
MCA23021 – ARTIFICIAL INTELLIGENCE &

MACHINE LEARNING

III SEMESTER MCA (2024 Regulations)

UNIT-I
UNIT I INTRODUCTION

Introduction –Foundation of Artificial Intelligence –Intelligent Agents– structure of agents – Definitions

of a rational agent, reflex, model-based, goal-based, and utility-based agents, the environment in which a

particular agent operates.

1.1 Introduction to AI

1.1.1 What is artificial intelligence?
Artificial Intelligence is the branch of computer science concerned with making computers

behave like humans.

Major AI textbooks define artificial intelligence as "the study and design of intelligent

agents," where an intelligent agent is a system that perceives its environment and takes actions

which maximize its chances of success. John McCarthy, who coined the term in 1956, defines it as

"the science and engineering of making intelligent machines, especially intelligent computer

programs."

The definitions of AI according to some text books are categorized into four approaches and are

summarized in the table below:

Systems that think like humans

―The exciting new effort to make computers

think … machines with minds, in the full

and literal sense.‖(Haugeland,1985)

Systems that think rationally

―The study of mental faculties through the use of

computer models.‖

(Charniak and McDermont,1985)

Systems that act like humans

The art of creating machines that perform

functions that require intelligence when

performed by people.‖(Kurzweil,1990)

Systems that act rationally

“Computational intelligence is the study of the

design of intelligent agents.‖(Poole et al.,1998)

The four approaches in more detail are as follows :

(a) Acting humanly: The Turing Test approach
o Test proposed by Alan Turing in 1950

o The computer is asked questions by a human interrogator.

The computer passes the test if a human interrogator, after posing some written questions, cannot

tell whether the written responses come from a person or not. Programming a computer to pass, the

computer need to possess the following capabilities:

 Natural language processing to enable it to communicate successfully in English.

 Knowledge representation to store what it knows or hears

 Automated reasoning to use the stored information to answer questions and to draw

new conclusions.

 Machine learning to adapt to new circumstances and to detect and extrapolate

patterns

To pass the complete Turing Test, the computer will need

 Computer vision to perceive the objects, and

 Robotics to manipulate objects and move about.

(b) Thinking humanly : The cognitive modeling approach

We need to get inside actual working of the human mind :
(a) through introspection – trying to capture our own thoughts as they go by;

(b) through psychological experiments

Allen Newell and Herbert Simon, who developed GPS, the ―General Problem Solver‖

tried to trace the reasoning steps to traces of human subjects solving the same problems.

The interdisciplinary field of cognitive science brings together computer models from AI

and experimental techniques from psychology to try to construct precise and testable

theories of the workings of the human mind

(c) Thinking rationally : The “laws of thought approach”
The Greek philosopher Aristotle was one of the first to attempt to codify ―right thinking‖, that

is irrefutable reasoning processes. His syllogism provided patterns for argument structures that

always yielded correct conclusions when given correct premises—for example, ‖Socrates is a

man; all men are mortal; therefore Socrates is mortal.‖.

These laws of thought were supposed to govern the operation of the mind; their study initiated

a field called logic.

(d) Acting rationally : The rational agent approach
An agent is something that acts. Computer agents are not mere programs ,but they are expected to

have the following attributes also : (a) operating under autonomous control, (b) perceiving their

environment, (c) persisting over a prolonged time period, (e) adapting to change.

A rational agent is one that acts so as to achieve the best outcome.

1.1.2 The foundations of Artificial Intelligence

The various disciplines that contributed ideas, viewpoints, and techniques to AI are given

below :

Philosophy(428 B.C. – present)

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the rational part

of the mind. He developed an informal system of syllogisms for proper reasoning, which allowed

one to generate conclusions mechanically, given initial premises.

 Computer Human Brain

Computational units

Storage units

Cycle time

Bandwidth
Memory updates/sec

1 CPU,10
8
 gates

10
10

 bits RAM

10
11

 bits disk

10
-9

 sec

10
10

 bits/sec
10

9

10
11

 neurons
10

11
 neurons

10
14

 synapses

10
-3

 sec

10
14

 bits/sec
1014

Table 1.1 A crude comparison of the raw computational resources available to computers(circa
2003) and brain. The computer‘s numbers have increased by at least by a factor of 10 every few
years. The brain‘s numbers have not changed for the last 10,000 years.

Brains and digital computers perform quite different tasks and have different properties. Table 1.1

shows that there are 10000 times more neurons in the typical human brain than there are gates in

the CPU of a typical high-end computer. Moore‘s Law predicts that the CPU‘s gate count will equal

the brain‘s neuron count around 2020.

Psycology (1879 – present)

The origin of scientific psychology are traced back to the wok if German physiologist Hermann von

Helmholtz (1821-1894) and his student Wilhelm Wundt(1832 – 1920). In 1879,Wundt opened the

first laboratory of experimental psychology at the university of Leipzig. In US, the development of

computer modeling led to the creation of the field of cognitive science. The field can be said to

have started at the workshop in September 1956 at MIT.

Computer engineering (1940-present)
For artificial intelligence to succeed, we need two things: intelligence and an artifact. The c

computer has been the artifact of choice.

A1 also owes a debt to the software side of computer science, which has supplied the operating

systems, programming languages, and tools needed to write modern programs

Control theory and Cybernetics (1948-present)
Ktesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a water clock with a

regulator that kept the flow of water running through it at a constant, predictable pace.

