:32 | Ni
Q‘*? Add to Cart ] |

or 1-Click Checkout




Distributed File System

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)




“Hadoop” was named

Distributed File System after a toy elephant
belonging to Doug

(e.g. Apache HadoopDFS, GoogleFS, E Cutting’s son. Cutting
was one of Hadoop’s

C, D: Two different files creators.

hitps://opensource.com/life/14/8/intro-apac
he-hadoop-big-data

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)




Distributed File System

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)




Distributed File System

(e.g. Apache HadoopDFS, GoogleFS, EMRFS)

C, D: Two different files

chunk server 1 chunk server 2 chunk server 3 chunk server n

(Leskovec at al., 2014; http://www.mmds.org/)




Components of a Distributed File System

Chunk servers (on Data Nodes)
File is split into contiguous chunks
Typically each chunk is 16-64MB
Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks

(Leskovec at al., 2014; http://www.mmds.org/)




Components of a Distributed File System

Chunk servers (on Data Nodes)

File is split into contiguous chunks

Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)

Try to keep replicas in different racks
Name node (aka master node)

Stores metadata about where files are stored

Might be replicated or distributed across data nodes.
Client library for file access

Talks to master to find chunk servers

Connects directly to chunk servers to access data

(Leskovec at al., 2014; http://www.mmds.org/)




Challenges for |O Cluster Computing

1. Nodes falil
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)
Network is a bottleneck
Typically 1-10 Gb/s throughput
Bring computation to nodes, rather than data to nodes.
Traditional distributed programming is often ad-hoc and
complicated
Stipulate a programming system that can easily be distributed




What is MapReduce?

noun.1 - A style of programming
input chunks => map tasks | group by keys | reduce tasks => output

IS the linux “pipe” symbol: passes stdout from first process to stdin of next.

E.g. counting words:

tokenize(document) | sort | uniqg -c




What is MapReduce?

noun.1 - A style of programming

input chunks => map tasks | group by keys | reduce tasks => output
‘I is the linux “pipe” symbol: passes stdout from first process to stdin of next.
E.g. counting words:

tokenize(document) | sort | uniqg -c

noun.2 - A system that distributes MapReduce style programs across a
distributed file-system.

(e.g. Google’s internal “MapReduce” or apache.hadoop.mapreduce with hdfs)




What is MapReduce?

Keys with all
Key—value their values
pairs (K. [v.,w...])
(kv)

\

Combined
output

Reduce
tasks




What is MapReduce?

Key—value
pairs

(k.v)

Keys with all
their values
(k, [v, w,...])

\

extract what
you care
about.

line => (k, v)

Combined

- e
\ output




What is MapReduce?

Keys with all
Key—value their values
pairs (k, [v, w,..])

—_(kv)

sort and
shuffle

Combined
output

many (k, v) =>

extract what L 197 S -

you care
about.




What is MapReduce?

Key—value
pairs

(k.v)

\

Keys with all
their values

(k, [v,w...])

o e

extract what
you care
about.

sort and
shuffle

Combined
output

A

T\

aggregate,
summarize




What is MapReduce?

Input

Intermediate

key-value pairs key-value pairs

o

map

=

eskovec at al., 2014; http://www.mmds.org/)

Key-value groups

Output
key-value pairs

7reduce

reduce

=0




The Map Step

Input Intermediate
key-value pairs key-value pairs

4 I

(Leskovec at al., 2014; http://www.mmds.org/)




The Sort / Group By Step

Intermediate. Key-value groups
key-value pairs

eskovec at al., 2014; http://www.mmds.org/)




The Reduce Step

Output
Key-value groups key-value pairs

reduce

—

eskovec at al., 2014; http://www.mmds.org/)




What is MapReduce?

Input

Intermediate

key-value pairs key-value pairs

4 I

map

=

eskovec at al., 2014; http://www.mmds.org/)

Key-value groups

Output
key-value pairs

7reduce

reduce

=0




What is MapReduce?

Map: (k,v)-> (k', v))*
(Written by programmer)

Group by key: (k., v.'), (K, v,)), ... => (K7, (v, V', ..0),

27 2
(system handles) (K, (Vs Vi, o), .

