
UNIT –III

HISTORY OFANDROID

In October 2003, Android Inc was founded in Palo Alto, California and its four founders were

Rich Miner, Nick Sears, Chris White, and Andy Rubin. In 2005, Android was acquired by

Google. Rubin stayed at Google as head of the Android team until 2013.

The logo for the Android OS was created by Irina Blok while she was employed by Google.

Versions of Android along with their names

CUPCAKE

DONUT

ÉCLAIR

FROYO

GINGERBREAD

HONEYCOMB

ICECREAMSANDWICH

JELLYBEAN

KITKAT

LOLLIPOP

MARSHMALLOW

NOUGAT

OREO

PIE

ANDROID1.5

ANDROID1.6

ANDROID2.0-2.1

ANDROID2.2

ANDROID2.3

ANDROID3.0

ANDROID4.0

ANDROID4.1-4.3

ANDROID4.4

ANDROID5.0

ANDROID6.0

ANDROID7.0

ANDROID8.0

ANDROID9.0

ANDROID10 Q

Android Q will allow users to control apps’ access to their phone’s Photos and Videos or the Audio collections
via new runtime permissions.

INTRODUCTION TO ANDROID

In 2007, Apple launched the first iPhone and ushered in a new era in mobile computing. In Sept. 2008, the very

first Android smartphone was announced, the T-Mobile G1 went on sale in the U.S. Oct. of that year.

Android 1.0 OS inside integrated a number of the company’s other products and services, including Google

Maps, YouTube, and an HTML browser (pre-Chrome) that, of course, used Google’s search services. It also had

the first version of Android Market, the app store with ―dozensof unique, first-of-a-kind Android applications.‖

The first version of the OS (1.0) released in Sept. 2008 did not have a code name at all. However, it reportedly

used the internal name ―Petitfour‖while it was in development at Google. The name refers to a French dessert.

Android has come a long way from its humble beginnings, as the

product of a small start up, all the way to becoming the leading

mobile operating system worldwide. Google’s introduction of Project

Treble in Android Oreo should make it easier for phone makers to

update their devices faster.

One challenge for Android device owners that has been an issue for

the OS ever since it launched is updating it with the latest security

patches, for major feature updates. Google’s supported Nexus and

Pixel devices consistently receive regular monthly security updates,

and the latest version of the OS.

OPERATING SYSTEMS

Different OS run on different types of hardware and are designed for different types of applications. For

example, iOS is designed for iPhones and iPad tablets, while Mac desktops and laptops use macOS.

Mobile Application Development Page | 10

https://newsroom.t-mobile.com/news-and-blogs/t-mobile-unveils-the-t-mobile-g1-the-first-phone-powered-by-android.htm
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html

MICROSOFT WINDOWS :

Initial versions of Windows worked with MS-DOS, providing a modern graphical interface on top of DOS's

traditional text-based commands. The Windows Start menu helps users find programs and files on their devices.

APPLE IOS

Apple's iOS is one of the most popular smartphone operating systems, second only to Android. It runs on Apple

hardware, including iPhones, iPad tablets and iPod Touch media players.

GOOGLE'S ANDROID OS

Android is the most popular operating system in the world judging by the number of devices installed. Users can

download custom versions of the operating system.

APPLE MAC OS

Apple's macOS, successor to the popular OS X operating system, runs on Apple laptops and desktops.. MacOS

is known for its user-friendly features, which include Siri and FaceTime.

LINUX OPERATING SYSTEM

Linux can be run on a wide variety of hardware and is available free of charge over the internet.

ANDROID DEVELOPMENT TOOLS
• Editors and IDEs

• Language Resources

• Libraries

• Plug-ins

Android Editors and IDEs

• Android Studio – The official IDE, based on the community-created IntelliJIDEA (see below).

• Eclipse – Before Android Studio, this was the official Android development environment. Used to code

Java but can be expanded to other languages via plugins, it is still a powerful tool.

• IntelliJIDEA – Android Studio is based on this, and this IDE is not only extremely useful, but has a

massive amount of community-created plugins, making it highly customisable.

• DroidEdit – An Android text and code editor to use on Android platforms.

• Android-IDE – A complete web and Android development environment, it also allows you to edit Java

and PhoneGap apps.

• Cordova – Mobile apps with HTML, CSS and JS, its one of the best tools if you want to create hybrid

apps. Free and open source.

• Corona – A 2D-development platform with a specific focus on games but can be used to create other
types of mobile apps too. One of the best for cross-platform development and 100% free.

• Titanium – One of the lesser-known platforms, it allows for the creation of native apps for iOS,

Android and Windowsphone and runs off a single JavaScript codebase.

• Xamarin – Widely featured in the press and a very impressive IDE for native Android, iOS and

Windows applications. Open source and free with two further price plans, it uses C# as its language

• CppDroid – Allows you to code, edit compile and execute C and C++ code. Packed full of features

including practice programs and syntax highlighting.

Android Language Resources

• Java – Straight to the source, if you’re developing in Android, Java is probably the language you want
to be using. Has it’s own development kit, but there are plenty of other SDKs out there too.

• Codeacademy – One of the premier code-learning resources online, it has been used by thousands of

people to get into Java coding, as well as other languages and frameworks. An interactive, learn-as-

you-code format.

• Team treehouse – Another e-learning website, but well known for the strength of its Java courses.

• Udemy – Online learning can’t go without mentioning Udemy, which features dozens of both highly

specific and generic Java learning courses.

• New Boston – Youtube tutorials to learn how to develop in Android – currently has over 5 million

views. Covers everything from setting up the SDK to XLM Layouts. 200 videos in total.
Mobile Application Development Page | 11

http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#1
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#2
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#3
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#4
https://developer.android.com/studio/index.html
https://eclipse.org/downloads/
https://www.jetbrains.com/idea/features/android.html
http://www.droidedit.com/
http://www.android-ide.com/
https://cordova.apache.org/
http://coronalabs.com/
http://www.appcelerator.com/titanium/titanium-sdk/
https://www.xamarin.com/
http://www.cppdroid.info/
http://java.com/en/download/faq/develop.xml
https://www.codecademy.com/en/courses/learn-java
https://teamtreehouse.com/
https://www.udemy.com/
https://www.youtube.com/course?list=EC2F07DBCDCC01493A

• Ryan Park Apps resource list – Ryan Parks taught himself how to code in Java and published, among

others, a personal finance application. This is the list of resources he used.

• Oracle Java Tutorials – Both general and specialised Java tutorials by IT giants Oracle, starts from the
very basic concepts and overview.

• Cave of Programming – Covers both Java and C++, comes with exercises and tests: also sometimes

offers paid-for courses for free, pending approval by the creator of the site, John.

Android Libraries

• GSon – Serialising and deserialising Java objects in JSON.

• Retrofit – Described as an ―elegant solution for organising API calls‖.

• Awesome Java – A list of some of the best Java frameworks and libraries.

• AndroidView Animations – Library with very simple syntax to get regular View animations working

smoothly.

• EventBus – Aimed at making communication between parts of your application as smooth and easy as

possible.

• ButterKnife – Very lightweight library which streamlines various wordy Android syntax issues by

using annotations to create boilerplate template code.

• Picasso – Specifically useful when download images for apps. Just inputting the image’s URL will
download the image, store as bitmap and cache it.

Android Plug-ins

• Plugin collection for IntelliJ – The main repository for IntelliJ plugins, an absolute treasure-trove of

handy tools for the IntelliJ IDE.

• A curated list of IntelliJ Plugins – The above repository is absolutely huge, so to help you get started

and find some gems, here’s a curated list of the best IntelliJ plugins.

• Import Drawables – For IntelliJ, allows importing of drawables at different resolutions and other image-

based functionalities.

• GenyMotion – One of the biggest and most reliable testing and emulation tools for Android apps –
employed by BlaBla Car among other high-profile names.

• Boilerplate Code Generation – For IntelliJ, generates parcelable boilerplate code.

• Android Holo Colors – Generates all necessary XML to have editext and colour spinners in your

Android app.

ANDROID ARCHITECTURE

Mobile Application Development Page | 12

https://docs.google.com/spreadsheets/d/1Iv2DD18vl8JnDz8Mblo_mI2tBoOBKUh-9eKJuMCiEjU/pub?output=html
https://docs.oracle.com/javase/tutorial/
https://www.caveofprogramming.com/
https://code.google.com/p/google-gson/
http://square.github.io/retrofit/
https://github.com/akullpp/awesome-java
https://github.com/daimajia/AndroidViewAnimations
http://greenrobot.github.io/EventBus/
https://github.com/JakeWharton/butterknife
https://github.com/square/picasso
https://plugins.jetbrains.com/
http://blog.jetbrains.com/idea/2015/04/a-curated-list-of-ide-plugins-for-android-development/
https://github.com/winterDroid/android-drawable-importer-intellij-plugin
https://www.genymotion.com/
https://github.com/mcharmas/android-parcelable-intellij-plugin/
https://github.com/jeromevdl/android-holo-colors

Android is structured in the form of a software stack comprising applications, an operating system, run-time

environment, middleware, services and libraries. Each layer of the stack, and the corresponding elements within

each layer, are tightly integrated and carefully tuned to provide the optimal application development and

execution environment for mobile devices.

