

FACULTY NAME	:	DR.K.GEETHA
DESIGNATION	:	GUEST LECTURER
DEPARTMENT	:	SCHOOL OF COMPUTER SCIENCE, ENGINEERING AND
		APPLICATIONS
CLASS	:	M.C.A
SEMESTER	:	Ш
SUBJECT	:	MANAGEMENT INFORMATION SYSTEM
SUBJECT CODE	:	MCA24205

1. MEANING OF MIS

1.1. Understanding the keywords

• Management, Information, and Systems

What is Management?

- Planning, control, and administration of an organization.
- Management is generally hierarchical:
 - Top managers handle planning;
 - Mid career managers control;
 - And, junior managers administer.

What is Information?

- Processed data to support management functions
- Processing record, summarize, store, and retrieve.
- Present in the required reporting format.

What is a System? (in the context of MIS)

- An inputs processing output and feedback matrix.
- Supports the processing of data into information.

1.2. Objectives of MIS

- MIS processes data to support the management functions.
- MIS manages information system (IS) productively:
- Competitive advantage created from using information maximally:
 - Capturing Data collects the relevant data.
 - Processing Data transforms data into information.
 - Information Storage store the information securely.
 - Information Retrieval easy retrieval by authorized users.
 - Information Propagation nonstop access and updating.

1.3. Pillars of MIS

- Long-term planning perspective.
- Respect of an organization's dynamics and structure.
- Comprehensiveness and interconnectivity.
- Hierarchical and wholly participatory
- Supports all levels of management decisions:
 - strategic, operational and tactical.
- Highlights problems and exceptional situations.
- Driven by Information technology (IT).
- Computer-based Hardware, software, and telecom.

1.4. Information Vs Data

- Raw facts representing events.
- Organized and arranged in standard formats.
- Arranged to ease understanding and use.
- Rendered to support decision making.

1.5. The Knowledge Organization

- Organizational structures changing rapidly.
 - From hierarchical to flattened structures.
 - From centralized to decentralized management.
 - From rigid to flexible arrangements.
- Intra and inter firm businesses easier.
- Location and size no longer matters.
- Costumer preferences is venerated.
- Organizations and the managers continue learning.
- Competencies increasingly important.
- Flow of information to all stakeholders is important.

1.5. The Knowledge Organization

- Intangible assets become key measures of wealth:
 - Securities, proprietary knowledge, brand, etc.;
 - Intellectual capital, innovation, unique business model;
 - Credit cards, goodwill, cultural advantages
- Travels and tours, package delivery, etc., are valuable.
- Sound IT competencies a key success factor.
- Qualitative information vital for success.
- 1.6. What Is an Information System (IS)?
- A unified data and knowledge (soft) infrastructure.
- Collect/retrieve, process, store, and dispense information.
- Supports decision making and control.

1.6.1. Uses of IS in the Organization

- Facilitates analysis of problems;
- Provides deep insight into complex subjects;
- Supports creation of new products.

1.6.2. Components of IS

- input, processing, and output, and a feedback system
 - Input captures or collects raw data
 - Processing converts raw input into a meaningful form.
 - Output transfers the processed information the users.
- The feedback is output returned by the users.
- Feedbacks supports evaluation at the input stage.

1.6.2. Components of IS

- An IS focuses on the organization and its environment.
- IS captures all the stakeholders customers, suppliers, etc.
- Regulatory agencies also interact in the IS of firms.
- Technically, IS are IT-based information systems.

1.6.2.1. Computers vs IS

- Computers store and process information.
- Computers are only part of an IS.
- Computer programs, or software, support processing.
- Software are sets of operating instructions.
- Knowing how computer programs work is vital.

1.6.3. Business information value chain

- For a firm, IS supports the business information value chain.
- IS adds value by providing problem-solving knowledge.
- The key domains of IS:
 - Organizational;
 - Management;
 - Technological.
- But IS has to fit into the organization's culture.
- IS cannot replace creativity of the manager.

2. GENERAL PRINCIPLES OF MIS

2.1. What is MIS?

- MIS supports Management with information for:
 - Operations –
 - Administration –
 - Decision making –
- The foundation of MIS is databases.
- Today's MIS is a computerized processing system.
- MIS differ from other ISs because:
 - MIS is used to analyze information
 - MIS also facilitates strategic and operational activities.

2.1.1. Primary Components of MIS?

- The five primary components of MIS are:
 - 1. Hardware
 - 2. Software
 - 3. Data (information for decision making),
 - 4. Procedures (design, development and documentation),
 - 5. People (individuals, groups, or organizations).
- Raw facts representing events.
- Data is organized in standard formats or databases
- Databases ease understanding and use.
- MIS is founded on databases.