Modern control theory, especially the branch known as stochastic optimal control, has as its goal

the design of systems that maximize an objective function over time.

Linguistics (1957-present)
Modem linguistics and AI, then, were "born" at about the same time, and grew up together,

intersecting in a hybrid field called computational linguistics or natural language processing.

1.1.3 The History of Artificial Intelligence

The gestation of artificial intelligence (1943-1955)
There were a number of early examples of work that can be characterized as AI, but it was Alan

Turing who first articulated a complete vision of A1 in his 1950 article "Computing Machinery and

Intelligence."

Therein, he introduced the Turing test, machine learning, genetic algorithms, and reinforcement

learning.

The birth of artificial intelligence (1956)

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring together

U.S. researchers interested in automata theory, neural nets, and the study of intelligence. They

organized a two-month workshop at Dartmouth in the summer of 1956.

Perhaps the longest-lasting thing to come out of the workshop was an agreement to adopt

McCarthy's new name for the field: artificial intelligence.

Early enthusiasm, great expectations (1952-1969)

The early years of A1 were full of successes-in a limited way.

General Problem Solver (GPS) was a computer program created in 1957 by Herbert Simon and

Allen Newell to build a universal problem solver machine. The order in which the program

considered sub goals and possible actions was similar to that in which humans approached the same

problems. Thus, GPS was probably the first program to embody the "thinking humanly" approach.

At IBM, Nathaniel Rochester and his colleagues produced some of the first A1 pro- grams. Herbert

Gelernter (1959) constructed the Geometry Theorem Prover, which was able to prove theorems that

many students of mathematics would find quite tricky.

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts Institute of

Technology (MIT). In 1963, McCarthy started the AI lab at Stanford.

Tom Evans's ANALOGY program (1968) solved geometric analogy problems that appear in IQ

tests, such as the one in Figure 1.1

Figure 1.1 The Tom Evan‘s ANALOGY program could solve geometric analogy problems as

shown.

A dose of reality (1966-1973)
From the beginning, AI researchers were not shy about making predictions of their coming

successes. The following statement by Herbert Simon in 1957 is often quoted:

―It is not my aim to surprise or shock you-but the simplest way I can summarize is to say that there

are now in the world machines that think, that learn and that create. Moreover, their ability to do

these things is going to increase rapidly until-in a visible future-the range of problems they can

handle will be coextensive with the range to which the human mind has been applied.

Knowledge-based systems: The key to power? (1969-1979)
Dendral was an influential pioneer project in artificial intelligence (AI) of the 1960s, and the

computer software expert system that it produced. Its primary aim was to help organic chemists in

identifying unknown organic molecules, by analyzing their mass spectra and using knowledge of

chemistry. It was done at Stanford University by Edward Feigenbaum, Bruce Buchanan, Joshua

Lederberg, and Carl Djerassi.

A1 becomes an industry (1980-present)
In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build

intelligent computers running Prolog. Overall, the A1 industry boomed from a few million dollars

in 1980 to billions of dollars in 1988.

The return of neural networks (1986-present)
Psychologists including David Rumelhart and Geoff Hinton continued the study of neural-net

models of memory.

A1 becomes a science (1987-present)
In recent years, approaches based on hidden Markov models (HMMs) have come to dominate the

area. Speech technology and the related field of handwritten character recognition are already

making the transition to widespread industrial and consumer applications.

The Bayesian network formalism was invented to allow efficient representation of, and rigorous

reasoning with, uncertain knowledge.

The emergence of intelligent agents (1995-present)
One of the most important environments for intelligent agents is the Internet.

1.1.4 The state of art
What can A1 do today?

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's Remote

Agent program became the first on-board autonomous planning program to control the scheduling

of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated plans from high-level

goals specified from the ground, and it monitored the operation of the spacecraft as the plans were

executed-detecting, diagnosing, and recovering from problems as they occurred.

Game playing: IBM's Deep Blue became the first computer program to defeat the world champion

in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in an exhibition match

(Goodman and Keene, 1997).

Autonomous control: The ALVINN computer vision system was trained to steer a car to keep it

following a lane. It was placed in CMU's NAVLAB computer-controlled minivan and used to

navigate across the United States-for 2850 miles it was in control of steering the vehicle 98% of the

time.

Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able to perform

at the level of an expert physician in several areas of medicine.

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic

Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics

planning and scheduling for transportation. This involved up to 50,000 vehicles, cargo, and people

at a time, and had to account for starting points, destinations, routes, and conflict resolution among

all parameters. The AI planning techniques allowed a plan to be generated in hours that would have

taken weeks with older methods. The Defense Advanced Research Project Agency (DARPA)

stated that this single application more than paid back DARPA's 30-year investment in AI.

Robotics: Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia et al., 1996)

is a system that uses computer vision techniques to create a three-dimensional model of a patient's

internal anatomy and then uses robotic control to guide the insertion of a hip replacement

prosthesis.

Language understanding and problem solving: PROVERB (Littman et al., 1999) is a computer

program that solves crossword puzzles better than most humans, using constraints on possible word

fillers, a large database of past puzzles, and a variety of information sources including dictionaries

and online databases such as a list of movies and the actors that appear in them.