THE LINUX KERNEL

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between

the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the kernel

provides pre-emptive multitasking, low-level core system services such as memory, process and power

management in addition to providing a network stack and device drivers for hardware such as the device display,

Wi-Fi and audio.

ANDROID RUNTIME – ART

When an Android app is built within Android Studio it is compiled into an intermediate byte-code format (DEX

format). When the application is subsequently loaded onto the device, the Android Runtime (ART) uses a

process referred to as Ahead-of-Time (AOT) compilation to translate the byte-code down to the native

instructions required by the device processor. This format is known as Executable and Linkable Format (ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster

application performance and improved battery life.

ANDROID LIBRARIES

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as

string handling, networking and file manipulation), the Android development environment also includes the

Android Libraries. These are a set of Java-based libraries that are specific to Android development.

C/C++ LIBRARIES

The Android runtime core libraries are Java-based and provide the primary APIs for developers writing Android

applications. It is important to note, however, that the core libraries do not perform much of the actual work and

are, in fact, essentially Java ―wrappers‖around a set of C/C++ based libraries.

APPLICATION FRAMEWORK

The Application Framework is a set of services that collectively form the environment in which Android

applications run and are managed. This framework implements the concept that Android applications are

constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in

that an application is also able to publish its capabilities along with any corresponding data so that they can be

found and reused by other applications.

APPLICATIONS

Located at the top of the Android software stack are the applications. These comprise both the native

applications provided with the particular Android implementation (for example web browser and email

applications) and the third party applications installed by the user after purchasing the device.

Mobile Application Development Page | 13

UNIT – IV

DEVELOPMENT TOOLS

INSTALLING AND USING ECLIPSE WITH ADT PLUG-IN

Installing the Eclipse Plugin

Android offers a custom plugin for the Eclipse IDE, called Android Development Tools (ADT). This plugin

provides a powerful, integrated environment in which to develop Android apps. It extends the capabilities of

Eclipse to let you quickly set up new Android projects, build an app UI, debug your app, and export signed (or

unsigned) app packages (APKs) for distribution.
If you need to install Eclipse, you can download it from eclipse.org/mobile.

Note: If you prefer to work in a different IDE, you do not need to install Eclipse or ADT. Instead, you can

directly use the SDK tools to build and debug your application.

Download the ADT Plugin

1. Start Eclipse, then select Help > Install New Software.

2. Click Add, in the top-right corner.

3. In the Add Repository dialog that appears, enter "ADT Plugin" for the Name and the following URL for

the Location:
4. https://dl-ssl.google.com/android/eclipse/
5. Click OK.

6. If you have trouble acquiring the plugin, try using "http" in the Location URL, instead of "https" (https

is preferred for security reasons).
7. In the Available Software dialog, select the checkbox next to Developer Tools and click Next.
8. In the next window, you'll see a list of the tools to be downloaded. Click Next.
9. Read and accept the license agreements, then click Finish.

10. If you get a security warning saying that the authenticity or validity of the software can't be established,

click OK.
11. When the installation completes, restart Eclipse.

Configure the ADT Plugin

1. Once Eclipse restarts, you must specify the location of your Android SDK directory:

2. In the "Welcome to Android Development" window that appears, select Use existing SDKs.

3. Browse and select the location of the Android SDK directory you recently downloaded and unpacked.
4. Click Next.

5. Your Eclipse IDE is now set up to develop Android apps, but you need to add the latest SDK platform

tools and an Android platform to your environment. To get these packages for your SDK, continue to

Adding Platforms and Packages.

Troubleshooting Installation

1. If you are having trouble downloading the ADT plugin after following the steps above, here are some

suggestions:

2. If Eclipse can not find the remote update site containing the ADT plugin, try changing the remote site

URL to use http, rather than https. That is, set the Location for the remote site to:
3. http://dl-ssl.google.com/android/eclipse/

4. If you are behind a firewall (such as a corporate firewall), make sure that you have properly configured

your proxy settings in Eclipse. In Eclipse, you can configure proxy information from the main Eclipse

menu in Window (on Mac OS X, Eclipse) > Preferences > General > Network Connections.

If you are still unable to use Eclipse to download the ADT plugin as a remote update site, you can download the
ADT zip file to your local machine and manually install it:

1. Download the ADT Plugin zip file (do not unpack it):

Mobile Application Development Page | 14

http://eclipse.org/mobile/
https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/installing/adding-packages.html
http://dl-ssl.google.com/android/eclipse/

Package Size MD5 Checksum

ADT-21.1.0.zip 13564671

bytes

f1ae183891229784bb9c33bcc9c5ef1e

2. Start Eclipse, then select Help > Install New Software.

3. Click Add, in the top-right corner.

4. In the Add Repository dialog, click Archive.

5. Select the downloaded ADT-21.1.0.zip file and click OK.
6. Enter "ADT Plugin" for the name and click OK.
7. In the Available Software dialog, select the checkbox next to Developer Tools and click Next.

8. In the next window, you'll see a list of the tools to be downloaded. Click Next.

9. Read and accept the license agreements, then click Finish.

10. If you get a security warning saying that the authenticity or validity of the software can't be established,

click OK.
11. When the installation completes, restart Eclipse.

To update your plugin once you've installed using the zip file, you will have to follow these steps again instead

of the default update instructions.

For Linux users:

If you encounter this error when installing the ADT Plugin for Eclipse:

An error occurred during provisioning.

Cannot connect to keystore.
JKS

...then your development machine lacks a suitable Java VM. Installing Sun Java 6 will resolve this issue and you

can then reinstall the ADT Plugin.

INSTALLING VIRTUAL MACHINE FOR ANDROID JELLY BEAN (EMULATOR)

Initially, install VirtualBox on your Windows PC.

Instructions to Install Android 4.3 on a windows computer

.

Step 1: Install and open Virtualbox.

Step 2: Click on new and enter a name and the operating system details for the virtual machine. Select type

as Linux and version as other and click next.

Step 3: Enter the amount of ram you would like to allot for the virtual machine and click next. Android 4.3

requires at least 1Gb of ram but its not necessary.

Step 4: In the next window select ―Create a virtual hard disk ―and then select VDI .

Mobile Application Development Page | 15

http://dl.google.com/android/ADT-21.1.0.zip

Step 5: According to your space requirement you can either select dynamically allocated or fixed size for

your storage space . i selected fixed size because i want to allocate only 8Gb of storage space to android.

Step 6: Your virtual machine is now set . all you need to do is add the location of the Android 4.3 image file

. Click on the settings button in virtualbox . Under the settings navigate to storage , below the storage tree

select empty and click on the disk image and select ―choose a virtual CD/DVD disk file ―and select the

android 4.3 image . Check the Live CD/DVD box and click ok.

Step 7: Double click on your virtual machine to start it and click OK for all the dialog boxes . Select Install

Android-X86 to hard disk and click OK for all the dialog boxes .

Step 8: in the next window you have to create a partition for installing Android . The new partition will not

mess up anything with your windows computer . From now onwards you have to use your up , down , left

and right keys on your keyboard to Select ―create/modify partitions ―and click OK .

Step 9: In the next windows select new > primary and then specify the size of the new partition

Step 10: Your new partition has been created . Select write and press enter and type ―yes ―and press enter

again when prompted . In the next window select quit and press enter.

Step 11 : In the next window select the Sda1 and press enter. select the et3 file system and press enter .

When prompted to install grub loader select yes. Select now when prompted to make system directory as

read-write .

Step 12: Now android 4.3 is successfully installed on your virtual machine . select Run Android 4.3 and

press enter . click OK for any other dialog boxes that appear . You will now see the android loading screen .

Step 13: Select your language and enter , now fill in the Gmail details and all the details that are asked .

Step 14: Now We have successfully installed Android 4.3 on windows computer .

Inorder to uninstall the android 4.3 virtual box, right click on the virtual machine and select remove. Next select

―delete all files‖ to remove Android 4.3 completely fromPC.

Mobile Application Development Page | 16

CONFIGURING THE INSTALLED TOOLS

Install the Eclipse Java Development Tools plugin
Install the ADT plugin

• On Google's official Android Developers website, under the section Downloading the ADT Plugin, copy the

update URL to the clipboard

• From the Studio menu bar, select Help > Install New Software...