2.2. Evolution of MIS

- At first, MIS treated data and reported at regular intervals.
- Later, data was distinguished from information;
 - o data being a raw material and,
 - \circ information the finished product.
- MIS had to present information in formats that:
 - create impact on its user;
 - And, provokes a decision or an investigation.
- The concept of exception reporting makes MIS more impactful
 - Data is rendered accessible to authorized parties.
 - But processed further to suit the needs of different users.
 - Data is one, but viewed in different ways.

2.2.1. The Concept of End-User Computing

- End users work with multiple databases.
- This decentralized the MIS.
- End users became independent of computer professionals.
- Then the MIS became a decision making system.

2.2.2. The Modern Concept of MIS

- Handles the databases,
- Provides computing facilities to the end user,
- gives decision making tools to the users,
- And connects firms to organizations.
- MIS is concerned with how to use information.

2.2.2. The Modern Concept of MIS

- Information is generated through data analysis.
- Data analyses relies on many academic disciplines.
 - Management, Psychology, Human Behavior, Engineering etc.
- Thus making MIS more effective and useful.
- MIS is founded on the systems theory.
- Offers solutions input output flow challenges.
- Using theories of communication.
- An input Process Output systems without noise.
- Ensures flow of information from a source to a destination.
- A blend of Management, Information and IT System.

2.3. History of MIS

- MIS growth agrees with growth of computing technology:
 - 1. Mainframe and minicomputer computing;
 - 2. Personal computers;
 - 3. Client/server networks;
 - 4. Enterprise computing;
 - 5. And, Cloud computing.

Phase 1 - Mainframe and minicomputer computing

- Ruled by IBM and their mainframe computers.
- Mainframe computers were quite large.
- Required teams to run them.

2.3. History of MIS

Phase 2: Personal Computers

- Personal computers (PCs) became popular in 1965.
- Microprocessors replaced mainframes and minicomputers.
- This accelerated the decentralizing computing power.
- Large data centers were replaced with smaller offices.
- By late 1970s PCs make computing cheaper.
- Low cost computers became mass market commodities.
- More individuals were computing with PCs.

2.3. History of MIS

Phase 3: Client/Server

- Computers were linked to servers.
- Servers share information via a common network access.
- Data sets became accessible to many simultaneously.

Phase 4: Enterprise Computing

- High speed networks became popular.
- Firms could integrate all aspects of the activities.
- MIS linking all aspects of a firm's activities was created.
- Using computers became an important skill for all persons.

2.3. History of MIS

Phase 5: Cloud Computing

- This (the latest) employs networking technology extensively.
- Applications and data storage are delivered to users.
- This is independent of configuration, location or hardware.
- High speed cell phone and Wi-Fi networks are also delivered.
- Managers use the MIS remotely via any networked device.
- This has increased the possibility of having multiple jobs.

2.4. Physical view of MIS

- MIS has sub-systems for:
 - Data collection;
 - Transaction processing and validating;
 - Processing;
 - Analyzes and storing of information in databases.
- The subsystem can be at the micro or macro-levels.
- MIS is dynamic and subject to change.
- Changes occur from internal management process.
- Changes emanate also from the external environment.

3. THE ROLE OF MIS IN AN ORGANIZATION

- MIS in an organization is akin to the heart in the body.
- The information is the blood and MIS is the heart.

Support to sub-systems

- MIS works through a variety of systems, such as;
 - Query Systems,
 - Analysis Systems,
 - Modeling Systems,
 - And, Decision Support Systems.

Support for Long term (Strategic) Planning

- MIS helps long term planning in several ways, including;
 - Strategic Planning and Management Control,
 - Operational Control and Transaction Processing.

Support for Transaction Processing

- Answers queries on the data relating to transactions;
 - the status of a particular record,
 - and, references on a variety of documents.
- Helps the junior management personnel by;
 - providing the operational data for planning,
 - scheduling and control,
 - supports decision making at the operations level,
 - and, corrects an out of control situation.

Support for Short Term Planning

- Helps the mid career managers in the following;
 - short them planning,
 - target setting and
 - and, controlling the business functions.
- Helps the top managers in the following;
 - goal setting,
 - strategic planning and
 - evolving the business plans
 - and, the business plan implementation.
- Supports information generation and communication.
- Aids problem identification and sound decision making.