Reduce: (K, (v, V', ...)) -> (K, V")’
(Written by programmer)




Example: Word Count

tokenize(document) | sort | unig -C




Example: Word Count

tokenize(document) | sort | unig -C

7 4

Map: extract
what you Reduce:

care about. aggregate,
summarize




Example: Word Count

The crew of the space
shuttle Endeavor recently
retumed to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache  partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Blg document (Leskovec at al., 2014; http://www.mmds.org/)




The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache  partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)
(of, 2)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)




The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers of
a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache  partnership.
"The work we're doing now
-- the robotics we're doing -
- is what we're going to

Big document

Provided by the
programmer

MAP:

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)
(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

Group by key:
Collect all pairs
with same key

(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)

(key, value)




Provided by the Provided by the
programmer programmer

MAP:
Read input and
produces a set of
key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

The crew of the space
shuttle Endeavor recently (The' 1) (crew, 1)

retumed to Earth as (crew, 1) (CI’EW, 1)
ambassadors, harbingers of

a new era of space (Of: 1) (Space: 1)
exploration. Scientists at -
NASA are saying that the (the' 1) (the' 1)

recent assembly of the (space, 1) (the, 1)

Dextre bot is the first step in
a long-term space-based (Sh uttl €, 1) (the, 1)

man/mache partpership. (Endeavo G 1) (Sh uttle ' 1)
"The work we're doing now

- the robotics we're doing - (recently, 1) (recently, 1)
- is what we're going to

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

Big document (key, value) (key, value) (key, value)




(Leskovec at al., 2014; Provided by the Provided by the
http://www.mmds.org/) programmer programmer

MAP:
Read input and

produces a set of
Chunks key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

The crew of the space
shuttle_Endeavor recently (The' 1) (crew, 1)

retumed to Earth as (CI’EW, 1) (CI'EW, 1)
ambassadors, harbingers of

a new era of space (Ofl 1) (Spacel 1)

exploration. Scientists at :
NASA are saying that the (thel 1) (the, 1)

recent assembly of the (space, 1) (the, 1)

Dextre bot is the first step in
a long-term space-based (Sh uttl €, 1) (the: 1)

man/mache partpershlp. (Endeavor’ 1) (sh uttle ' 1)
"The work we're doing now

- the robotics we're doing - (recently, 1) (recently, 1)
- is what we're going to

reads

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

sequential

Only

Big document (key, value) (key, value) (key, value)




Example: Word Count

@abstractmethod
def map(k, v):
pass

@abstractmethod
def reduce(k, vs):
pass




Example: Word Count (version 1)

def map(k, v):
for w in tokenize(v):
yield (w,1)

def reduce(k, vs):
return len(vs)




Example: Word Count (version 1)

def map(k, v): "def tokenize(s):

yield (w,1) |

def reduce(k, vs):
return len(vs)

#simple version
return s.split(€ ¢)




Example: Word Count (version 2)

def map(k, v):
counts = dict()
for w in tokenize(v):
try:
counts[w] += 1
except KeyError:
counts[w] =1
for item in counts.iteritems():
yield item

— counts each word within the chunk
(try/except is faster than
“if w in counts”)

def reduce(k, vs): sum of counts from different chunks
return sum(vs)




Challenges for |O Cluster Computing

1. Nodes falil
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)
Network is a bottleneck
Typically 1-10 Gb/s throughput (Sort & Shuffle)
Bring computation to nodes, rather than data to nodes.
Traditional distributed programming is often ad-hoc and
complicated
Stipulate a programming system that can easily be distributed




Challenges for |O Cluster Computing

1. Nodes falil
1in 1000 nodes fail a day
Duplicate Data (Distributed FS)

2. Network is a bottleneck
Typically 1-10 Gb/s throughput (Sort & Shuffle)
Bring computation to nodes, rather than data to nodes.

3. Traditional distributed programming is often ad-hoc and
complicated (Simply requires Mapper and Reducer)
Stipulate a programming system that can easily be distributed




Example: Relational Algebra

Select

Project

Union, Intersection, Difference
Natural Join

Grouping




Example: Relational Algebra

Project

Union, Intersection, Difference

Grouping




Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true




Example: Relational Algebra

R(A1,A2,A3,...), Relation R, Attributes A,

return only those attribute tuples where condition C is true

def map(k, v): #v is list of attribute tuples
for t in v:
if t satisfies C:
yield (t, t)

def reduce(k, vs):
For each v in vs:
yield (k, v)




Example: Relational Algebra

Given R, and R, return Rjom -- union of all pairs of tuples
that match given attributes.