• Click the Add button, to add the Google ADT Plugin update site

• In the Name field, enter something descriptive, such as Google ADT

• Paste the Google ADT update site URL, copied to the clipboard in the previous step, into the Location field

• Click the OK button

• Using the Work with drop-down menu, select the Google ADT entry that you added in the previous step

• Wait for the package list to be populated

• Select all the resulting ADT packages

• Click the Next button

• Click the Next button on the Install Details screen that follows

• Select each package in turn from the left-hand pane and accept the respective license agreement

• Click the Finish button

• Once the installation is complete, click the Restart Now button

Configure Studio to use the SDKs

• Using the perspective icon(s) in the top-right hand corner, select the one titled Web

• Using the Project Explorer tab in the left-hand pane, right-click an existing project and select Open Project

• Browse the resulting project file list, right-click tiapp.xml in root of project, select Open With > TiApp Editor

• Choose your preferred Titanium SDK version from the SDK Version drop-down list

• Check the Android SDK / Target Android Platform section of the Titanium Compatibility Matrix, to determine

which Android versions are compatible with your chosen Titanium SDK. For example, Titanium SDK 1.6.X is

compatible with Android versions 1.6 to 2.3. This information will be needed for the configuration in the

following steps

• Close tiapp.xml

Mobile Application Development Page | 17

http://developer.android.com/sdk/installing/installing-adt.html
https://wiki.appcelerator.org/display/guides2/Titanium+Compatibility+Matrix#TitaniumCompatibilityMatrix-AndroidSDK/TargetAndroidplatform

• From the Studio menu, select Window > Preferences or Studio > Preference for Mac OS X to open
the Preferences dialog

• Navigate to Android

• Click the Browse... button to configure the Android SDK Location

• Select a target Android SDK from the list, ensuring that its version is within the range compatible with the

Titanium SDK you have chosen, as discovered in the previous step

• Navigate to Studio > Platforms > Android

• Click the Browse... button to configure the Android SDK Home

• Select a target Android SDK from the Default Android SDK drop-down list, ensuring that its version is within

the range compatible with the Titanium SDK you have chosen, as discovered in the previous step

• Click OK to save preference changes

As explained in the Android SDK / Target Android Platform, if you require advanced Android features, such
Maps, remember to choose a target that includes the enhanced Google APIs, listed as Google APIs in

the Default Android SDK list

Launch the emulator and app

• Using the Project Explorer, select the project that was opened earlier

• Using the Launch toolbar button, located between the Project Explorer tab and its file list, select Android

Emulator to launch the project app
Add the DDMS perspective button

• While the emulator boots, open the ADT perspective. From the Studio menu bar, select the Window > Open

Perspective > Other...

• Select DDMS (which stands for, Dalvik Debug Monitor Server) from the list of available perspectives

• To ensure that the perspective is in its default state, select the Window > Reset Perspective... menu

• Click the OK button, when the resulting Do you want to reset the current DDMS perspective to its

defaults?dialog displays

Mobile Application Development Page | 18

https://wiki.appcelerator.org/display/guides2/Titanium+Compatibility+Matrix#TitaniumCompatibilityMatrix-AndroidSDK/TargetAndroidplatform

• Click the LogCat viewer tab above the bottom pane, to watch the console output while the emulator boots

• If you wish, you may relocate this tab to the main pane, next to the File Explorer tab, using a simple drag and

drop gesture

• To show only Ti.API log messages, create a logcat filter using the green plus icon in the logcat toolbar and set

the by Log Tag field to "TiAPI". See Reading and Writing Logs for more information about logcat filters.

• Once booted, unlock the emulator and wait for the app to launch

• Now that the emulator is running, select it from the list of devices in the left-hand pane, and inspect it using the
tools

• For example, select the File Explorer tab, and navigate to the directory /data/data/yourAppId

The /data/data/yourAppId directory is equivalent to Titanium.Filesystem.applicationDataDirectory

AppId was defined when the project was created, as shown in the TiApp Editor (see below)

CREATING AN ANDROID PROJECT

CREATE THE APP PROJECT

1. Open Android Studio if it is not already opened.
2. In the main Welcome to Android Studio window, click Start a new Android Studio project.

3. In the Create Android Project window, enter Hello World for the Application name.

4. Verify that the default Project location is where you want to store your Hello World app and other

Android Studio projects, or change it to your preferred directory.
5. Accept the default android.example.com for Company Domain, or create a unique company domain.

If you are not planning to publish your app, you can accept the default. Be aware that changing the
package name of your app later is extra work.

6. Leave unchecked the options to Include C++ support and Include Kotlin support, and click Next.

7. On the Target Android Devices screen, Phone and Tablet should be selected. Ensure that API 15:

Android 4.0.3 IceCreamSandwich is set to Minimum SDK; if not, use the popup menu to set it.

Mobile Application Development Page | 19

http://developer.android.com/guide/developing/debugging/debugging-log.html
https://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem

These are the settings. As of this writing, these settings make Hello World app compatible with 97% of

Android devices active on the Google Play Store.

8. Leave unchecked the Include Instant App support and all other options. Then click Next. If your

project requires additional components for your chosen target SDK, Android Studio will install them

automatically.
9. The Add an Activity window appears. An Activity is a single, focused thing that the user can do. It is a

crucial component of any Android app. An Activity typically has a layout associated with it that defines

how UI elements appear on a screen. Android Studio provides Activity templates to help you get

started. For the Hello World project, choose Empty Activity as shown below, and click Next.

10. The Configure Activity screen appears (which differs depending on which template you chose in the

previous step). By default, the empty Activity provided by the template is named MainActivity. You

can change this if you want, but this lesson uses MainActivity.

11. Make sure that the Generate Layout file option is checked. The layout name by default is

activity_main. You can change this if you want, but this lesson uses activity_main.

12. Make sure that the Backwards Compatibility (App Compat) option is checked. This ensures that your

app will be backwards-compatible with previous versions of Android.
13. Click Finish.

Android Studio creates a folder for your projects, and builds the project with Gradle.

The Android Studio editor appears. Follow these steps:
1. Click the activity_main.xml tab to see the layout editor.

2. Click the layout editor Design tab, if not already selected, to show a graphical rendition of the layout as
shown below.

3. Click the MainActivity.java tab to see the code editor as shown below.

Explore the Project > Android pane
.

1. If not already selected, click the Project tab in the vertical tab column on the left side of the Android

Studio window. The Project pane appears.
2. To view the project in the standard Android project hierarchy, choose Android from the popup menu

at the top of the Project pane, as shown below.

Mobile Application Development Page | 20

https://developer.android.com/reference/android/app/Activity.html
https://gradle.org/

Explore the manifests folder

The manifests folder contains files that provide essential information about your app to the Android system,

which the system must have before it can run any of the app's code.
1. Expand the manifests folder.

2. Open the AndroidManifest.xml file.

The AndroidManifest.xml file describes all of the components of your Android app. All components for an app,

such as each Activity, must be declared in this XML file. In other course lessons you will modify this file to add

features and feature permissions. For an introduction, see App Manifest Overview.

RUN ON EMULATOR

1.Lets create an android virtual device (avd). In order to run an emulator on your computer, you have to create a

configuration that describes the virtual device. In Android Studio, select Tools > Android > AVD Manager, or

click the AVD Manager icon in the toolbar. The Your Virtual Devices screen appears. If you've

already created virtual devices, the screen shows them; otherwise you see a blank list.

2.Click the +Create Virtual Device. The Select Hardware window appears showing a list of pre configured

hardware devices. For each device, the table provides a column for its diagonal display size (Size), screen

resolution in pixels (Resolution), and pixel density (Density).

3. Choose a device such as Nexus 5x or Pixel XL, and click Next. The System Image screen appears.

4.Click the Recommended tab if it is not already selected, and choose which version of the Android system to

run on the virtual device (such as Oreo).Click the link to start the download, and click Finish when it's done.

5.After choosing a system image, click Next. The Android Virtual Device (AVD) window appears. You can

also change the name of the AVD. Check your configuration and click Finish.

Run the app on the virtual device

Let’s run your Hello World app.

1. In Android Studio, choose Run > Run app or click the Run icon in the toolbar.

2. The Select Deployment Target window, under Available Virtual Devices, select the virtual device,

which you just created, and click OK

The emulator starts and boots just like a physical device. Your app builds, and once the emulator is ready,
Android Studio will upload the app to the emulator and run it.

DEPLOY IT ON USB-CONNECTED ANDROID DEVICE

Configure the Android device

In order to install an application directly to your device, you need to configure it to use a USB connection.

The configuration settings vary by device.

Mobile Application Development Page | 21

https://developer.android.com/guide/topics/manifest/manifest-intro.html

For Android 4.2 and later devices, you need to enable Developer options by opening Settings, click About

then click the Build number item seven items. If you do not do this, you will not see the Developer options

item in Settings.