3.1. MIS in Public Sector Organizations (PSOs)

- PSOs are increasingly inundated with data and information.
- PSOs need IS to support its various activities.

3.1.1. Centralized Vs. Decentralized PISs

- PISs need to cover eight main areas of responsibility:
 - information systems planning;
 - organizational structures and staffing;
 - data management;
 - computing and data management architecture;
 - information systems development;
 - information technology acquisition;
 - training, and technical support.

3.1.1. Centralized Vs. Decentralized PISs

- A centralized PIS may be efficiency, but difficult to manage.
- A decentralized PIS spreads the tasks, but may be wasteful.
- A mix of central and local action is considered most effective.

3.1.2. MIS and Public Sector Accountability

- The broad set of accountabilities in PSOs include:
 - Managerial accountability;
 - Political accountability;
 - And, Financial accountability

4. CONTENT, DESIGN AND PERFORMANCE OF MIS

4.1. Types of Information

- There are four main types of information, namely;
 - Descriptive information,
 - diagnostic information,
 - predictive information, and
 - prescriptive information.

4.1.1. Descriptive information

- It tries to answer the question, what is happening?
- It covers such information as:
 - Financial results and maintenance records;
 - And, Production records, product marketing, and test results.

4. Content, Design and Performance of MIS .. 1

4.1.1. Descriptive information

- Can help to secure other needed types of information.
- Not enough for identifying and solving management problems.

4.1.2. Diagnostic information

- Seeks to answer the question what is wrong?
- Can be used to define problems that develop in the business.
- Can find an how to solve the problem (including doing nothing).
- "What is" and "what ought to be" should be viewed together.

4.1.3. Predictive information

- Seeks to answer the question what would happen if..
- Generated from an analysis of possible future events.

4. Content, Design and Performance of MIS .. 2

4.1.3. Predictive information

- Is exceedingly valuable with "desirable" outcomes.
- Manager use predictive information to reduce risk and uncertainty.
- Predictive models include;
 - budgeting techniques,
 - simulation models,
 - and other tools that measure expected changes in the business.

4.1.4. Prescriptive information

- Seeks to answer the question- What should be done?
- Not adequate for decision making.
- Used with the goals and values of the manger for decision making.

4. Content, Design and Performance of MIS .. 3 4.1.5. Classes of Information *Organizational information*

- Information required sub-units of an organization.
- The same information may serve different uses.
- Often stored in database for the users.

Functional information

- Used by the functional heads for administrative functioning.
- Often function-specific, each unit can have its own.
- Largely factual, statically focusing on specific task details.
- Assessable by unit objectives, work design and responsibility.

4. Content, Design and Performance of MIS .. 4

4.1.5. Classes of Information

Knowledge information

- Compels the manager to think, decide and act.
- Highlights the deviation norms and abnormal variations.
- Supports the function of middle and top management.
- Often presented graphically for quick grasp, E.g.:
 - Students population may be declining;
 - Or, market demand is falling.

Decision-support information

- Justifies a change or amendment of the existing decisions.
- E.g., inspection report, demand forecast, etc.
- Can be sourced internally and externally

4. Content, Design and Performance of MIS .. 5 4.1.5. Classes of Information *Operational information*

- Required by operators and Junior managers.
- Helps decisions that affect operations.
- Determined internally, through the transaction processing.
- Largely of short time span and focuses on the current status.

4.1.6. Determining Information Requirement

- Asking & interviewing using mainly closed ended questions.
- Using expert testimonies
- Experiences from past decisions and problem solving.

4. Content, Design and Performance of MIS .. 6

4.2. Data Modeling

- The data model determines what data in the database.
- It explores the relation between data entities.
- It represents the required data accurately.

4.2.1. Databases

- Databases are now necessary in nearly all fields.
- Collection of structured, interrelated data sets rendered accessible.
- A set of application programs to update and manage the system.
- Three key requirements of good databases:
 - Reliability broad analysis in robustness, concurrency and security.
 - Efficiency high speed and pliability to new requirements.
 - Renewability ease of adaptability to software progression.

4. Content, Design and Performance of MIS .. 7 4.3. Designing MIS

- Consider a typical University in Buea or elsewhere.
- Huge volumes of data have to be collected, analyzed and used.
- Personal record of staff and students;
- Courses registration by programs and by students.
- Examination records students' grades by CA and exams.
- Financial records accounts, payroll, and students' fee records, etc.
- E.g. it should be possible to do the following:
 - Assign courses by student, program, and level.
 - Determine students' class eligibility by fee, pre-requisite courses.
 - Determine class attendance by lecturers/students.