1.2 INTELLIGENT AGENTS

1.2.1 Agents and environments
An agent is anything that can be viewed as perceiving its environment through sensors and

SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure 1.2.

o A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and

other body parts for actuators.
o A robotic agent might have cameras and infrared range finders for sensors and various

motors for actuators.
o A software agent receives keystrokes, file contents, and network packets as sensory inputs

and acts on the environment by displaying on the screen, writing files, and sending
network packets.

Percept
We use the term percept to refer to the agent's perceptual inputs at any given instant.

Percept Sequence
An agent's percept sequence is the complete history of everything the agent has ever perceived.

Agent function

Figure 1.2 Agents interact with environments through sensors and actuators.

Mathematically speaking, we say that an agent's behavior is described by the agent function
that maps any given percept sequence to an action.

Agent program

Internally, The agent function for an artificial agent will be implemented by an agent

program. It is important to keep these two ideas distinct. The agent function is an abstract

mathematical description; the agent program is a concrete implementation, running on the agent

architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world

shown in Figure 1.3. This particular world has just two locations: squares A and B. The vacuum

agent perceives which square it is in and whether there is dirt in the square. It can choose to move

left, move right, suck up the dirt, or do nothing. One very simple agent function is the following: if

the current square is dirty, then suck, otherwise move to the other square. A partial tabulation of this

agent function is shown in Figure 1.4.

Agent function

Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

…

Figure 1.4 Partial tabulation of a

simple agent function for the

vacuum-cleaner world shown in

Figure 1.3.

Figure 1.3 A vacuum-cleaner world with just two

locations.

Rational Agent

A rational agent is one that does the right thing-conceptually speaking, every entry in

the table for the agent function is filled out correctly. Obviously, doing the right thing is

better than doing the wrong thing. The right action is the one that will cause the agent to be

most successful.

Performance measures
A performance measure embodies the criterion for success of an agent's behavior. When

an agent is plunked down in an environment, it generates a sequence of actions according

to the percepts it receives. This sequence of actions causes the environment to go through a

sequence of states. If the sequence is desirable, then the agent has performed well.

Rationality
What is rational at any given time depends on four things:

o The performance measure that defines the criterion of success.

o The agent's prior knowledge of the environment.

o The actions that the agent can perform.

o The agent's percept sequence to date.

This leads to a definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is ex-

pected to maximize its performance measure, given the evidence provided by the percept

sequence and whatever built-in knowledge the agent has.

Omniscience, learning, and autonomy
An omniscient agent knows the actual outcome of its actions and can act accordingly; but

omniscience is impossible in reality.

Doing actions in order to modify future percepts-sometimes called information gathering-is

an important part of rationality.

Our definition requires a rational agent not only to gather information, but also to learn

as much as possible from what it perceives.

To the extent that an agent relies on the prior knowledge of its designer rather than

on its own percepts, we say that the agent lacks autonomy. A rational agent should be

autonomous-it should learn what it can to compensate for partial or incorrect prior knowledge.

Task environments
We must think about task environments, which are essentially the "problems" to which rational agents are
the "solutions."

Specifying the task environment
The rationality of the simple vacuum-cleaner agent, needs specification of

o the performance measure

o the environment

o the agent's actuators and sensors.

PEAS
All these are grouped together under the heading of the task environment.

We call this the PEAS (Performance, Environment, Actuators, Sensors) description.

In designing an agent, the first step must always be to specify the task environment as fully

as possible.

Agent Type Performance

Measure

Environments Actuators Sensors

Taxi driver Safe: fast, legal,

comfortable trip,

maximize profits

Roads,other

traffic,pedestrians,

customers

Steering,accelerator,

brake,

Signal,horn,display

Cameras,sonar,

Speedometer,GPS,

Odometer,engine

sensors,keyboards,

accelerometer

Figure 1.5 PEAS description of the task environment for an automated taxi.

 Figure 1.6 Examples of agent types and their PEAS descriptions.

Properties of task environments

o Fully observable vs. partially observable

o Deterministic vs. stochastic

o Episodic vs. sequential

o Static vs. dynamic

o Discrete vs. continuous

o Single agent vs. multiagent
Fully observable vs. partially observable.

If an agent's sensors give it access to the complete state of the environment at each

point in time, then we say that the task environment is fully observable. A task envi-

ronment is effectively fully observable if the sensors detect all aspects that are relevant

to the choice of action;

An environment might be partially observable because of noisy and inaccurate sensors or because

parts of the state are simplly missing from the sensor data.

Deterministic vs. stochastic.

If the next state of the environment is completely determined by the current state and

the action executed by the agent, then we say the environment is deterministic; other-

wise, it is stochastic.

Episodic vs. sequential

In an episodic task environment, the agent's experience is divided into atomic episodes.

Each episode consists of the agent perceiving and then performing a single action. Cru-

cially, the next episode does not depend on the actions taken in previous episodes.

Function TABLE-DRIVEN_AGENT(percept) returns an action

static: percepts, a sequence initially empty

table, a table of actions, indexed by percept sequence

For example, an agent that has to spot defective parts on an assembly line bases each decision on

the current part, regardless of previous decisions;

In sequential environments, on the other hand, the current decision

could affect all future decisions. Chess and taxi driving are sequential:

Discrete vs. continuous.