1. Open Settings.

2. Click Security.

3. Enable Unknown sources, that is, check this option. This permits the device to install apps that do

not originate from Google Play.
4. Back out to Settings.
5. Click Developer options.

6. If available: Set the switch in the title bar to on.

7. Enable USB debugging, that is, check this option. This permits the device to install apps over a

USB connection.

8. Optional: Enable Stay awake, that is, check this option. This option keeps the screen on and

disables the lock screen while the device is connected to USB.
9. Optional: Enable Allow mock locations, that is, check this option. This option creates fake GPS

locations to test location services.

10. Back out of or close Settings.

Install the USB driver (Windows only)

Developers on Windows may need to install a USB driver specific to the manufacturer and model of the

device on which they'll be testing. The driver enables your Windows computer to communicate with your

Android device. Google provides download links to the drivers at Android Developer: OEM USB Drivers.

Connect the device

Connect the Android device to your computer using an USB cord. Note that some USB cables are only power

cables and do not allow communications with the device. Make sure you use a USB cable that allows a data

connection.

For 4.2 devices, an "Allow USB debugging?" dialog will appear once connected via USB. Click the OK

button.

Deploy the application using Axway Appcelerator Studio

Once you have configured your device and connected it to your computer's USB port, you are ready to

deploy your app to it.

In Studio, first select the project in the Project Explorer view, then in the global tool bar, select Run from

the Launch Mode drop-down list and an Android device from the Target drop-down list under the Android

Application Installer category. If the Launch Automatically option is enabled under the Target drop-

down list, the application will be automatically launched after the device is selected. If not, you need to click

the Run button to start the build process. Your app will be built, installed to your device and automatically

launched.

Mobile Application Development Page | 22

http://developer.android.com/sdk/oem-usb.html

USER INTERFACE ARCHITECTURE

APPLICATION CONTEXT

Application Context is It is an instance which is the singleton and can be accessed in an activity via

getApplicationContext(). This context is tied to the lifecycle of an application. The application context can be

used where you need a context whose lifecycle is separate from the current context or when you are passing a

context beyond the scope of an activity.

Activity Context

This context is available in an activity. This context is tied to the lifecycle of an activity. The activity context

should be used when you are passing the context in the scope of an activity or you need the context whose

lifecycle is attached to the current context.

getContext() in ContentProvider

This context is the application context and can be used similar to the application context. This can be accessed

via getContext() method.

INTENTS

Intent is a simple message object that is used to communicate between android components such as activities,

content providers, broadcast receivers and services. Intents are also used to transfer data between activities.

The implicit intent is the intent where instead of defining the exact components, you define the action that you

want to perform for different activities.An explicit intent is Intent where you explicitly define the component

that needs to be called by the Android System. An explicit intent is one that you can use to launch a specific app

component, such as a particular activity or service in your app.

ACTIVITY LIFECYCLE

Android Activity Lifecycle is controlled by 7 methods that describes how activity will behave at different states.

Mobile Application Development Page | 23

MULTIPLE SCREEN SIZES

Android devices come in all shapes and sizes, so your app's layout needs to be flexible. That is, instead of

defining your layout with rigid dimensions that assume a certain screen size and aspect ratio, your layout should

gracefully respond to different screen sizes and orientations.

The best way to create a responsive layout for different screen sizes is to use Constraint Layout as the base layout

in your UI. Constraint Layout allows you to specify the position and size for each view according to spatial

relationships with other views in the layout. This way, all the views can move and stretch together as the screen

size changes.

The easiest way to build a layout with Constraint Layout is to use the Layout Editor in Android Studio. It allows

you to drag new views to the layout, attach their constraints to the parent view and other sibling views, and edit

the view's properties, all without editing any XML by hand.

USER INTERFACE DESIGN

FORM WIDGETS

Widgets enable users to interact with an Android Studio application page. There are various kinds of widgets,
such as Buttons and TextViews.

To see all the widgets at your disposal, create a new application project called ―Widgets‖ and select "empty

activity". Call your activity ―MainActivity‖.

There are two components of each Android activity: the XML (Extensible Markup Language) design (the
beauty) and the Java text (the brains).

On the activity_main.xml page, you can see the full widgets palette underneath the various layout options.

As you can see, there are 20 widgets available for you to use. In this guide, we’ll discuss TextViews and Buttons,
which are probably the most common widgets in Android development.

TEXT FIELDDS

A text field allows the user to type text into your app. It can be either single line or multi-line. Touching a text

field places the cursor and automatically displays the keyboard. In addition to typing, text fields allow for a

variety of other activities, such as text selection (cut, copy, paste) and data look-up via auto-completion.

You can add a text field to you layout with the EditText object. You should usually do so in your XML layout

with a <EditText> element.

Text fields can have different input types, such as number, date, password, or email address.

LAYOUTS

A layout defines the visual structure for a user interface, such as the UI for an activity or app widget. Each layout

has a set of attributes which define the visual properties of that layout. There are few common attributes among

all the layouts and there are other attributes which are specific to that layout. Following are common attributes

and will be applied to all the layouts.

BUTTON CONTROL

Button is a user interface control which is used to perform an action whenever the user click or tap on it. Buttons

in android will contains a text or an icon or both and perform an action when user touches it. Different types of

buttons available are ImageButton, ToggleButton, RadioButton.

Mobile Application Development Page | 24

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/widget/EditText.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/activities.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/appwidgets/index.html

TOGGLE BUTTONS

A toggle button allows the user to change a setting between two states.

You can add a basic toggle button to your layout with the ToggleButton object. Android 4.0 (API level 14)

introduces another kind of toggle button called a switch that provides a slider control, which you can add with a

Switch object.SwitchCompat is a version of the Switch widget which runs on devices back to API 7.

SPINNERS / COMBO BOXES

Spinners provide a quick way to select one value from a set. In the default state, a spinner shows its currently

selected value. Touching the spinner displays a dropdown menu with all other available values, from which the

user can select a new one.

IMAGES

public abstract class Image

extends Object implements AutoCloseable
java.lang.Object

↳ android.media.Image

A single complete image buffer to use with a media source such as a MediaCodec or a CameraDevice.

This class allows for efficient direct application access to the pixel data of the Image through one or more

ByteBuffers. Each buffer is encapsulated in a Plane that describes the layout of the pixel data in that plane. Due

to this direct access, and unlike the Bitmap class, Images are not directly usable as UI resources.

MENU

In android, Options Menu is a primary collection of menu items for an activity and it is useful to implement

actions that have a global impact on the app, such as Settings, Search, etc.

In case, if we define items for the options menu in both activity or fragment, then those items will be combine

and display in UI.

DIALOG

A dialog is a small window that prompts the user to make a decision or enter additional information. A dialog

does not fill the screen and is normally used for modal events that require users to take an action before they can

proceed.

The Dialog class is the base class for dialogs, but you should avoid instantiating Dialog directly. Instead, use one

of the following subclasses:

• AlertDialog : A dialog that can show a title, up to three buttons, a list of selectable items, or a custom

layout.

• DatePickerDialog or TimePickerDialog : A dialog with a pre-defined UI that allows the user to select a

date or time.

Mobile Application Development Page | 25

https://developer.android.com/reference/android/widget/ToggleButton.html
https://developer.android.com/reference/android/widget/Switch.html
https://developer.android.com/reference/androidx/appcompat/widget/SwitchCompat.html
https://developer.android.com/reference/java/lang/Object.html
https://developer.android.com/reference/java/lang/AutoCloseable.html
https://developer.android.com/reference/java/lang/Object.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/java/nio/ByteBuffer.html
https://developer.android.com/reference/android/media/Image.Plane.html
https://developer.android.com/reference/android/graphics/Bitmap.html
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/DatePickerDialog.html
https://developer.android.com/reference/android/app/TimePickerDialog.html

AGENDA
● Introduction to Android

● Android Studio

● Hello World Application

● Application Components

● Application Resources

● User Interface

● Code Time

● Good UI

● Play Store

● Learn Android

Introduction to Android

ANDROID JOURNEY

Developed by Google. First

released version 1.5(Cupcake).

Current version - 6.0 (Marshmallow)

Major contributors: Samsung, LG, Vodafone, Acer, Dell, HTC, Sony Ericsson, Intel, Wipro
including others.

Pre-installed Google apps: Gmail, Google Calendar, Google Play, Google Music, Chrome
and others.

Openness

Customizable

Affordable(low-cost)

Android World

WHY NOT ANY OTHER TECHNOLOGY ?

1. Highest paying technology

2. A lot of career opportunities

3. Freshers are in high demand

ANDROID VERSIONS

ANDROID -
ARCHITECTURE

ANDROID IS NOT LINUX

• Android is built on the Linux kernel, but Android is not a Linux.