Example: Relational Algebra

Given R, and R, return Rjom -- union of all pairs of tuples
that match given attributes.

def map(k, v): #k \in {R1, R2}, v is (R,=(A, B), R=(B, C));B are matched
attributes
if k=="”R1”:
(a, b) = v
yield (b,(RLa))
if k=="R2”:
(b,c) = v
yield (b,(Rch))




Example: Relational Algebra

Given R, and R, return Rjoin -- union of all pairs of tuples
that match given attributes.

def map(k, v): #k \in {R1, R2}, v is (R,=(A, B), R,=(B, C));B are matched
attributes
if k=="R1”: def reduce(k, vs):

(aJ b) =V rl, r2 = []J []
- yield (b,(R, a)) for (S, Xx) in vs: #separate rs
1t k=="R2”: if S == rl: rl.append(x)

(b,c) = v else: r2.append(x)

yield (b, (R, c)) . .

2, for a in ri1: #join as tuple
for each ¢ in r2:
yield (RanJ (a, k, c)) #k is




Data Flow

Input |Big document

MAP:

Read input and
produces a set of
key-value pairs

Intermediate | kl:v kl:vk2:v

Group by key:

Collect all pairs with
same key
(Hash merge, Shuffle,
Sort, Partition)

Grouped |kl:v,v,v,v [k2:v |k3:v,v | kd:v,v,v

Reduce:
Collect all values
belonging to the

key and output

Output

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org




Data Flow: In Parallel

”
Map Task | r Map Task 2 r Map Task 3

© 0010 010 ¢

klwv klwv k2w k3:v k4w k4w k5;v kv klwv k3w

Partitioning Function Partitioning Function Partitioning Function

Sort and Group Sort and Group
kd v, vy klvvyvy | k3wvy

XX

Reduce Task 1

(Leskovec at al., 2014; http://www.mmds.org/)




Data Flow: In Parallel

”
Map Task | r Map Task 2 r Map Task 3

=i s s s oo

klwv klwv k2w kv 3w kdw dv k5w kv klwv k3w

Fd

/

|

i

|

| Partitioning Function Partitioning Function Partitioning Function
’

hash

Sort and Group Sort and Group
kd:v v klvvyvy | k3wvy

Programmed é C,;) é

Reduce Task 1

(Leskovec at al., 2014; http://www.mmds.org/)




Data Flow

DFS => Map => Map’s Local FS => Reduce => DFS




Data Flow

MapReduce system handles:

e Partitioning
e Scheduling map / reducer execution

Group by key

Restarts from node failures

Inter-machine communication




Data Flow

DFS =) MapReduce =) DFS

e Schedule map tasks near physical storage of chunk
e Intermediate results stored locally

e Master / Name Node coordinates




Data Flow

DFS =) MapReduce =) DFS

e Schedule map tasks near physical storage of chunk
e Intermediate results stored locally

e Master / Name Node coordinates

o Task status: idle, in-progress, complete
o Receives location of intermediate results and schedules with reducer
o Checks nodes for failures and restarts when necessary

m All map tasks on nodes must be completely restarted

m Reduce tasks can pickup with reduce task failed




Data Flow

DFS =) MapReduce C—)DFS

e Schedule map tasks near physical storage of chunk
e |ntermediate results stored locally

e Master / Name Node coordinates

o Task status: idle, in-progress, complete
o Receives location of intermediate results and schedules with reducer
o Checks nodes for failures and restarts when necessary

m All map tasks on nodes must be completely restarted

m Reduce tasks can pickup with reduce task failed

DFS [=> MapReduce C=) DFS [=> MapReduce =) DFS




Data Flow

Skew: The degree to which certain tasks end up taking much
longer than others.

Handled with:

e More reducers than reduce tasks
e More reduce tasks than nodes




Data Flow

Key Question: How many Map and Reduce jobe?




Data Flow

Key Question: How many Map and Reduce jobe?

M: map tasks, R: reducer tasks
A: If possible, one chunk per map task

and M >> |nodes| == |cores|

(better handling of node failures, better load balancing)

R<M
(reduces number of parts stored in DFS)




Data Flow

version 1: few reduce tasks
same number of reduce tasks as nodes)

fime *
Reduce tasks represented by

time to complete task
(some tasks take much longer)

Reduce Task




Data Flow

version 1: few reduce tasks
same number of reduce tasks as nodes)

fime *
Reduce tasks represented by

time to complete task
(some tasks take much longer)

Reduce Task

version 2: more reduce tasks
(more reduce tasks than nodes)

=

time
Reduce tasks represented by

time to complete task
(some tasks take much longer)




Data Flow

version 1: few reduce tasks
same number of reduce tasks as nodes)

fime *
Reduce tasks represented by

time to complete task
(some tasks take much longer)

Reduce Task

version 2: more reduce tasks
(more reduce tasks than nodes)

"I Last task
BRIl

completed

=

time
Reduce tasks represented by

_ 1)

time

time to complete task (the last task now complete

(some tasks take much longer)

much earlier )




Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving (key, value) pairs




Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

(2) Communication: Moving (key, value) pairs

Ultimate Goal: wall-clock Time.