The discrete/continuous distinction can be applied to the state of the environment, to

the way time is handled, and to the percepts and actions of the agent. For example, a

discrete-state environment such as a chess game has a finite number of distinct states.

Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-

state and continuous-time problem: the speed and location of the taxi and of the other

vehicles sweep through a range of continuous values and do so smoothly over time.

Taxi-driving actions are also continuous (steering angles, etc.).

Single agent vs. multiagent.

An agent solving a crossword puzzle by itself is clearly in a

single-agent environment, whereas an agent playing chess is in a two-agent environ-

ment.
As one might expect, the hardest case is partially observable, stochastic, sequential, dynamic,

continuous, and multiagent.

Figure 1.7 lists the properties of a number of familiar environments.

Figure 1.7 Examples of task environments and their characteristics.

Agent programs
The agent programs all have the same skeleton: they take the current percept as input from the

sensors and return an action to the actuatom6 Notice the difference between the agent program,

which takes the current percept as input, and the agent function, which takes the entire percept

history. The agent program takes just the current percept as input because nothing more is available

from the environment; if the agent's actions depend on the entire percept sequence, the agent will

have to remember the percepts.

append percept to the end of percepts

action  LOOKUP(percepts, table)

return action

Figure 1.8 The TABLE-DRIVEN-AGENT program is invoked for each new percept and

returns an action each time.

Drawbacks:

• Table lookup of percept-action pairs defining all possible condition-action rules necessary

to interact in an environment

• Problems

– Too big to generate and to store (Chess has about 10^120 states, for example)
– No knowledge of non-perceptual parts of the current state

– Not adaptive to changes in the environment; requires entire table to be updated if

changes occur

– Looping: Can't make actions conditional

• Take a long time to build the table

• No autonomy

• Even with learning, need a long time to learn the table entries

Some Agent Types

• Table-driven agents

– use a percept sequence/action table in memory to find the next action. They are

implemented by a (large) lookup table.

• Simple reflex agents

– are based on condition-action rules, implemented with an appropriate production

system. They are stateless devices which do not have memory of past world states.

• Agents with memory

– have internal state, which is used to keep track of past states of the world.

• Agents with goals

– are agents that, in addition to state information, have goal information that describes

desirable situations. Agents of this kind take future events into consideration.

• Utility-based agents

– base their decisions on classic axiomatic utility theory in order to act rationally.

Simple Reflex Agent

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis of the

current percept, ignoring the rest of the percept history. For example, the vacuum agent whose agent function

is tabulated in Figure 1.10 is a simple reflex agent, because its decision is based only on the current location

and on whether that contains dirt.

o Select action on the basis of only the current percept.
E.g. the vacuum-agent

o Large reduction in possible percept/action situations(next page).

o Implemented through condition-action rules
If dirty then suck

A Simple Reflex Agent: Schema

function SIMPLE-REFLEX-AGENT(percept) returns an action

static: rules, a set of condition-action rules

state  INTERPRET-INPUT(percept)

rule  RULE-MATCH(state, rule)

action  RULE-ACTION[rule]

return action

Figure 1.10 A simple reflex agent. It acts according to a rule whose condition matches

the current state, as defined by the percept.

function REFLEX-VACUUM-AGENT ([location, status]) return an action
if status == Dirty then return Suck
else if location == A then return Right
else if location == B then return Left

Figure 1.11 The agent program for a simple reflex agent in the two-state vacuum environment. This
program implements the agent function tabulated in the figure 1.4.

 Characteristics

o Only works if the environment is fully observable.

o Lacking history, easily get stuck in infinite loops

o One solution is to randomize actions
o

Figure 1.9 Schematic diagram of a simple reflex agent.

Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the part of the

world it can't see now. That is, the agent should maintain some sort of internal state that depends on the

percept history and thereby reflects at least some of the unobserved aspects of the current state.

Updating this internal state information as time goes by requires two kinds of knowledge to be encoded

in the agent program. First, we need some information about how the world evolves independently of the

agent-for example, that an overtaking car generally will be closer behind than it was a moment ago.

Second, we need some information about how the agent's own actions affect the world-for example, that

when the agent turns the steering wheel clockwise, the car turns to the right or that after driving for five

minutes northbound on the freeway one is usually about five miles north of where one was five minutes

ago. This knowledge about "how the world working - whether implemented in simple Boolean circuits

or in complete scientific theories-is called a model of the world. An agent that uses such a MODEL-

BASED model is called a model-based agent.

function REFLEX-AGENT-WITH-STATE(percept) returns an action
static: rules, a set of condition-action rules

state, a description of the current world state

action, the most recent action.

state  UPDATE-STATE(state, action, percept)

rule  RULE-MATCH(state, rule)

action  RULE-ACTION[rule]

return action

Figure 1.13 Model based reflex agent. It keeps track of the current state of the world using an internal

model. It then chooses an action in the same way as the reflex agent.

Figure 1.12 A model based reflex agent

Goal-based agents
Knowing about the current state of the environment is not always enough to decide what to do. For

example, at a road junction, the taxi can turn left, turn right, or go straight on. The correct decision

depends on where the taxi is trying to get to. In other words, as well as a current state description, the

agent needs some sort of goal information that describes situations that are desirable-for example, being

at the passenger's destination. The agent program can combine this with information about the results of

possible actions (the same information as was used to update internal state in the reflex agent) in order to

choose actions that achieve the goal. Figure 1.13 shows the goal-based agent's structure.