• Linux kernel it`s a component which is responsible for device

drivers, power management, memory management, device

management and resource access.

• Native libraries such as WebKit, OpenGL, FreeType, SQLite,

Media, C runtime library

• (libc) etc.

• Android Runtime, there are core libraries and DVM (Dalvik

Virtual Machine) which is responsible to run android

application. DVM is like JVM but it is optimized for mobile

devices. It consumes less memory and provides fast

performance.
• App Framework - Android framework
includes Android API's Applications - All
applications

EACH ANDROID APP LIVES IN ITS OWN SECURITY SANDBOX

● The Android operating system is a multi-user Linux system in which

each app is a different user.

● By default, the system assigns each app a unique Linux user ID.

The system sets permissions for all the files in an app so that only

the user ID assigned to that app can access them.

● Each process has its own virtual machine (VM), so an app's code

runs in isolation from other apps.

● By default, every app runs in its own Linux process. Android

starts the process when any of the app's components need to be

executed, then shuts down the process when it's no longer needed

or when the system must recover memory for other apps.

● Each app has own lifecycle

ANDROID STUDIO

STARTING ANDROID DEVELOPMENT

HELLO WORLD APPLICATION

CREATING A VIRTUAL ANDROID DEVICE

HELLO WORLD
APPLICATION

1.Activity

2.Manifest File

3.Layout

● Represents a single screen in anApp.

●Hosts all the view components of the screen like button, textview
and popups.

● Hosts all the logic of user interaction.

● Have their own lifecycle.

Activities

Activities
Every Activity will inherit an “Activity”.

Extending a class.

Accessing inherited methods and member variables.
Overriding methods.

1.Activity

2.LAYOUT

Linear Layout

Relative Layout

Grid Layout

Layout Items

Image View

Button

Text View

List View

3. ANDROID MANIFEST FILE

Declare Application Name

Declare Activates

Declare Application Theme

Declare Application Icon

Declare Other Components

Declare Permissions

APPLICATION
COMPONENTS

APPLICATION COMPONENTS

● Activities

● Intent, Intent Filters

● Broadcast Receivers

● Services

● Content Providers

● Processes and Threads

ACTIVITIES
An Activity is an application component that provides a screen with which users

can interact. Activity = Window

How to create an Activity

1. Create a layout for your screen

<LinearLayout ... >

<EditText ... />

<EditText ... />

<Button ... />

</LinearLayout>

How to create anActivity

2. Create class which extends class Activity and override onCreate()

method

3. Declare your activity in the manifest file

<activity

android:name=".LoginActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

public class LoginActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_login);

}

}

Activity Lifecycle

When an activity transitions into

and out of the different states it

is notified through various

callback methods.

Complete Android Fragment &

Activity Lifecycle

https://raw.githubusercontent.com/xxv/android-lifecycle/master/complete_android_fragment_lifecycle.png

Activity Lifecycle

A Fragment represents a behavior or a portion of user interface in an Activity.

Fragments

A Fragment must always be embedded in an activity and the fragment's lifecycle

is directly affected by the host activity's lifecycle.

Android introduced

fragments in Android 3.0 (API

level 11), primarily to support

more dynamic and flexible UI

designs on large screens,

such as tablets.

Create a FragmentClass

How to add a Fragment into app

public class OrderSpinnerFragment extends Fragment

{ @Override

public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)

{ return inflater.inflate(R.layout.fragment_orders_spinner, container, false);

}

}

Adding a fragment to an activity

● Declare the fragment inside the activity's layout file.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout ...>

<fragment android:name="com.example.news.ArticleListFragment"

android:id="@+id/list"

android:layout_weight="1"

android:layout_width="0dp"

android:layout_height="match_parent" />

</LinearLayout>

● Or, programmatically add the fragment to an existing ViewGroup.

private void addUserInfoFragment(){

FragmentManager fragmentManager = getFragmentManager();

FragmentTransaction fragmentTransaction =

fragmentManager.beginTransaction();

UserInfoFragment fragment = new UserInfoFragment();

fragmentTransaction.add(R.id.fragment_container, fragment);

fragmentTransaction.commit();

}

INTENT AND INTENT FILTERS

An Intent is a messaging object you can use to request an action from another

app component. Although intents facilitate communication between components in

several ways.

● start Activity

● start Service

● deliver Broadcast

There are two types of intents:

● Explicit intents specify the component to start by name

● Implicit intents declare a general action to perform, which allows a

component from another app to handle it

An Intent object carries information that the Android system uses to determine which

component to start (such as the exact component name or component category that

should receive the intent), plus information that the recipient component uses in order to

properly perform the action (such as the action to take and the data to act upon).

The primary information contained in an Intent is the following:

● Component name - The name of the component to start.

● Action - The general action to be performed, such as ACTION_VIEW,

ACTION_EDIT, ACTION_MAIN, etc.

● Data - The data to operate on, such as a person record in the contacts

database, expressed as a Uri.

● Category - Gives additional information about the action to execute.

● Type - Specifies an explicit type (a MIME type) of the intent data.

● Extras - This is a Bundle of any additional information.

Building an Intent

Example of explicit intent

public void startUserDetailsActivity(long userId) {

Intent userDetailsIntent = new Intent(this, UserDetailsActivity.class);

userDetailsIntent.putExtra(USER_ID, userId);

startActivity(userDetailsIntent);

}

Example of implicit intent

public void sendMessageIntent(String textMessage) {

Intent sendIntent = new Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

sendIntent.setType("text/plain");

startActivity(sendIntent);

}

APPLICATION
RESOURCES

APPLICATION RESOURCES

You should always externalize resources

such as images and strings from your

application code, so that you can maintain

them independently. Externalizing your

resources also allows you to provide

alternative resources that support specific

device configurations such as different

languages or screen sizes, which becomes

increasingly important as more Android-

powered devices become available with

different configurations.

MyProject/

src/

MyActivity.java

res/

drawable/

graphi c.pn

g layout/

main .xml

i n fo .xml

mipmap/

icon .pn

g values/

strings.xml

RESOURCE DIRECTORIES SUPPORTED INSIDE PROJECT RES/ DIRECTORY

Directory ResourceType

ani

ma

tor/

ani

m/

XML files that define property animations and tweenanimations.

color/ XML files that define a state list of colors.

drawable/ Bitmap files (.png, .9.png, .jpg, .gif) or XMLfiles.

layout/ XML files that define a user interfacelayout.

menu/ XML files that define application menus, such as an Options Menu,

Context Menu, or SubMenu.

values/ XML files that contain simple values, such as strings, integers, and

colors.

PROVIDING ALTERNATIVE
RESOURCES

Almost every application should provide

alternative resources to support specific

device configurations. For instance, you

should include alternative drawable

resources for different screen densities

and alternative string resources for

different languages. At runtime, Android

detects the current device configuration

and loads the appropriate resources for

your application.

USER INTERFACE

USER INTERFACE

• All user interface elements in an Android

app are built using View and ViewGroup

objects. A View is an object that draws

something on the screen that the user can

interact with. A ViewGroup is an object that

holds other View (and ViewGroup) objects

in order to define the layout of the

interface.

LAYOUTS

A layout defines the visual structure for a user interface, such as the UI

for an activity or app widget. You can declare a layout in two ways:

● Declare UI elements in XML.

● Instantiate layout elements at runtime.

<LinearLayout ... >

<EditText ... />

<EditText ... />

<Button ... />

</LinearLayout>

public class LoginActivity extends Activity{

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_login);

}

}

LAYOUTS

LinearLayout is a view group that

aligns all children in a single direction,

vertically or horizontally.

RelativeLayout is a view group that

displays child views in relative

positions.

LAYOUTS

TableLayout is a view that groups

views into rows and columns.
FrameLayout is a placeholder on

screen that you can use to display a

single view.

LAYOUTS

ListView is a view group that

displays a list of scrollable

items.

GridView is a ViewGroup

that displays items in a two-

dimensional, scrollable grid.

Comparing Android UI Elements to Swing UI Elements

❑Activities in Android refers almost to a (J)Frame in Swing.

❑Views in Android refers to (J)Components in Swing.

❑TextViews in Android refers to a (J)Labels in Swing.

❑EditTexts in Android refers to a (J)TextFields in Swing.

❑Buttons in Android refers to a (J)Buttons in Swing.

Comparing Android UI Elements to Swing UI Elements
Activities

WIDGETS

DIALOGS AND TOASTS

A Dialog is a small window that prompts the user to make a decision or enter

additional information. A dialog does not fill the screen and is normally used for

modal events that require users to take an action before they can proceed.

A Toast provides simple feedback about an

operation in a small popup.

EVENTS WITH UI

BUTTON

OnClickListener
mButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

//Do the required task

}

});

CODETIME

GOOD UI

WHY GOOD UI IS IMPORTANT?