Communication Cost Model

How to assess performance?

(1) Computation: Map + Reduce + System Tasks

Mappers and reducers often single pass O(n) within node
System: sort the keys is usually most expensive

Even if map executes on same node, disk read usually
dominates

In any case, can add more nodes




Communication Cost Model

How to assess performance?

(2) Communication: Moving key, value pairs

Often dominates computation.
e Connection speeds: 1-10 gigabits per sec;
HD read: 50-150 gigabytes per sec
e Even reading from disk to memory typically takes longer than
operating on the data.




Communication Cost Model

How to assess performance?

Communication Cost = input size +
(sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.
e Connection speeds: 1-10 gigabits per sec;
HD read: 50-150 gigabytes per sec
e Even reading from disk to memory typically takes longer than
operating on the data.




Communication Cost Model

How to assess performance?

Communication Cost = input size +
(sum of size of all map-to-reducer files)

(2) Communication: Moving key, value pairs

Often dominates computation.
Connection speeds: 1-10 gigabits per sec;
HD read: 50-150 gigabytes per sec
Even reading from disk to memory typically takes longer than
operating on the data.
Output from reducer ignored because it's either small (finished
summarizing data) or being passed to another mapreduce job.




Example: Natural Join

R, S: Relations (Tables) R(A, B) x S(B, C)

Communication Cost = input size +
(sum of size of all map-to-reducer files)

DFSDXMap E)LocalFS EYNetwork EyReduce EYDFSE) ?




Example: Natural Join

R, S: Relations (Tables) R(A, B) x S(B, C)

Communication Cost = input size +
(sum of size of all map-to-reducer files)

def reduce(k, vs):
rl, r2 =[], []
def map(k, v): for (rel, x) in vs: #separate rs
if k=="R1”; if rel == ‘R’: ril.append(x)
(?: b) = v else: r2.append(x)
yield (b, (R, a)) for a in r1: #join as tuple

if k=="R2”: .
(b,c) = v for each ¢ in r2:

yield (b, (R, c)) yield (R, ., (a, k, c)) #k 1is




Example: Natural Join

R, S: Relations (Tables) R(A, B) x S(B, C)

Communication Cost = input size +
(sum of size of all map-to-reducer files)

= [R1[ +|R2[ + (|R1] + [R2])
def reduce(k, vs):
= O(IR7] +|R2)) rl, r2 = [1, []
def map(k, v): for (rel, x) in vs: #separate rs
if k=="R17: if rel == ‘R’: rl.append(x)
(?: b) = v else: r2.append(x)
yield (b, (R, a)) for a in rl: #join as tuple

if k=="R2”: .
(b,c) = v for each ¢ in r2:

yield (b, (R, c)) yield (R,..., (a, k, c)) #k is




Last Notes: Further Considerations for MapReduce

e Performance Refinements:
o Backup tasks (aka speculative tasks)
m Schedule multiple copies of tasks when close to the end to mitigate
certain nodes running slow.

o Combiners (like word count version 2 but done via reduce)
m Run reduce right after map from same node before passing to
reduce
m Reduces communication cost

o Override partition hash function
E.qg. instead of hash(url) use hash(hostname(url))




Spark



Situations where MapReduce is
not efficient

DFSE> Map I::>Loc:aIFS E> Network':> Reduce E>DFSE> Map E>



Situations where

MapReduce Is not efficient

Long pipelines sharing data
Interactive applications
Streaming applications

lterative algorithms (optimization problems)

DFSC)Map B)LocalFS E)Network BYReduce C)DFSE) Map B ...

(Anytime where MapReduce would need to write and read from disk a lot).



Situations where
MapReduce Is not efficient

e Long pipelines sharing data

e [nteractive applications

e Streaming applications

e |[terative algorithms (optimization problems)

DFESC)Map Ef)ﬁ_ocaIFS]E:)Network COReduce Map O ...

(Anytime where MapReduce would need to write and read from disk a lot).




Spark’s Big ldeo

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other
dataset(s).



Spark’s Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other
dataset(s).

) 4
RDD1

dfs:// Create RDD :

filename

(DATA)

N - /




Spark’s Big ldeo

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other

dataseft(s).

)

dfs://
flename

-

-~

RDD1

(DATA)

transformationl()

RDD2

created from
Qfs://filenamy

(DATA)




Spark’s Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other
dataset(s).