Utility-based agents
Goals alone are not really enough to generate high-quality behavior in most environments. For example,

there are many action sequences that will get the taxi to its destination (thereby achieving the goal) but

some are quicker, safer, more reliable, or cheaper than others. Goals just provide a crude binary

distinction between "happy" and "unhappy" states, whereas a more general performance measure

should allow a comparison of different world states according to exactly how happy they would make

the agent if they could be achieved. Because "happy" does not sound very scientific, the customary

terminology is to say that if one world state is preferred to another, then it has higher utility for the

agent.

Figure 1.15 A model-based, utility-based agent. It uses a model of the world, along with

a utility function that measures its preferences among states of the world. Then it chooses the

action that leads to the best expected utility, where expected utility is computed by averaging

over all possible outcome states, weighted by the probability of the outcome.

Figure 1.14 A goal based agent

• Certain goals can be reached in different ways.

– Some are better, have a higher utility.

• Utility function maps a (sequence of) state(s) onto a real number.

• Improves on goals:

– Selecting between conflicting goals

– Select appropriately between several goals based on likelihood of success.

• All agents can improve their performance through learning.

A learning agent can be divided into four conceptual components, as shown in Figure 1.15 The

most important distinction is between the learning element, which is responsible for making

improvements, and the performance element, which is responsible for selecting external actions. The

performance element is what we have previously considered to be the entire agent: it takes in percepts

and decides on actions. The learning element uses feedback from the critic on how the agent is doing

and determines how the performance element should be modified to do better in the future.

The last component of the learning agent is the problem generator. It is responsible for suggesting

actions that will lead to new and informative experiences. But if the agent is willing to explore a

little, it might discover much better actions for the long run. The problem generator's job is to suggest

these exploratory actions. This is what scientists do when they carry out experiments.

Figure 1.16 A general model of learning agents.

Summary: Intelligent Agents
• An agent perceives and acts in an environment, has an architecture, and is implemented by an

agent program.

• Task environment – PEAS (Performance, Environment, Actuators, Sensors)

• The most challenging environments are inaccessible, nondeterministic, dynamic, and

continuous.

• An ideal agent always chooses the action which maximizes its expected performance, given its

percept sequence so far.

• An agent program maps from percept to action and updates internal state.

– Reflex agents respond immediately to percepts.

• simple reflex agents

• model-based reflex agents

– Goal-based agents act in order to achieve their goal(s).

– Utility-based agents maximize their own utility function.

• All agents can improve their performance through learning.

MDS23022 - ARTIFICIAL INTELLIGENCE &

 MACHINE LEARNING
 II SEMESTER M.Sc Data Science (2023 Regulations)

UNIT-II

(2) SEARCHING TECHNIQUES

UNIT II PROBLEM SOLVING METHODS 9
Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics - Local

Search Algorithms and Optimization Problems - Searching with Partial Observations –

Constraint Satisfaction Problems – Constraint Propagation - Backtracking Search - Game

Playing – Optimal Decisions in Games – Alpha - Beta Pruning - Stochastic Games

2.0 Problem Solving by Search
An important aspect of intelligence is goal-based problem solving.
The solution of many problems can be described by finding a sequence of actions that lead to a

desirable goal. Each action changes the state and the aim is to find the sequence of actions and

states that lead from the initial (start) state to a final (goal) state.

A well-defined problem can be described by:

 Initial state

 Operator or successor function - for any state x returns s(x), the set of states reachable

from x with one action

 State space - all states reachable from initial by any sequence of actions

 Path - sequence through state space

 Path cost - function that assigns a cost to a path. Cost of a path is the sum of costs of

individual actions along the path

 Goal test - test to determine if at goal state

What is Search?
Search is the systematic examination of states to find path from the start/root state to the goal

state.

The set of possible states, together with operators defining their connectivity constitute the search

space.

The output of a search algorithm is a solution, that is, a path from the initial state to a state that

satisfies the goal test.

Problem-solving agents

A Problem solving agent is a goal-based agent . It decide what to do by finding sequence of

actions that lead to desirable states. The agent can adopt a goal and aim at satisfying it.

To illustrate the agent‘s behavior ,let us take an example where our agent is in the city of

Arad,which is in Romania. The agent has to adopt a goal of getting to Bucharest.

Goal formulation,based on the current situation and the agent‘s performance measure,is the first

step in problem solving.

The agent‘s task is to find out which sequence of actions will get to a goal state.

Problem formulation is the process of deciding what actions and states to consider given a goal.

Example: Route finding problem
Referring to figure 1.19

On holiday in Romania : currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal: be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem formulation
A problem is defined by four items:
initial state e.g., ―at Arad"

successor function S(x) = set of action-state pairs

e.g., S(Arad) = {[Arad -> Zerind;Zerind],….}

goal test, can be

explicit, e.g., x = at Bucharest"

implicit, e.g., NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x; a; y) is the step cost, assumed to be >= 0

A solution is a sequence of actions leading from the initial state to a goal state.

Figure 1.17 Goal formulation and problem formulation

Search

An agent with several immediate options of unknown value can decide what to do by examining

different possible sequences of actions that leads to the states of known value,and then choosing the

best sequence. The process of looking for sequences actions from the current state to reach the goal

state is called search.