4. Content, Design and Performance of MIS .. 8 4.3. Designing MIS

- Prepare results/transcripts by semester and end of program.
- Produce payroll records and monthly pay slips.
- Prepare periodic statement of accounts
- Produce tax and social insurance records
- Other records as are needed internally and externally.
- These require complex data sets and fixing many reports.

4.3.1. Database Schemes

• Three database schemes - *Physical, Conceptual, and view levels.*

Physical level – having to do with the storage and retrieval.

• This is the back end that is hidden from users.

4. Content, Design and Performance of MIS .. 9

4.3.1. Database Schemes

Conceptual level

- Having to do with the content and how the system is networked.
- This is handled by the database administrator *View level*
- Viewed by the different sets of users simultaneously
- Viewed in different ways and for different purposes.

4.3.2. Data Models

- Conceptual tools to describe data relations, data constraints and data semantics.
- There are object-based, record-based and physical data models.

4. Content, Design and Performance of MIS .. 10

- 4.3.2. Data Models
- Object-based models:
 - Related to the conceptual and view levels,
 - provides flexible structuring capabilities,
 - and specifies data constraints explicitly.
- Record-based models:
 - Focuses on the conceptual and view levels.
 - Used mainly for databases with fixed record structure.
 - With fixed sizes of the fields of the records.
- Physical data models:
 - focuses on the physical level.
 - Data model should remain fixed when the physical level changes.
4. Content, Design and Performance of MIS .. 11

4.3.3. Standard terminology in Database Management

Data Definition Language (DDL)

- Used to describe the structure, relations, constraints of databases.
- The compiled DDL statements are called the *data directory*.

Data Manipulation Language (DML)

- Used to select and modify (insert, update, delete) the database.
- In nonprocedural DMLs the user only specifies what data is needed,
- In *procedural* DMLs the way it should be retrieved is pedetermined.

Database Manager

- This application connects the users to the database.
- The application enforces most requirements of the database.

4. Content, Design and Performance of MIS .. 12

4.3.3. Standard terminology in Database Management

Database Administrator

- The expert directing the Database.
- Defines database schemes and the storage structure.
- Specifies the access methods, entry rules and integrity constraints

Database Users

- Expert users interact with the system via DML calls.
- Naive users interact with the system via application programs.
- *File manager -r*esponsible for storage low size data and retrieval.
- Database manager See above.
- Query processor Translates a query language into low-level instructions.
- DDL compiler Converts DDL statements into database metadata.

4. Content, Design and Performance of MIS .. 13

4.3.3. Standard terminology in Database Management

- Query processor Translates a query language into low-level instructions.
- **DDL compiler -** Converts DDL statements into database metadata.
- Data file Store the data themselves.
- Data directory Stores information about the structure of the database.
- *Indices -* Accelerate data retrieval from the database.

4.3.4. Data Collection Techniques

- Surveys field data collected via a questionnaire.
- Desk review data collected from records.
- Objective measures or tests data collected during an experiment.
- Interviews data collected using a series of pre-conceived questions.

4. Content, Design and Performance of MIS .. 14 4.4. Challenges of Dealing Databases

- Data redundancy and inconsistency:
 - An information should not be generated at different points.
 - The data set be updated consistently.
- Data integrity:
 - Data stored should fulfills certain prescribed constraints.
 - The system should adapt readily to change of the constraints.
 - The system should recover from crashes with little difficulty.
- Data access:
 - The system should generate answers to queries;
 - Supports efficient data retrieval by indexing, hashing, etc.

4. Content, Design and Performance of MIS .. 15 4.4. Challenges of Dealing Databases

- Data isolation:
 - Receives different types and magnitudes of data;
 - like text documents, numerical data, photos, etc.
- Concurrency:
 - supports simultaneous use without deadlocks.
 - Consistency of the data despite multiple use.
- Security:
 - Has access rights for users and safety of database.

5. BUSINESS PROCESS INTEGRATION

5.1. Enterprise Systems (ES)

- ES are packaged enterprise application software (PEAS) systems.
- ESs have process orientation *including*:
 - Enterprise resource planning (ERP);
 - Customer Relationship Management (CRM),
 - Supply Chain Management (SCM).
- The distinction between ES and IS:
 - ES refers to software, whereas an IS a social system that uses IT.
 - An IS includes people and IT.

5.2. Supply chain management (SCM)

- The management of a network of interconnected businesses.
- Network involved in the provision of products and services.