S s R s A s
RDD1 RDD2 RDD3
transformation?2()
dfs:// (can drop
(st i Jpv—
created from transformationl transformation2

g ) Qfs://filenamy Qrom RDD1 ) Qrom RDD?2




Spark’s Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only
partitioned collection of records (like a DFS) but with a record

of how the dataset was created as combination of
transformations from other dataset(s).

e Enables rebuilding datasets on the fly.
e Intermediate datasets not stored on disk
(and only in memory if needed and enough space)

—> Faster communication and | O



The Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other

dataset(s). / \
A

“Stable Storage” Other RDDs



The Big ldeo

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the

dataset was created as combination of transformations from other
dataset(s).

N o

map filter join



Spark’s Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only partitioned
collection of records (like a DFS) but with a record of how the
dataset was created as combination of transformations from other
dataseft(s).

S s B s p 4
RDD1 RDD2 RDD3
: transformation2()
Qfs.// (DATA)
filename
created from transformationl transformation2

; Qfs://filenamy Qrom RDD1 ) Kfrom RDD2




Spark’s Big ldea

Resilient Distributed Datasets (RDDs) -- Read-only

partitioned collection of records (like a DFS) but with a record

-~

of how the dataset was created as combination of RbD4

- N
transformations from other dataset(s). &L oam
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Spark’s Big Idea

Resilient Distributed Datasets (RDDs) -- Read-only

partitioned collection of records (like a DFS) but with a record

-~

of how the dataset was created as combination of Rbbs
- N
transformations from other dataset(s). & al oA
\@’5\ transformation3
O from RDD2
\@& N /
4 RDD1 A 4 RDD2 A 4 RDD3
, transformation2()
dfs:// (will recreate
filgname g . data) (DATA)
created from transformationl transformation2
\ ) Qfs://filenamy Qrom RDD1 ) Qrom RDD2




Original Transformations:

RDD to RDD

)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

reduceByKey(f : (V,V)=V)
Transformations union()
)

)

)

)

)

)

~

cogroup
crossProduct

mapValues(f : V =W

sort(c : Comparator[K
partitionBy(p : Partitioner[K

e

RDD[T] = RDD|[U]

RDD|[T] = RDDI|T]

RDD[T] = RDD[U]

RDDI[T] = RDD|T] (Deterministic sampling)
RDDI[(K, V)] = RDD[(K, Seq[V])]

RDD[(K, V)] = RDD|(K, V)]

(RDD[T],RDDI[T]) = RDD|T]

(RDD[(K, V)],RDDI[(K, W)]) = RDD[(K, (V, W))]
(RDD[(K, V)],RDD[(K, W)]) = RDDI(K, (Seq[V], Seq[W]))]
(RDD[T],RDD[U]) = RDDI(T, U)]

RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
RDDI[(K, V)] = RDD|(K, V)]

RDD[(K, V)] = RDD|(K, V)]

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica. “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.”. NSDI 2012. April 2012.



http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Original Transformatlons RDD to RDD

Transformations

/u

map(f: T = 1)
filter(f : T = Bool)

flatMap(f : T = Seq[U

cogroup(

crossProduct(

mapValues(f : V=W
sort(c : Comparator[K]
partitionBy(p : Partitioner[K]

)
)
)
o
itizle M join()
)
)
)
)
)

RDD|T] = RDD[U]

RDD[T] = RDD|T]

RDD[T] = RDD[U]

RDDI[T] = RDDIT] (Deterministic sampling)
RDDI[(K, V)] = RDDI(K, Seq[V])]

RDDI[(K, V)] = RDD|(K, V)]

(RDD[T],RDDI[T]) = RDDIT]

(RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
(RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
(RDD[T],RDD[U]) = RDD[(T, U)]

RDDI[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
RDDI[(K, V)] = RDD|(K, V)]

RDDI[(K, V)] = RDD[(K, V)]

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica. “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.”. NSDI 2012. April 2012.



http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
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Original Transformations:

RDD 1o RDD

)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()
reduceByKey(f: (V,V) = V)
Transformations union()
)

)

)

)

)

)

—~

cogroup
crossProduct(

mapValues(f : V =W

sort(c : Comparator|
partitionBy(p : Partitioner[

RDDI[T] = WU]

RDD[T] = RDDI[T]

RDD[T] = RDD[U]

RDDI[T] = RDDIT] (Deterministic sampling)
RDD[(K, V)] = RDDI[(K, Seq[V])]

RDD[(K, V)] = RDD|[(K, V)]

(RDD[T],RDDI[T]) = RDD|T]

(RDDI[(K, V)],RDD[(K, W)]) == RDD[(K, (V, W))]
(RDD[(K, V)],RDD[(K, W)]) = RDDI(K, (Seq[V], Seq[W]))]
(RDD[T],RDD[U]) = RDDI(T, U)]

RDD[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
RDDI[(K, V)] = RDDI(K, V)]

RDD[(K, V)] = RDD|(K, V)]

viate Fable-2u Eranstormations.and:actions.available om RIXDs inSpark . Segl Tl-denotes a sequence of elements:ofstypedl.