The search algorithm takes a problem as input and returns a solution in the form of action

sequence. Once a solution is found,the execution phase consists of carrying out the recommended

action..

Figure 1.18 shows a simple ―formulate,search,execute‖ design for the agent. Once solution has been

executed,the agent will formulate a new goal.

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
inputs : percept, a percept

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state UPDATE-STATE(state, percept)

if seq is empty then do

goal FORMULATE-GOAL(state)

problem FORMULATE-PROBLEM(state, goal)

seq SEARCH(problem)

action FIRST(seq);

seq REST(seq)

return action

Figure 1.18 A Simple problem solving agent. It first formulates a goal and a
problem,searches for a sequence of actions that would solve a problem,and executes the actions

one at a time.

 The agent design assumes the Environment is
• Static : The entire process carried out without paying attention to changes that

might be occurring in the environment.

• Observable : The initial state is known and the agent‘s sensor detects all aspects that

are relevant to the choice of action

• Discrete : With respect to the state of the environment and percepts and actions so

that alternate courses of action can be taken

• Deterministic : The next state of the environment is completely determined by the

current state and the actions executed by the agent. Solutions to the problem are

single sequence of actions

An agent carries out its plan with eye closed. This is called an open loop system because ignoring

the percepts breaks the loop between the agent and the environment.

2.0.1 Well-defined problems and solutions

A problem can be formally defined by four components:

 The initial state that the agent starts in . The initial state for our agent of example problem is
described by In(Arad)

 A Successor Function returns the possible actions available to the agent. Given a state

x,SUCCESSOR-FN(x) returns a set of {action,successor} ordered pairs where each action is

one of the legal actions in state x,and each successor is a state that can be reached from x by

applying the action.

For example,from the state In(Arad),the successor function for the Romania problem would

return

{ [Go(Sibiu),In(Sibiu)],[Go(Timisoara),In(Timisoara)],[Go(Zerind),In(Zerind)] }

 State Space : The set of all states reachable from the initial state. The state space forms a

graph in which the nodes are states and the arcs between nodes are actions.

 A path in the state space is a sequence of states connected by a sequence of actions.

 Thr goal test determines whether the given state is a goal state.

 A path cost function assigns numeric cost to each action. For the Romania problem the cost

of path might be its length in kilometers.

 The step cost of taking action a to go from state x to state y is denoted by c(x,a,y). The step

cost for Romania are shown in figure 1.18. It is assumed that the step costs are non negative.

 A solution to the problem is a path from the initial state to a goal state.

 An optimal solution has the lowest path cost among all solutions.

Figure 1.19 A simplified Road Map of part of Romania

2.0.2 EXAMPLE PROBLEMS
The problem solving approach has been applied to a vast array of task environments. Some

best known problems are summarized below. They are distinguished as toy or real-world

problems

A toy problem is intended to illustrate various problem solving methods. It can be easily

used by different researchers to compare the performance of algorithms.

A real world problem is one whose solutions people actually care about.

2.0.2.1 TOY PROBLEMS

Vacuum World Example

o States: The agent is in one of two locations.,each of which might or might not contain dirt.

Thus there are 2 x 2
2
 = 8 possible world states.

o Initial state: Any state can be designated as initial state.
o Successor function : This generates the legal states that results from trying the three actions

(left, right, suck). The complete state space is shown in figure 2.3

o Goal Test : This tests whether all the squares are clean.

o Path test : Each step costs one ,so that the the path cost is the number of steps in the path.

Vacuum World State Space

The 8-puzzle

An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank space. A tile adjacent to

the balank space can slide into the space. The object is to reach the goal state ,as shown in figure 2.4

Example: The 8-puzzle

Figure 1.21 A typical instance of 8-puzzle.

Figure 1.20 The state space for the vacuum world.

Arcs denote actions: L = Left,R = Right,S = Suck

The problem formulation is as follows :

o States : A state description specifies the location of each of the eight tiles and the blank in
one of the nine squares.

o Initial state : Any state can be designated as the initial state. It can be noted that any given
goal can be reached from exactly half of the possible initial states.

o Successor function : This generates the legal states that result from trying the four
actions(blank moves Left,Right,Up or down).

o Goal Test : This checks whether the state matches the goal configuration shown in figure
2.4.(Other goal configurations are possible)

o Path cost : Each step costs 1,so the path cost is the number of steps in the path.
o

The 8-puzzle belongs to the family of sliding-block puzzles,which are often used as test

problems for new search algorithms in AI. This general class is known as NP-complete.

The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved.

The 15 puzzle (4 x 4 board) has around 1.3 trillion states,an the random instances can be

solved optimally in few milli seconds by the best search algorithms.

The 24-puzzle (on a 5 x 5 board) has around 10
25

 states ,and random instances are still quite

difficult to solve optimally with current machines and algorithms.

8-queens problem
The goal of 8-queens problem is to place 8 queens on the chessboard such that no queen

attacks any other.(A queen attacks any piece in the same row,column or diagonal).

Figure 2.5 shows an attempted solution that fails: the queen in the right most column is

attacked by the queen at the top left.

An Incremental formulation involves operators that augments the state description,starting

with an empty state.for 8-queens problem,this means each action adds a queen to the state.

A complete-state formulation starts with all 8 queens on the board and move them around.