5.2. Supply chain management (SCM)

- The end-points of SCM are the end-customers.
- SCM spans all movement and storage of the following:
 - Raw materials,
 - work-in-process inventory,
 - and finished goods
- The supply chain is from the origin to point of consumption.
- More firms now need supply chains to connect global markets.

5.2.1. Traditional SCM

- Traditionally, firms focuses on the inputs and outputs processes.
- With little concern for how other individual players worked.
- But linkages within the supply chain network is growing.

5.3. Developments in SCM

- Six major eras are observable in the evolution of SCM studies:
 - Creation, Integration, and Globalization;
 - And, specialization Phases One and Two, and SCM 2.0.

a. Creation Era

- SCM was used by a US industry consultant in the early 1980s.
- But the notion of a supply chain existed since the early 20th century.
- The early focus was in manufacturing assembly line.

b. Integration Era

- The development of Electronic Data Interchange (EDI) systems.
- The introduction of Enterprise Resource Planning (ERP) systems.
- increasing value-adding and cost reductions through integration.

5.3. Developments in SCM

c. Globalization Era

- Although the use of global sources in SCM is traceable to the 1940s.
- However, by late 1980s more firms were integrate globally.
- The goal is to increase competitive advantage, through:
- Value addition;
- And, reducing costs through global sourcing.
- d. Specialization Era
- d.1. Phase One: Outsourced Manufacturing and Distribution
- Companies abandoned vertical integration,
- Many firms close non-core operations,
- Outsourcing is preferred to having diverse support units.

- **5.3. Developments in SCM**
- d. Specialization Era
- d.2. Phase Two: SCM as a Service
- Specialization within the supply chain led to the growth of:
 - Transportation brokerages,
 - Warehouse management,
 - And, non-asset-based carriers
- SCM goes beyond transportation and logistics.
- SCM increasingly involves the following:
 - supply planning,
 - collaboration,
 - execution and performance management.

- **5.3. Developments in SCM**
- d. Specialization Era
- d.2. Phase Two: SCM as a Service
- Specialization improves overall competencies;
- Just as outsourced manufacturing and distribution has done.
- Firms are able to use supply chain expertise without developing them.
- This reduced cost significantly
- And, has made supply chain specialization very popular.
- e. Supply Chain Management 2.0 (SCM 2.0)
- Web 2.0 is characterized by the use of the World Wide Web.
- This has led to more creativity, information sharing, and partnerships.

5.3. Developments in SCM

e. Supply Chain Management 2.0 (SCM 2.0)

- Organizations have delivery options that produces speedy results.
- The speed of supply chain increases due to global competition.
- Short product life cycles and expanded specialization.

5.4. Supply Chain Business Process Integration

- Change from managing individual functions to supply chain processes.
- Collaborative work between buyers and suppliers,
- Joint product development,
- Common systems and shared information.
- Integrated supply chain requires a continuous information flow.
- Dominance of a process approach to the business.

5.4. Supply Chain Business Process Integration

- Change from managing individual functions to supply chain processes.
- Collaborative work between buyers and suppliers,
- Joint product development,
- Common systems and shared information.
- Integrated supply chain requires a continuous information flow.
- Dominance of a process approach to the business.

5.5. Aspects of SCM

Customer relationship managementODemand managementOReturns managementOManufacturing flow managementO

Customer service management Order fulfillment Product development and commercialization Supplier relationship management

5.5. 1. Customer Relationship Management (CRM)

- The link between the organization and its customers.
- Building customer relationships:
 - Set equally satisfying goals for organization and customers;
 - Establish and maintain customer rapport;
 - Produce positive feelings for organization and the customers
- CRM uses technology to manage business processes.
- Especially in sales, marketing, customer service, and technical support.
- Aims to find and retain clients.
- Reduce the costs of marketing and client service.
- Effective CRM promotes synergy and profitability, and reduces costs.

5. SUPPLY CHAIN MANAGEMENT

5.1. Meaning of Supply Chain Management (SCM)

• SCM is the systemic coordination of business functions.

5.1.1. Traditional Definition in Manufacturing

- SCM meant managing movement and storage of:
 - Raw materials,
 - Work-in-progress inventory,
 - And, finished goods.
- More specifically, it involved managing:
- Networks of interconnected smaller business units;
- Networks of activities from production to final sales.

5. Supply Chain Management ... 1

5.1.2. Globalization of SCM

- SCM increasingly concerned with the following:
 - Adding value through management of supply chain activities;
 - Building a competitive information infrastructure;
 - Leveraging worldwide logistics;
 - Synchronizing supply with demand;
 - And, measuring performance globally.
- Current SCM systems consist of the following:
 - Operations management;
 - Logistics and procurement;
 - Information technology;
 - And, integrated business operations

5. Supply Chain Management .. 2

5.1.2. Objectives of SCM

- Precisely predict demand and forecast production to match it.
- Streamline production and improve information flow.
- Improve customer satisfaction.