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.”. NSDI 2012. April 2012.
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http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Original Transformations:

RDD to RDD

Transformations

map(f: T = U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()
reduceByKey(f : (V,V) = V)
union|()

join()

cogroup()

crossProduct()

mapValues(f : V= W)
sort(c : Comparator[K])
partitionBy(p : Partitioner[K])

RDD|T] = WU]

RDD|T] = RDDI|T]

RDDI[T] = RDD[U]

RDD[T] = RDD|T] (Deterministic sampling)
RDDI[(K, V)] = RDDI[(K, Seq[V])]

RDD[(K, V)] = RDDI[(K, V)]

(RDD[T],RDD[T]) = RDDIT]

(RDDI[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
(RDDI[(K, V)],RDD[(K, W)]) = RDDI[(K, (Seq[V], Seq[W]))]
(RDD[T],RDD[U]) = RDD[(T, U)]

RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
RDDI[(K, V)] = RDDI[(K, V)]

RDD|[(K, V)] = RDDI[(K, V)]

Original Actions: RDDto Value, Object, or Storage

Actions

count()

collect()

reduce(f : (T,T) = T)
lookup(k : K)
save(path : String)

RDD[T] = jussem

RDDI[T] = Seq|T]

RDD[T] =T

RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica. “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.”. NSDI 2012. April 2012.
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An Example

Count errors in a log file:

TYPE

MESSAGE TIME

{ lines J

i filter.(_.startsWith("ERROR?"))

{ errors J
i count()

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, lon Stoica.

NSDI 2012. April 2012.
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An Example

Count errors in a log file:

TYPE MESSAGE TIME L iines }
¢ filter.(_.startsWith("ERROR?"))
L errors }
Pseudocode: i count()

lines = sc.textFile(“dfs:...”) errors =
lines.filter(_.startswith(“ERROR”)) errors.count



http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

oA BRI [ e

TYPE MESSAGE TIME ¢ filter.(_.startsWith(“ERROR”))
L errors }
Pseudocode: i

lines = sc.textFile(“dfs:...”) errors =
lines.filter(_.startswith(“ERROR”)) errors.persist
errors-count



http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

An Example

Collect times of hdfs-related errors
{ lines }

TYPE MESSAGE TIME i filter.(_.startsWith(“ERROR”))
{ errors }

Pseudocode:

l filter.(_.contains(“HDFS”))

lines = sc.textFile(“dfs:...”) errors = { (HDFS errors) 1
lines.filter(_.startswith(“ERROR”)) errors.persist

errors-count errors.filter(_.contains(“HDFS”))



http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

An Example

Collect times of hdfs-related errors

TYPE MESSAGE TIME { lines }
¢ filter.(_.startsWith(‘ERROR”))
{ errors }
Pseudocode: l filter.(_.contains(“"HDFS”))
lines = sc.textFile(“dfs:...”) errors = { (HDFS errors) }

lines.filter(_.startswith(“ERROR”)) errors.persist oy
errors-eount errors.filter(_.contains(“HDFS”)) i map.(_.split(\t)(3))

.map(_split("\t’)(3)) : :
.collect() { (time fields) }

i collect()


http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

An Example

Collect times of hdfs-related errors

TYPE MESSAGE TIME { lines }
¢ filter.(_.startsWith(“ERROR”))
L errors }
Pseudocode: l filter.(_.contains(“"HDFS”))
lines = sc.textFile(“dfs:...”) errors = L (H DFS errors) }
lines.filter(_.startswith(“ERROR”)) errors.persist V(3
errors-count errors.filter(_.contains(“HDFS”)) i (L SN
.map(_split(‘\t")(3)) . .
collect() L (time fields) }

i collect()

Functional Programming


http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

Driver Program

sc=new SparkConte
rDD=sc.textfile(“hdfs://.>
rDD.filter(...) \1 Cluster
rDD.Cache SparkContext

rDD.Count 8 e

rDD.map

Executer
Task

Writes

Datanode Datanode

User (Developer)

Gupta, Manish. Lightening Fast Big Data Analytics using Apache Spark. UniCom 2014.
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An Example
Word Count

Scala;

val textFile =
sc.textFile("hdfs://...")