In either case the path cost is of no interest because only the final state counts.

The first incremental formulation one might try is the following :

o States : Any arrangement of 0 to 8 queens on board is a state.

o Initial state : No queen on the board.

o Successor function : Add a queen to any empty square.

o Goal Test : 8 queens are on the board,none attacked.

Figure 1.22 8-queens problem

In this formulation,we have 64.63…57 = 3 x 10
14

 possible sequences to investigate.

A better formulation would prohibit placing a queen in any square that is already attacked.

:

o States : Arrangements of n queens (0 <= n < = 8) ,one per column in the left most columns
,with no queen attacking another are states.

o Successor function : Add a queen to any square in the left most empty column such that it
is not attacked by any other queen.

This formulation reduces the 8-queen state space from 3 x 10
14

 to just 2057,and solutions are

easy to find.

For the 100 queens the initial formulation has roughly 10
400

 states whereas the improved

formulation has about 10
52

 states. This is a huge reduction,but the improved state space is still

too big for the algorithms to handle.

2.0.1 REAL-WORLD PROBLEMS

ROUTE-FINDING PROBLEM

Route-finding problem is defined in terms of specified locations and transitions along links

between them. Route-finding algorithms are used in a variety of applications,such as routing in

computer networks,military operations planning,and air line travel planning systems.

AIRLINE TRAVEL PROBLEM

The airline travel problem is specifies as follows :

o States : Each is represented by a location(e.g.,an airport) and the current time.

o Initial state : This is specified by the problem.
o Successor function : This returns the states resulting from taking any scheduled

flight(further specified by seat class and location),leaving later than the current time plus
the within-airport transit time,from the current airport to another.

o Goal Test : Are we at the destination by some prespecified time?
o Path cost : This depends upon the monetary cost,waiting time,flight time,customs and

immigration procedures,seat quality,time of dat,type of air plane,frequent-flyer mileage
awards, and so on.

TOURING PROBLEMS

Touring problems are closely related to route-finding problems,but with an important difference.

Consider for example,the problem,‖Visit every city at least once‖ as shown in Romania map.

As with route-finding the actions correspond to trips between adjacent cities. The state space,

however,is quite different.

The initial state would be ―In Bucharest; visited{Bucharest}‖.

A typical intermediate state would be ―In Vaslui;visited {Bucharest,Urziceni,Vaslui}‖.

The goal test would check whether the agent is in Bucharest and all 20 cities have been visited.

THE TRAVELLING SALESPERSON PROBLEM(TSP)

Is a touring problem in which each city must be visited exactly once. The aim is to find the

shortest tour.The problem is known to be NP-hard. Enormous efforts have been expended to

improve the capabilities of TSP algorithms. These algorithms are also used in tasks such as

planning movements of automatic circuit-board drills and of stocking machines on shop

floors.

VLSI layout

A VLSI layout problem requires positioning millions of components and connections on a chip

to minimize area ,minimize circuit delays,minimize stray capacitances,and maximize

manufacturing yield. The layout problem is split into two parts : cell layout and channel

routing.

ROBOT navigation

ROBOT navigation is a generalization of the route-finding problem. Rather than a discrete set

of routes,a robot can move in a continuous space with an infinite set of possible actions and

states. For a circular Robot moving on a flat surface,the space is essentially two-dimensional.

When the robot has arms and legs or wheels that also must be controlled,the search space

becomes multi-dimensional. Advanced techniques are required to make the search space finite.

AUTOMATIC ASSEMBLY SEQUENCING

The example includes assembly of intricate objects such as electric motors. The aim in assembly

problems is to find the order in which to assemble the parts of some objects. If the wrong order

is choosen,there will be no way to add some part later without undoing somework already done.

Another important assembly problem is protein design,in which the goal is to find a sequence of

Amino acids that will be fold into a three-dimensional protein with the right properties to cure

some disease.

INTERNET SEARCHING

In recent years there has been increased demand for software robots that perform Internet

searching.,looking for answers to questions,for related information,or for shopping deals. The

searching techniques consider internet as a graph of nodes(pages) connected by links.

2.0.2 SEARCHING FOR SOLUTIONS

SEARCH TREE

Having formulated some problems,we now need to solve them. This is done by a search through

the state space. A search tree is generated by the initial state and the successor function that

together define the state space. In general,we may have a search graph rather than a search

tree,when the same state can be reached from multiple paths.

Figure 1.23 shows some of the expansions in the search tree for finding a route from Arad to

Bucharest.

The root of the search tree is a search node corresponding to the initial state,In(Arad). The first

step is to test whether this is a goal state. The current state is expanded by applying the successor

function to the current state,thereby generating a new set of states. In this case,we get three new

states: In(Sibiu),In(Timisoara),and In(Zerind). Now we must choose which of these three

possibilities to consider further. This is the essense of search- following up one option now and

putting the others aside for latter,in case the first choice does not lead to a solution.

Search strategy . The general tree-search algorithm is described informally in Figure 1.24

.

Tree Search

The choice of which state to expand is determined by the search strategy. There are an infinite

number paths in this state space ,so the search tree has an infinite number of nodes.