5.1.3. Features of SCM

- Integrated Behavior.
- Mutually sharing information
- Mutually sharing channel and risk and rewards.
- Focus on serving customers.
- Co-operation to build and maintain long term relationships.
- Integration of process

5. Supply Chain Management .. 3

5.1.2. Scope of SCM

- Supply management
- Sales force management
- Inventory management
- Payment management
- **Channel management**
- **Financial management**
- Distribution management

6. PREPARING AN MIS

6.1. Developing a Sound MIS

- MIS developers must communicate effectively with intended users.
- The required management processes and IT systems need to be synchronized.
- The information needs should be integrated into a single integrated system.
- Pre-MIS development training to cope with the associated complexities of MIS.

6.1.1. Dealing with Security and ethical Issues

- Information system should be defended against the following:
 - Unauthorized access and use;
 - Disclosure, disruption and modification;
 - Perusal, inspection, recording or destruction.

6. Preparing an MIS .. 1

6.1.1. Dealing with Security and ethical Issues

There are two major aspects of information system security:

- Security of the IT used preventing cyber-attacks.
- Security of data protecting the data with an off-site backup.

Guaranteeing information security has the following key aspects:

- Preventing unauthorized access to the information.
- Ensuring the accuracy and consistency of data over its entire life-cycle.
- Ensuring the available of information in all situations.
- Ensuring genuine data, transactions, communications.
- Incorporation of authentication features for integrity of transactions.
- Ensuring 'non-repudiation' of transactions.

6. Preparing an MIS .. 2

6.2. Prototypes vs Life cycle Systems

Prototypes

- Often new MIS are designed as prototypes of existing one.
- The designer can merely improve upon an existing one.

Life Cycle

- Many MIS have clear starting and ending steps.
- The input, resources, contents and formats are specified.
- Such systems can be developed in a systematic manner.
- E.g., accounting systems, payroll etc...

6. Preparing an MIS .. 3

6.2. Prototypes vs Life Cycle Systems

S/N	Prototype Approach	Life Cycle approach
1	Open system with certainty information	Closed system with certainty of information
2	Uncertainty breeds instability.	The system design is stable due to certainty
3	Designer uses incomplete information.	Designer often has the needed information.
4	Some experimentation is necessary.	Experimentation may not be necessary.
5	Information needs not pre- determined	Information needs determined.
6	It is Custom oriented system.	Governed by principles and practice.

7.MANAGEMENT DECISION MAKING

- Business decisions aim to achieve the objective in the given environment.
- It has to selected consciously from an array of options.
- Generally business decisions should be:
 - Chronological taken into account the past.
 - Situation specific address specified situations.
 - Personal values reflective reflect personal values of the decision maker.
 - Risk and trade off consideration take into account possible risks.
 - Sensitive to prevailing conditions fit the institutional setting and business environment.
- Sound decision making requires creativity, ingenuity, and foresight.

7.1. Rational Decision making

- A rational decision seeks to achieve the desired goal productively.
 - E.g., seek to employed after graduation

7.1.1. Types of rationality

- Objective rationality maximizing the value of the objective.
- Subjective rationality maximizing the value of what is strongly perceived.
- Conscious rationality maximizing what the decision maker is conscious of.
- Organizational rationality maximizing organizational values.
- Personal rationality maximizing personal goals.

7.2. Challenges of rational decision-making

- Problem identification determining the main problem.
- Insufficient knowledge it is difficult to have complete information.
- Spontaneity most decisions may be taken based on impulse and not by reasoning.
- Broad inclusion others may not share the rational decision.

7.3. The decision making process

- Step 1: Identify the problem diagnose the problem and the possibilities.
- Step 2: Analyze the problem situate the problem by scope, context and impact.
- Step 3: Collecting relevant data identify causal factors, Intelligence gathering.
- Step 4: Determine alternative solution identify other possibilities.
- Step 5: Select the best solution decide on the appropriate option.

7.3. The decision making process

- Step 6: Convert decisions into actions develop and implement action plans.
- Step 7: Ensure feedback measure performance with indicators.

7.4. Decision-Making systems

- Two possible systems of decision making closed and open systems.
 - Closed decision making manager has a ready model for decision making.
 - Open decision making manager has to decide on a model.