val counts = textFile
flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

L textFile }
i flatMap(split(* “))
L (words) }

l map.((word, 1))
L tuples of (word, 1) }
i reduceByKey.(_ + )

L tuples of (word, count) }

i saveAsTextFile


http://spark.apache.org/examples.html

An Example _ texFile

Word Count i flatMap(split(* “))
L (words) }
Python: l map.((word, 1))
textFile = sc.textFile("hdfs://...") counts = L tuples of (word, 1) 1
textFile :
flatMap(lambda line: line.split(" ")) i reduceByKey.(_ + )
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b:a + b) L tuples of (word, count) 1
counts.saveAsTextFile("hdfs://...")

i saveAsTextFile


http://spark.apache.org/examples.html

Lazy Evaluation

Spark waits to load data and execute transformations until necessary -- lazy
Spark tries to complete actions as immediately as possible -- eager

Why?

e Only executes what is necessary to achieve action.

e Can optimize the complete chain of operations to reduce communication



Lazy Evaluation

Spark waits to load data and execute transformations until necessary -- lazy
Spark tries to complete actions as quickly as possible -- eager

Why?
e Only executes what is necessary to achieve action.
e Can optimize the complete chain of operations to reduce communication
e.g.
rdd.map(lambda r: r[1]*r[3]).take(5) #only executes map for five records

rdd.filter(lambda r: “ERROR” in r[0]).map(lambda r: r[1]*r[3])
#only passes through the data once



Broadcast Variables

Read-only objects can be shared across all nodes.
Broadcast variable is a wrapper: access object with .value

J Python:

filterWords = [‘one’, ‘two’, ‘three’, ‘four’, ...] fwBC =
sc.broadcast(set(filterWords))




Broadcast Variables

Read-only objects can be shared across all nodes.
Broadcast variable is a wrapper: access object with .value

Python:

filterWords = [‘one’, ‘two’, ‘three’, ‘four’, ...] fwBC =
sc.broadcast(set(filterWords))

textFile = sc.textFile("hdfs:...") counts =
textFile
.map(lambda line: line.split(" "))
filter(lambda words: len(set(words) and word in fwBC.value) > 0)
flatMap(lambda word: (word, 1))
.reduceByKey(lambda a, b:a + b)
counts.saveAsTextFile("hdfs:...")




Accumulators

Write-only objects that keep a running aggregation
Default Accumulator assumes sum function

initialValue =0

sumAcc = sc.accumulator(initialValue)
rdd.foreach(lambda i: sumAcc.add(i))
print(sumAcc.value)




Accumulators

Write-only objects that keep a running aggregation
Default Accumulator assumes sum function

Custom Accumulator: Inherit (AccumulatorParam) as class and override methods

initialValue =0
sumAcc = sc.accumulator(initialValue)
rdd.foreeach(lambda i sumAcc.add(i))

print(minAcc.value)

class MinAccum(AccumulatorParam):
def zero(self, zeroValue = np.inf):#overwrite this

return zeroValue
def addInPlace(self, v1, v2):#overwrite this
return min(vl, v2)
minAcc = sc.accumulator(np.inf, minAccum())
rdd.foreeach(lambda i minAcc.add(i))
print(minAcc.value)




Spark Overview

RDD provides full recovery by backing up transformations from stable storage
rather than backing up the data itself.

RDDs, which are immutable, can be stored in memory and thus are often
much faster.

Functional programming is used to define transformation and actions on
RDDs.



Spark Overview

e RDD provides full recovery by backing up transformations from stable storage
rather than backing up the data itself.

e RDDs, which are immutable, can be stored in memory and thus are often
much faster.

e [Functional programming is used to define transformation and actions on
RDDs.

e Still need Hadoop (or some DFS) to hold original or resulting data efficiently
and reliably.

e Lazy evaluation enables optimizing chain of operations.

e Memory across Spark cluster should be large enough to hold entire dataset to
fully leverage speed.

o MapReduce may still be more cost-effective for very large data that does not fit in memory.



Big Data
and

Scientific Applications




Why Social Scientific Applications?

Applications that make a difference in the world.

Often public data available.

Experience working toward an objective and/or using data to
answer guestions.