Smooth performance.

Attracts users and keeps them.
Does not irritate users.

Does what is expected.

“No matter how useful or how good your app is, if its

UI is not awesome it will have very few chances of

remaining there in your user’s device.”

Bad UI =

BAD UI

BUT NOT TO WORRY...

800,0000 apps have < 100downloads.

Another 700,000 have < 1000 downloads.
Another 400,000 have < 10,000 downloads.

Only 35,000 apps are downloaded more than 500,000.

UNIT – V

DATABASE

UNDERSTANDING OF SQLite DATABASE

SQLite is a opensource SQL database that stores data to a text file on a device. Android comes in with built in

SQLite database implementation.

SQLite supports all the relational database features. In order to access this database, you don't need to establish

any kind of connections for it like JDBC,ODBC e.t.c

Database -Package

The main package is android.database.sqlite that contains the classes to manage your own databases

Database -Creation

In order to create a database you just need to call this method openOrCreateDatabase with your database name

and mode as a parameter. It returns an instance of SQLite database which you have to receive in your own

object.Its syntax is given below

SQLiteDatabase mydatabase = openOrCreateDatabase("your database name",MODE_PRIVATE,null);

Apart from this , there are other functions available in the database package , that does this job. They are listed

below

Sr.No Method & Description

1 openDatabase(String path, SQLiteDatabase.CursorFactory factory, int flags,

DatabaseErrorHandler errorHandler)

This method only opens the existing database with the appropriate flag mode. The common flags mode

could be OPEN_READWRITE OPEN_READONLY

2
openDatabase(String path, SQLiteDatabase.CursorFactory factory, int flags)

It is similar to the above method as it also opens the existing database but it does not define any

handler to handle the errors of databases

3
openOrCreateDatabase(String path, SQLiteDatabase.CursorFactory factory)

It not only opens but create the database if it not exists. This method is equivalent to openDatabase

method.

4
openOrCreateDatabase(File file, SQLiteDatabase.CursorFactory factory)

This method is similar to above method but it takes the File object as a path rather then a string. It is

equivalent to file.getPath()

Mobile Application Development Page | 26

Database -Insertion

we can create table or insert data into table using execSQL method defined in SQLiteDatabase class. Its syntax

is given below

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS TutorialsPoint(Username VARCHAR,Password

VARCHAR);");
mydatabase.execSQL("INSERT INTO TutorialsPoint VALUES('admin','admin');");

This will insert some values into our table in our database. Another method that also does the same job but take

some additional parameter is given below

Sr.No Method & Description

1
execSQL(String sql, Object[] bindArgs)

This method not only insert data , but also used to update or modify already existing data in database

using bind arguments

Database -Fetching

We can retrieve anything from database using an object of the Cursor class. We will call a method of this class

called rawQuery and it will return a resultset with the cursor pointing to the table. We can move the cursor

forward and retrieve the data.

Cursor resultSet = mydatbase.rawQuery("Select * from MRCET",null);

resultSet.moveToFirst();
String username = resultSet.getString(0);
String password = resultSet.getString(1);

There are other functions available in the Cursor class that allows us to effectively retrieve the data. That

includes

Sr.No Method & Description

1
getColumnCount()

This method return the total number of columns of the table.

2
getColumnIndex(String columnName)

This method returns the index number of a column by specifying the name of the column

3
getColumnName(int columnIndex)

This method returns the name of the column by specifying the index of the column

4
getColumnNames()

This method returns the array of all the column names of the table.

Mobile Application Development Page | 27

5
getCount()

This method returns the total number of rows in the cursor

6
getPosition()

This method returns the current position of the cursor in the table

7
isClosed()

This method returns true if the cursor is closed and return false otherwise

Database-Helperclass

For managing all the operations related to the database , an helper class has been given and is called

SQLiteOpenHelper. It automatically manages the creation and update of the database. Its syntax is given below

public class DBHelper extends SQLiteOpenHelper {

public DBHelper(){

super(context,DATABASE_NAME,null,1);

}

public void onCreate(SQLiteDatabase db) {}

public void onUpgrade(SQLiteDatabase database, int oldVersion, int newVersion) {}

}

Example

Here is an example demonstrating the use of SQLite Database. It creates a basic contacts applications that

allows insertion, deletion and modification of contacts.

To experiment with this example, you need to run this on an actual device on which camera is supported.

Steps Description

1 You will use Android studio to create an Android application under a package

com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to get references of all the XML components and populate the

contacts on listView.

3 Create new src/DBHelper.java that will manage the database work

4 Create a new Activity as DisplayContact.java that will display the contact on the screen

Mobile Application Development Page | 28

5 Modify the res/layout/activity_main to add respective XML components

6 Modify the res/layout/activity_display_contact.xml to add respective XML components

7 Modify the res/values/string.xml to add necessary string components

8 Modify the res/menu/display_contact.xml to add necessary menu components

9 Create a new menu as res/menu/mainmenu.xml to add the insert contact option

10 Run the application and choose a running android device and install the application on it and verify the

results.

Following is the content of the modified MainActivity.java.

package com.example.sairamkrishna.myapplication;

import android.content.Context;

import android.content.Intent;

import android.support.v7.app.ActionBarActivity;

import android.os.Bundle;

import android.view.KeyEvent;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ListView;

import java.util.ArrayList;

import java.util.List;

Mobile Application Development Page | 29

public class MainActivity extends ActionBarActivity {

public final static String EXTRA_MESSAGE = "MESSAGE";

private ListView obj;

DBHelper mydb;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mydb = new DBHelper(this);

ArrayList array_list = mydb.getAllCotacts();

ArrayAdapter arrayAdapter=new ArrayAdapter(this,android.R.layout.simple_list_item_1, array_list);

obj = (ListView)findViewById(R.id.listView1);

obj.setAdapter(arrayAdapter);

obj.setOnItemClickListener(new OnItemClickListener(){

@Override

public void onItemClick(AdapterView<?> arg0, View arg1, int arg2,long arg3) {

// TODO Auto-generated method stub

int id_To_Search = arg2 + 1;

Bundle dataBundle = new Bundle();

dataBundle.putInt("id", id_To_Search);

Intent intent = new Intent(getApplicationContext(),DisplayContact.class);

intent.putExtras(dataBundle);

startActivity(intent);

}

});

}

Mobile Application Development Page | 30

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.menu_main, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item){

super.onOptionsItemSelected(item);

switch(item.getItemId()) {

case R.id.item1:Bundle dataBundle = new Bundle();

dataBundle.putInt("id", 0);

Intent intent = new Intent(getApplicationContext(),DisplayContact.class);

intent.putExtras(dataBundle);

startActivity(intent);

return true;

default:

return super.onOptionsItemSelected(item);

}

}

public boolean onKeyDown(int keycode, KeyEvent event) {

if (keycode == KeyEvent.KEYCODE_BACK) {

moveTaskToBack(true);

}

return super.onKeyDown(keycode, event);

}

}

Mobile Application Development Page | 31

Following is the modified content of display contact activity DisplayContact.java

package com.example.sairamkrishna.myapplication;

import android.os.Bundle;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.content.Intent;

import android.database.Cursor;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

public class DisplayContact extends Activity {

int from_Where_I_Am_Coming = 0;

private DBHelper mydb ;

TextView name ;

TextView phone;

TextView email;

TextView street;

TextView place;

int id_To_Update = 0;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Mobile Application Development Page | 32

setContentView(R.layout.activity_display_contact);

name = (TextView) findViewById(R.id.editTextName);

phone = (TextView) findViewById(R.id.editTextPhone);

email = (TextView) findViewById(R.id.editTextStreet);

street = (TextView) findViewById(R.id.editTextEmail);

place = (TextView) findViewById(R.id.editTextCity);

mydb = new DBHelper(this);

Bundle extras = getIntent().getExtras();

if(extras !=null) {

int Value = extras.getInt("id");

if(Value>0){

//means this is the view part not the add contact part.