7.5. The Law of requisite variety

- For efficient programed decision making, the manager has to provide:
 - The possible decision alternatives and choices in each state.
 - The decision rules to justify the selected option.
 - The process by which the decision choice was reached.

7.6. Methods of decision making

• Search processes to take decisions that satisfy set goals.

7.6.1.Optimization techniques

- Generally these optimize goals subject to constraints.
- Examples are operations research, programming, inventory models, etc.

7.6.2. Decision tree analysis

- Used in selecting a set of sequence decisions pictorially.
- Decisions points are represented by square node;
- And, outcomes are represented by solid or hollow circle.
- Decision nodes are where a choice exists between the alternatives.
- Managerial decision are based on the calculations of returns expected.

7.6.2. Decision tree analysis

- Outcome nodes where the events depend on some probability.
- Decision trees are evaluated from right to left;
- Working back from the later decisions to the first.

7.7.Organizational decision making

- Individuals influence the management process differently.
- Managing conflicts is important in organizational decision making.

7.7.1. Dealing with uncertainty

- The decision with highest probability and minimum profit is selected.
- E.g., 95% chance of low earning is preferred 10% chance high earning.
- Decisions can be taken trade off uncertainty for certainty.

7.7. Development of MIS

- MIS should be flexible, interactive and progressive.
- MIS has to be responsive to changing information needs.
- This makes planning vital for MIS development.

Architecture of MIS

• The sub-systems, their relationships and functionality.

System development schedule

• Development steps against the timescale of the system development.

Hardware and software plan

- Selecting the appropriate hardware and software for the MIS.
 - Should fit the organization's strategic plan.
 - Should match the execution schedule of the business plan.

8. IMPLEMENTATION OF MIS

8.1. Sound MIS Implementation Requirements

- The system satisfies the information needs of the user.
- The system offers the required services to the users.
- The demands of users are respected.
- Improves decision making capability.
- In addition:
 - Unleash unfreezing potentials i.e., MIS inspire acceptance of innovations.
 - Choosing potentials MIS allows users to execute their functions.
 - Refreezing potentials MIS is able to accept change and restore equilibrium.

8.1.1.Factors responsible for success of MIS

- Expediency MIS serves the organization's development needs.
- Appropriate technology MIS adopts the most cost pliable IT system.
- Productivity data processing needs of the users are met effectively.
- MIS does not give the perfect information.

8.1.2. Factors responsible for success of MIS

- Operational feasibility design of the MIS is operationally feasible.
- Goal oriented intended result known and failures explainable.
- Focused information processing executed without noise.
- Human sensitive Put up human aspects of the management process.
- User friendly usable with very minimal learning.
- Need oriented Serve the organization's information needs.
- 8.1.3. Why MIS Fail
- Poor conception MIS often mistaken for a database system.
- Incompleteness under identification of the information needs.
- Poor quality control quality requirements not respected.
- Poor administration and usage deviation in system specification.

8.2. Choice of Information Technology

- IT type is selected from an array options based on the following:
 - communication capability,
 - data sharing potency,
 - affordability,
 - availability and the people to run are critical.
- Future needs can also affect IT choice.
- There are 3 types of IT decision:
 - Operational decisions.
 - Execution and control decisions.
 - Strategic decision.
- Front end system takes care of operations management.
- Back office manages strategic, control and operational planning.

8.3. Business Operations

- Business operations can define information needs.
- Information needs differ among businesses.
- The needs of some are easier than others.
- The operational feasibility is needed in each case.

8.3.1. Configuration design

The details of IT are based on the following features:

- Data type numeric, word, image, voice, etc.
- Data volumes hard-disk, zip devices, floppy disk, etc.
- Storage capacity based on processing needs of the system.
- Input/output operation sets the control and speed of I/O processing.

8.3.1. Configuration design

- Data sharing storage capacity of the databases is appropriate.
- Process speed memory processing architect decides the CPU.
- Communication protocol shows how the different platforms are linked.
- Interface and gateways determine data transfer on various location.
- Security and integrity determined by operating system's configuration.
- Languages and packages determined hardware-software choice.

8.4. IT Selection Plan

- Site preparation IT installation may need space:
 - Server rooms, demo room, laboratories.
- System development plan equipment procured and staff trained.
- IT installation schedule timing for powering up the MIS has to be determined.