Development

Science Science

Data Social
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Language Says A Lot About People

extraversion --
\ ) sociable, assertive,

- active, energetic,
talkative, outgoing

(N J

Words and Phrases

19M Facebook posts 75,000 personality surveys

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski,
M., Stillwell, D., Seligman, M. E. P, & Ungar, L. H. (2013). Personality, Gender, and Age in the Language of

Social Media: The Open-Vocabulary Approach. In PLOS ONE 8(9).
Does language use reflect who we are?
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extraversion --
\ | ns | g h tS sociable, assertive,
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talkative, outgoing

Words and Phrases

19M Facebook posts 75,000 personality surveys




Language Says A Lot About People

_ extraversion --
\ Predict? sociable, assertive,

active, energetic,
talkative, outgoing

Words and Phrases

19M Facebook posts 75,000 personality surveys

“Language-based Assessments”




p

Language use patterns

I am blessed to spend so
much time with my family.

Need some help!

4

Research
Participants

Human Language Encoding

SOmeoneelse

somebody

p

-

States and Traits

affective valence
depression

anxiety personality

mood

\

4

Language-based
Assessments

regression
classification
deep learning




Language-Based Assessment Evaluation
Predictive Accuracy

Openness

Conscientioushess

Extraversion

Agreeableness

Neuroticism

46

correlation with questionnaire




Language-Based Assessment Evaluation
Predictive Accuracy

language
Openness [rs
language

Conscientiousness b
friend

, language
Extraversion &
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Agreeableness [l
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language

Neuroticism B
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correlation with questionnaire




Characterizing Gratitude
Other OUtCOmeS? Personality (Carpenteretal.,, 20169)

) . . (Schwartz et al., 2013;
Life Satisfaction Park et al., 2015)

(Schwartz et al., 2013; 2016)
Emotion / Affect
Mental Health (Preotiuc-Pietro et al., 2016) DemOgraphiCS
(Schwartz et al., 2013; (Sap et al., 2014)

Coppersmith et al., 2014; .
Eichstaedt et al., 2018) Dar_k T_rlad
(Preotiuc-Pietro et al., 2016)

Temporal Orientation
(Schwartz et al., 2015)

Spiritual/Religious Outcomes
(Yaden et al., 2016, 2017)

Meaning in Life
i (Schwartz et al., 2016)
Causal Explanations

(Son et al., 2018) Trustfulness
COntrOI (Buffone et al., 2018)

(Rouhizadeh et al., 2018)




Characterizing Gratitude
Depth ? Personality (Carpenter et al., 2016)

) . . (Schwartz et al., 2013;
Life Satisfaction Park et al., 2015)

(Schwartz et al., 2013; 2016)

Emotion / Affect

Mental Health (Preotiuc-Pietro et al., 2016) Demographics

(Schwartz et al., 2013; (Sap et al., 2014)

Coppersmith et al., 2014, .
Eichstaedt et al., 2018) Dar_k T_rlad
(Preotiuc-Pietro et al., 2016)

Temporal Orientation

Spiritual/Religious Outcomes (Schwartz et al., 2015)

(Yaden et al., 2016, 2017)

Meaning in Life
] (Schwartz et al., 2016)
Causal Explanations

(Son et al., 2018) Trustfulness

COntrOl (Buffone et al., 2018)
(Rouhizadeh et al., 2018)




Twitter Predicts Heart Disease

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Only Twitter

All Predictors (except Twitter)
Income and Education
Smoking

Diabetes

Hypertension

Obesity

%Black

%Female

%Married

%Hispanic

]

I

0 0.1

Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)

Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G Ungar, L. H., & Seligman, M. E. (2015). Psychological Language on Twitter Predicts
County-Level Heart Disease Mortality. Psychological Science 26(2), 159-169
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1. Diseases of heart 6. Alzheimer’s disease 11. Septicemia
2. Malignant neoplasms (cancers) 7. Diabetes melitus 12. Liver Disease

3. Chronic lower respiratory 8. Kidney Diseases 13. Hypertension

A Cerebrovascular diseases 9. Influenga & Pneumonia 14. Parkinson’s
10. Intentional self-harm 15. Pneumonitus

trok
(strokes) (suicide)

5. Accidents, unintentional

TOP 15 Causes of Death, 2013




1. Diseases of heart 6. Alzheimer’s disease 11. Septicemia
2. Malignant neoplasms (cancers) 7. Diabetes melitus 12. Liver Disease

3. Chronic lower respiratory 8. Kidney Diseases 13. Hypertension
9. Influenza & Pneumonia 14. Parkinson’s

10. Intentional self-harm 15. Pneumonitus
(suicide)

4. Cerebrovascular diseases
(strokes)

5. Accidents, unintentional

= No Controls ~ mDemographics  m Socioeconomics B Demographics +Socioeconomics

w+  p<0.001
¥ p<0.01
*  p<0.001

Nsptic Rlver Bhypat 14Pakin 15pneu




How can your project make an impact?

Development

Data Social

Science

O

Science




The End
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