Cursor rs = mydb.getData(Value);

id_To_Update = Value;

rs.moveToFirst();

String nam = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_NAME));

String phon = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_PHONE));

String emai = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_EMAIL));

String stree = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_STREET));

String plac = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_CITY));

if (!rs.isClosed()) {

rs.close();

}

Button b = (Button)findViewById(R.id.button1);

b.setVisibility(View.INVISIBLE);

name.setText((CharSequence)nam);

name.setFocusable(false);

Mobile Application Development

Page | 33

name.setClickable(false);

phone.setText((CharSequence)phon);

phone.setFocusable(false);

phone.setClickable(false);

email.setText((CharSequence)emai);

email.setFocusable(false);

email.setClickable(false);

street.setText((CharSequence)stree);

street.setFocusable(false);

street.setClickable(false);

place.setText((CharSequence)plac);

place.setFocusable(false);

place.setClickable(false);

}

}

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

Bundle extras = getIntent().getExtras();

if(extras !=null) {

int Value = extras.getInt("id");

if(Value>0){

getMenuInflater().inflate(R.menu.display_contact, menu);

} else{

getMenuInflater().inflate(R.menu.menu_main menu);

}

Mobile Application Development Page | 34

}

return true;

}

public boolean onOptionsItemSelected(MenuItem item) {

super.onOptionsItemSelected(item);

switch(item.getItemId()) {

case R.id.Edit_Contact:

Button b = (Button)findViewById(R.id.button1);

b.setVisibility(View.VISIBLE);

name.setEnabled(true);

name.setFocusableInTouchMode(true);

name.setClickable(true);

phone.setEnabled(true);

phone.setFocusableInTouchMode(true);

phone.setClickable(true);

email.setEnabled(true);

email.setFocusableInTouchMode(true);

email.setClickable(true);

street.setEnabled(true);

street.setFocusableInTouchMode(true);

street.setClickable(true);

place.setEnabled(true);

place.setFocusableInTouchMode(true);

place.setClickable(true);

return true;

case R.id.Delete_Contact:

Mobile Application Development Page | 35

AlertDialog.Builder builder = new AlertDialog.Builder(this);

builder.setMessage(R.string.deleteContact)

.setPositiveButton(R.string.yes, new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

mydb.deleteContact(id_To_Update);

Toast.makeText(getApplicationContext(), "Deleted Successfully",

Toast.LENGTH_SHORT).show();

Intent intent = new Intent(getApplicationContext(),MainActivity.class);

startActivity(intent);

}

})

.setNegativeButton(R.string.no, new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int id) {

// User cancelled the dialog

}

});

AlertDialog d = builder.create();

d.setTitle("Are you sure");

d.show();

return true;

default:

return super.onOptionsItemSelected(item);

}

}

public void run(View view) {

Bundle extras = getIntent().getExtras();

if(extras !=null) {

int Value = extras.getInt("id");

if(Value>0){

Mobile Application Development Page | 36

if(mydb.updateContact(id_To_Update,name.getText().toString(),

phone.getText().toString(), email.getText().toString(),

street.getText().toString(), place.getText().toString())){

Toast.makeText(getApplicationContext(), "Updated", Toast.LENGTH_SHORT).show();

Intent intent = new Intent(getApplicationContext(),MainActivity.class);

startActivity(intent);

} else{

Toast.makeText(getApplicationContext(), "not Updated", Toast.LENGTH_SHORT).show();

}

} else{

if(mydb.insertContact(name.getText().toString(), phone.getText().toString(),

email.getText().toString(), street.getText().toString(),

place.getText().toString())){

Toast.makeText(getApplicationContext(), "done",

Toast.LENGTH_SHORT).show();

} else{

Toast.makeText(getApplicationContext(), "not done",

Toast.LENGTH_SHORT).show();

}

Intent intent = new Intent(getApplicationContext(),MainActivity.class);

startActivity(intent);

}

}

}

}

Following is the content of Database class DBHelper.java

package com.example.sairamkrishna.myapplication;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Hashtable;

import android.content.ContentValues;

import android.content.Context;

Mobile Application Development Page | 37

import android.database.Cursor;

import android.database.DatabaseUtils;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteDatabase;

public class DBHelper extends SQLiteOpenHelper {

public static final String DATABASE_NAME = "MyDBName.db";

public static final String CONTACTS_TABLE_NAME = "contacts";

public static final String CONTACTS_COLUMN_ID = "id";

public static final String CONTACTS_COLUMN_NAME = "name";

public static final String CONTACTS_COLUMN_EMAIL = "email";

public static final String CONTACTS_COLUMN_STREET = "street";

public static final String CONTACTS_COLUMN_CITY = "place";

public static final String CONTACTS_COLUMN_PHONE = "phone";

private HashMap hp;

public DBHelper(Context context) {

super(context, DATABASE_NAME , null, 1);

}

@Override

public void onCreate(SQLiteDatabase db) {

// TODO Auto-generated method stub

db.execSQL(

"create table contacts " +

"(id integer primary key, name text,phone text,email text, street text,place text)"

);

}

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

// TODO Auto-generated method stub

db.execSQL("DROP TABLE IF EXISTS contacts");

Mobile Application Development Page | 38

onCreate(db);

}

public boolean insertContact (String name, String phone, String email, String street,String place) {

SQLiteDatabase db = this.getWritableDatabase();

ContentValues contentValues = new ContentValues();

contentValues.put("name", name);

contentValues.put("phone", phone);

contentValues.put("email", email);

contentValues.put("street", street);

contentValues.put("place", place);

db.insert("contacts", null, contentValues);

return true;

}

public Cursor getData(int id) {

SQLiteDatabase db = this.getReadableDatabase();

Cursor res = db.rawQuery("select * from contacts where id="+id+"", null);

return res;

}

public int numberOfRows(){

SQLiteDatabase db = this.getReadableDatabase();

int numRows = (int) DatabaseUtils.queryNumEntries(db, CONTACTS_TABLE_NAME);

return numRows;

}

public boolean updateContact (Integer id, String name, String phone, String email, String street,String place) {

SQLiteDatabase db = this.getWritableDatabase();

ContentValues contentValues = new ContentValues();

contentValues.put("name", name);

contentValues.put("phone", phone);

contentValues.put("email", email);

Mobile Application Development Page | 39

contentValues.put("street", street);

contentValues.put("place", place);

db.update("contacts", contentValues, "id = ? ", new String[] { Integer.toString(id) });

return true;

}

public Integer deleteContact (Integer id) {

SQLiteDatabase db = this.getWritableDatabase();

return db.delete("contacts",

"id = ? ",

new String[] { Integer.toString(id) });

}

public ArrayList<String> getAllCotacts() {

ArrayList<String> array_list = new ArrayList<String>();

//hp = new HashMap();

SQLiteDatabase db = this.getReadableDatabase();

Cursor res = db.rawQuery("select * from contacts", null);

res.moveToFirst();

while(res.isAfterLast() == false){

array_list.add(res.getString(res.getColumnIndex(CONTACTS_COLUMN_NAME)));

res.moveToNext();

}

return array_list;

}

}

Following is the content of the res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent"

android:layout_height="match_parent"

Mobile Application Development

Page | 40

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

android:paddingBottom="@dimen/activity_vertical_margin" tools:context=".MainActivity">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/textView"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

android:textSize="30dp"

android:text="Data Base" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Tutorials Point"

android:id="@+id/textView2"

android:layout_below="@+id/textView"

android:layout_centerHorizontal="true"

android:textSize="35dp"

android:textColor="#ff16ff01" />

<ImageView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/imageView"

android:layout_below="@+id/textView2"

android:layout_centerHorizontal="true"

android:src="@drawable/logo"/>

<ScrollView

Mobile Application Development Page | 41

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/scrollView"

android:layout_below="@+id/imageView"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_alignParentBottom="true"

android:layout_alignParentRight="true"

android:layout_alignParentEnd="true">

<ListView

android:id="@+id/listView1"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_centerVertical="true" >

</ListView>

</ScrollView>

</RelativeLayout>

Following is the content of the res/layout/activity_display_contact.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:id="@+id/scrollView1"

android:layout_width="match_parent"

android:layout_height="wrap_content"

tools:context=".DisplayContact" >

<RelativeLayout

android:layout_width="match_parent"

android:layout_height="370dp"

Mobile Application Development

Page | 42

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin">

<EditText

android:id="@+id/editTextName"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignParentLeft="true"

android:layout_marginTop="5dp"

android:layout_marginLeft="82dp"

android:ems="10"

android:inputType="text" >

</EditText>

<EditText

android:id="@+id/editTextEmail"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignLeft="@+id/editTextStreet"

android:layout_below="@+id/editTextStreet"

android:layout_marginTop="22dp"

android:ems="10"

android:inputType="textEmailAddress" />

<TextView

android:id="@+id/textView1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBottom="@+id/editTextName"

android:layout_alignParentLeft="true"

android:text="@string/name"

Mobile Application Development Page | 43

android:textAppearance="?android:attr/textAppearanceMedium" />

<Button

android:id="@+id/button1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignLeft="@+id/editTextCity"

android:layout_alignParentBottom="true"

android:layout_marginBottom="28dp"

android:onClick="run"

android:text="@string/save" />

<TextView

android:id="@+id/textView2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBottom="@+id/editTextEmail"

android:layout_alignLeft="@+id/textView1"

android:text="@string/email"

android:textAppearance="?android:attr/textAppearanceMedium" />

<TextView

android:id="@+id/textView5"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBottom="@+id/editTextPhone"

android:layout_alignLeft="@+id/textView1"

android:text="@string/phone"

android:textAppearance="?android:attr/textAppearanceMedium" />

<TextView

android:id="@+id/textView4"

android:layout_width="wrap_content"