8.4. IT Selection Plan

- Training of users users often need training on various IT facilities.
- Investment plan cost-benefit analysis of the IT plan required.
- Choice of IT system should be guided by the following:
 - Scalable architecture,
 - Upgradeable software,
 - Open system,
 - Communication through gateways and interfaces
- 8.5. IT Evaluation
- It is evaluated in the following dimension:
8. Implementation of MIS .. 6

a. Technical Evaluation

- Testing the technical details:
 - Data transfer, responses, connectivity, hardware platform.
- Testing reliability, security, dependability.

b. Operational Evaluation

- Checking people related issues, such as:
 - Whether system procedure is complementary and conducive.
 - The capacity of the operators
 - And, readiness of the operators to accept change.

c. Financial Evaluation

- Checking the value of information it gives,
- And, the relative cost of the comparable alternatives.

8.1. Features of DSS

- DSS diagnoses problems and proposes possible system re-design.
- Undertakes sensitivity analysis on aspects of the problem.
- DSS supports but does not by itself generate decisions.

8.1.1. Attributes of Decision Support System

- Flexibility supports easy and speedy decisions.
- Simplicity uses simplified models of decision making.
- Database: The decision supports the database.

8.1.2. Types of Decision Support System

Status inquiry systems - The decisions and solution is unique relation.

8.1.2. Types of Decision Support System

- Data analysis systems processes vary as the problem.
- Information analysis systems engages basically in data analysis.
- Accounting systems process financial data for control and decision.
- *Model based systems* Simulation or optimization models:
 - Often one time or infrequent situations.
 - Provide general operational guidelines.
 - E.g., product mix decision, material mix, job scheduling rules;
 - Resources or asset or facilities planning systems.

8.2. Design of DSSs

- Developed by the users and system analysts jointly.
- DSSs are multi-faceted use principles from various disciplines.

9.3.Deterministic Systems

- Deterministic systems are DSSs structured as business models.
- a. Behavioral models
- Used to understand relationship among variables.
- Supports understanding of behavioral relationships.
- E.g., a regression model.
- **b.** Management science models
- Management systems turned to DSS models.
- E.g., budgetary systems, cost accounting systems;
- Inventory models, and production management models.

- **9.3.Deterministic Systems**
- c. Operations Research (OR) Models
- OR models are mathematical models.
- OR models address optimization problems –
- E.g., profit optimization and cost reduction.
- Maximizes an objective subject to constraints.
- Optimizing inventory allocation and management.
- d. Artificial Intelligence (AI) System
- Al is Intelligence supported by knowledge and reasoning.
- Al stored in databases for future use.

9.3. Deterministic Systems

d. Artificial Intelligence (AI) System

- Al system falls into three basic categories:
 - Expert systems knowledge based;
 - Natural Language (Native languages) Systems;
 - And, Perception System (vision, speech, touch);
- Al is a software technique applied to the nonnumeric data.
- The data is presented in symbols, statements, and patterns.
- Al uses the following for problem solving:
 - symbolic processing,
 - social and scientific reasoning,
 - Conceptual modeling.

9.3.Deterministic Systems

e. Knowledge Based Expert System (KBES)

Knowledge based problem solving approach considers:

- The specific constraints within a domain,
- Checks the solution options within a knowledge domain,
- And an option with reference to a goal.
- Articulates the problem characteristics.
- A mix of theory and application of the subject;
- Organized information on the problem;
- Ability to generate solution options.
- Critical composites of KBES
 - knowledge base, inference and use control mechanisms.

9.3. Deterministic Systems

e.1. Semantic networks

- A network of nodes connected by arcs.
- Node represents an entity, and the arc the association with meaning.

e.2. Frames

- An organized data structure of knowledge.
- A frame can be related to other frames.
- A frame consists of the slots representing a part of the knowledge.
- The slot is expressed as data, information, process and rules.

e.3. Rules

- A conditional outcome that occur under certain conditions.
- Some rules are in the form of 'If Then' statements.

9.3.Deterministic Systems

e.4. Rules

- E.g., If it rains, then the streets will be wet.
- If a knife is blunt, then it cannot cut well.

e.5. Inference mechanism

- Based on the principle of reasoning.
- Goal driven reasoning is called Backward Chaining to goal.
- Data driven reasoning it is called Forward Chaining to goal.
- Selecting either backward or forward chaining is situation specific.
- Backward chaining is solving a problem after the event.
- Forward chaining is preventing a problem or breakdown.
- The KBES uses both the methods of reasoning.

9.4. MIS and the Role of DSS

- The DSS could be an internal part of the MIS
- DSS can be embedded or kept out of the MIS:
- DSS embedded in MIS for internally sourced information.
- DSS kept out of MIS when information is sourced internally and externally.