Mobile Application Development Page | 44

android:layout_height="wrap_content"

android:layout_above="@+id/editTextEmail"

android:layout_alignLeft="@+id/textView5"

android:text="@string/street"

android:textAppearance="?android:attr/textAppearanceMedium" />

<EditText

android:id="@+id/editTextCity"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignRight="@+id/editTextName"

android:layout_below="@+id/editTextEmail"

android:layout_marginTop="30dp"

android:ems="10"

android:inputType="text" />

<TextView

android:id="@+id/textView3"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBaseline="@+id/editTextCity"

android:layout_alignBottom="@+id/editTextCity"

android:layout_alignParentLeft="true"

android:layout_toLeftOf="@+id/editTextEmail"

android:text="@string/country"

android:textAppearance="?android:attr/textAppearanceMedium" />

<EditText

android:id="@+id/editTextStreet"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignLeft="@+id/editTextName"

android:layout_below="@+id/editTextPhone"

Mobile Application Development

Page | 45

android:ems="10"

android:inputType="text" >

<requestFocus />

</EditText>

<EditText

android:id="@+id/editTextPhone"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignLeft="@+id/editTextStreet"

android:layout_below="@+id/editTextName"

android:ems="10"

android:inputType="phone|text" />

</RelativeLayout>

</ScrollView>

Following is the content of the res/value/string.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Address Book</string>

<string name="action_settings">Settings</string>

<string name="hello_world">Hello world!</string>

<string name="Add_New">Add New</string>

<string name="edit">Edit Contact</string>

<string name="delete">Delete Contact</string>

<string name="title_activity_display_contact">DisplayContact</string>

<string name="name">Name</string>

<string name="phone">Phone</string>

<string name="email">Email</string>

<string name="street">Street</string>

<string name="country">City/State/Zip</string>

<string name="save">Save Contact</string>

<string name="deleteContact">Are you sure, you want to delete it.</string>

Mobile Application Development Page | 46

<string name="yes">Yes</string>

<string name="no">No</string>

</resources>

Following is the content of the res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item android:id="@+id/item1"

android:icon="@drawable/add"

android:title="@string/Add_New" >

</item>

</menu>

Following is the content of the res/menu/display_contact.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item

android:id="@+id/Edit_Contact"

android:orderInCategory="100"

android:title="@string/edit"/>

<item

android:id="@+id/Delete_Contact"

android:orderInCategory="100"

android:title="@string/delete"/>

</menu>

This is the defualt AndroidManifest.xml of this project

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.sairamkrishna.myapplication" >

Mobile Application Development Page | 47

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".DisplayContact"/>

</application>

</manifest>

Let's try to run your application. I assume you have connected your actual Android Mobile device with your

computer. To run the app from Android studio , open one of your project's activity files and click Run icon from

the tool bar. Before starting your application,Android studio will display following window to select an option

where you want to run your Android application.

Select your mobile device as an option and then check your mobile device which will display following screen

Mobile Application Development Page | 48

Optional menu appears different places on different versions

Click on the add button of the menu screen to add a new contact. It will display the following screen −

It will display the following fields. Please enter the required information and click on save contact. It will bring

you back to main screen.

Now our contact has been added. In order to see where the database is created, open your android studio,

connect your mobile. Go tools/android/android device monitor. Now browse the file explorer tab. Now

browse this folder /data/data/<your.package.name>/databases<database-name>.

CONNECTING WITH THE DATABASE

In Android, the SQLiteDatabase namespace defines the functionality to connect and manage a database. It

provides functionality to create, delete, manage and display database content.

Create a Database

Simple steps to create a database and handle are as following.

• Create "SQLiteDatabase" object.

• Open or Create database and create connection.

• Perform insert, update or delete operation.

• Create Cursor to display data from table of database.

• Close the database connectivity.

Step 1: Instantiate "SQLiteDatabase" object

SQLiteDatabase db;

Before you can use the above object, you must import the android.database.sqlite.SQLiteDatabasenamespace in

your application.
db=openOrCreateDatabase(String path, int mode, SQLiteDatabase.CursorFactory factory)

This method is used to create/open database. As the name suggests, it will open a database connection if it is
already there, otherwise it will create a new one.

Example,

db=openOrCreateDatabase("XYZ_Database",SQLiteDatabase.CREATE_IF_NECESSARY,null);

Arguments:

String path Name of the database

Int mode operating mode. Use 0 or "MODE_PRIVATE" for the default operation, or

"CREATE_IF_NECESSARY" if you like to give option that "if database is not

there, create it"

CursorFactory factory An optional factory class that is called to instantiate a cursor when query is called

Step 2: Execute DDL command

db.execSQL(String sql) throws SQLException

This command is used to execute single SQL statement which doesn't return any data means other than

SELECT or any other.

Mobile Application Development Page | 49

db.execSQL("Create Table Temp (id Integer, name Text)");

In the above example, it takes "CREATE TABLE" statement of SQL. This will create a table of "Integer" &

"Text" fields.

Try and Catch block is require while performing this operation. An exception that indicates there was an error

with SQL parsing or execution.

Step 3: Create object of "ContentValues" and Initiate it.

ContentValues values=new ContentValues();

This class is used to store a set of values. We can also say, it will map ColumnName and relavent ColumnValue.

values.put("id", eid.getText().toString());

values.put("name", ename.getText().toString());

String Key Name of field as in table. Ex. "id", "name"

String Value Value to be inserted.

Step 4: Perform Insert Statement.

insert(String table, String nullColumnHack, ContentValues values)

String table Name of table related to database.

String nullColumnHack If not set to null, the nullColumnHack parameter provides the name of nullable

column name to explicitly insert a NULL into in the case where yourvalues is

empty.

ContentValues values This map contains the initial column values for the row.

This method returns a long. The row ID of the newly inserted row, or -1 if an error occurred.

Example,

db.insert("temp", null, values);

Step 5: Create Cursor

This interface provides random read-write access to the result set returned by a database query.

Cursor c=db.rawQuery(String sql, String[] selectionArgs)

Strign sql The SQL query

String []selectionArgs You may include ?s in where clause in the query, which will be replaced by

the values from selectionArgs. The values will be bound as Strings.

Example,

Cursor c=db.rawQuery("SELECT * FROM temp",null);

Mobile Application Development Page | 50

Methods

Example,

c.moveToFirst();

while(!c.isAfterLast())
{

//statementâ€¦

c.moveToNext();
}

Step 6: Close Cursor and Close Database connectivity

It is very important to release our connections before closing our activity. It is advisable to release the Database

connectivity in "onStop" method. And Cursor connectivity after use it.

DatabaseDemoActivity.java

package com.DataBaseDemo;

import android.app.Activity;
import android.content.ContentValues;
import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.os.Bundle;
import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class DataBaseDemoActivity extends Activity {

/** Called when the activity is first created. */

SQLiteDatabase db;
Button btnInsert;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

btnInsert=(Button)findViewById(R.id.button1);

try{

db=openOrCreateDatabase("StudentDB",SQLiteDatabase.CREATE_IF_NECESSARY,null);

db.execSQL("Create Table Temp(id integer,name text)");
}catch(SQLException e)
{
}

btnInsert.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

// TODO Auto-generated method stub

EditText eid=(EditText) findViewById(R.id.editText1);

EditText ename=(EditText)findViewById(R.id.editText2);

ContentValues values=new ContentValues();

values.put("id", eid.getText().toString());

values.put("name", ename.getText().toString());

if((db.insert("temp", null, values))!=-1)
{
Toast.makeText(DataBaseDemoActivity.this, "Record Successfully Inserted", 2000).show();

}

else

moveToFirst Moves cursor pointer at first position of result set

moveToNext Moves cursor pointer next to current position.

isAfterLast Returs false, if cursor pointer is not at last position of result
set.

Mobile Application Development Page | 51

{

Toast.makeText(DataBaseDemoActivity.this, "Insert Error", 2000).show();
}
eid.setText("");

ename.setText("");

Cursor c=db.rawQuery("SELECT * FROM temp",null);

c.moveToFirst();
while(!c.isAfterLast())
{

Toast.makeText(DataBaseDemoActivity.this,c.getString(0)+ " "+c.getString(1),1000).show();

c.moveToNext();
}

c.close();

}

});
}

@Override

protected void onStop() {

// TODO Auto-generated method stub

db.close();
super.onStop();

}

}

To see where your database is stored, (1)Start Your Emulator (It is necessary to start Emulator to see File

Explorer content and (2) Open "File Explorer"

Data -> Data -> find your "package" -> databases -> "database"

Mobile Application Development Page | 52