A node is a data structure with five components :

o STATE : a state in the state space to which the node corresponds;

o PARENT-NODE : the node in the search tree that generated this node;

o ACTION : the action that was applied to the parent to generate the node;
o PATH-COST :the cost,denoted by g(n),of the path from initial state to the node,as

indicated by the parent pointers; and

o DEPTH : the number of steps along the path from the initial state.
It is important to remember the distinction between nodes and states. A node is a book keeping

data structure used to represent the search tree. A state corresponds to configuration of the world.

Figure 1.23 Partial search trees for finding a route from Arad to Bucharest. Nodes that have

been expanded are shaded.; nodes that have been generated but not yet expanded are outlined in

bold;nodes that have not yet been generated are shown in faint dashed line

Figure 1.24 An informal description of the general tree-search algorithm

Figure 1.25 Nodes are data structures from which the search tree is

constructed. Each has a parent,a state, Arrows point from child to parent.

Fringe

Fringe is a collection of nodes that have been generated but not yet been expanded. Each element

of the fringe is a leaf node,that is,a node with no successors in the tree. The fringe of each tree

consists of those nodes with bold outlines.

The collection of these nodes is implemented as a queue.

The general tree search algorithm is shown in Figure 2.9

 Figure 1.26 The general Tree search algorithm

The operations specified in Figure 1.26 on a queue are as follows:

o MAKE-QUEUE(element,…) creates a queue with the given element(s).

o EMPTY?(queue) returns true only if there are no more elements in the queue.

o FIRST(queue) returns FIRST(queue) and removes it from the queue.
o INSERT(element,queue) inserts an element into the queue and returns the resulting

queue.

o INSERT-ALL(elements,queue) inserts a set of elements into the queue and returns the
resulting queue.

MEASURING PROBLEM-SOLVING PERFORMANCE

The output of problem-solving algorithm is either failure or a solution.(Some algorithms might

struck in an infinite loop and never return an output.

The algorithm‘s performance can be measured in four ways :

o Completeness : Is the algorithm guaranteed to find a solution when there is one?

o Optimality : Does the strategy find the optimal solution

o Time complexity : How long does it take to find a solution?

o Space complexity : How much memory is needed to perform the search?

2.0.3 UNINFORMED SEARCH STRATGES

Uninformed Search Strategies have no additional information about states beyond that provided

in the problem definition.

Strategies that know whether one non goal state is ―more promising‖ than another are called

Informed search or heuristic search strategies.

There are five uninformed search strategies as given below.

o Breadth-first search

o Uniform-cost search

o Depth-first search

o Depth-limited search

o Iterative deepening search

2.3.4.1 Breadth-first search
Breadth-first search is a simple strategy in which the root node is expanded first,then all

successors of the root node are expanded next,then their successors,and so on. In general,all the

nodes are expanded at a given depth in the search tree before any nodes at the next level are

expanded.

Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that is a

first-in-first-out(FIFO) queue,assuring that the nodes that are visited first will be expanded first.

In otherwards,calling TREE-SEARCH(problem,FIFO-QUEUE()) results in breadth-first-search.

The FIFO queue puts all newly generated successors at the end of the queue,which means that

Shallow nodes are expanded before deeper nodes.

Figure 1.27 Breadth-first search on a simple binary tree. At each stage ,the node to be expanded next

is indicated by a marker.

Properties of breadth-first-search

Figure 1.28 Breadth-first-search properties

Figure 1.29 Time and memory requirements for breadth-first-search.
The numbers shown assume branch factor of b = 10 ; 10,000

nodes/second; 1000 bytes/node

Time complexity for BFS

Assume every state has b successors. The root of the search tree generates b nodes at the first

level,each of which generates b more nodes,for a total of b
2
 at the second level. Each of these

generates b more nodes,yielding b
3
 nodes at the third level,and so on. Now suppose,that the

solution is at depth d. In the worst case,we would expand all but the last node at level

d,generating b
d+1

 - b nodes at level d+1.

Then the total number of nodes generated is

b + b
2
 + b

3
 + …+ b

d
 + (b

d+1
 + b) = O(b

d+1).

Every node that is generated must remain in memory,because it is either part of the fringe or is an

ancestor of a fringe node. The space compleity is,therefore ,the same as the time complexity

2.3.4.2 UNIFORM-COST SEARCH
Instead of expanding the shallowest node,uniform-cost search expands the node n with the

lowest path cost. uniform-cost search does not care about the number of steps a path has,but only

about their total cost.

Figure 1.30 Properties of Uniform-cost-search

2.5.1.3 DEPTH-FIRST-SEARCH

Depth-first-search always expands the deepest node in the current fringe of the search tree. The

progress of the search is illustrated in figure 1.31. The search proceeds immediately to the

deepest level of the search tree,where the nodes have no successors. As those nodes are

expanded,they are dropped from the fringe,so then the search ―backs up‖ to the next shallowest

node that still has unexplored successors.

Figure 1.31 Depth-first-search on a binary tree. Nodes that have been expanded and have no
descendants in the fringe can be removed from the memory;these are shown in black. Nodes at

depth 3 are assumed to have no successors and M is the only goal node.

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO) queue,also

known as a stack.

Depth-first-search has very modest memory requirements.It needs to store only a single path

from the root to a leaf node,along with the remaining unexpanded sibling nodes for each node on

the path. Once the node has been expanded,it can be removed from the memory,as soon as its

descendants have been fully explored(Refer Figure 2.12).

For a state space with a branching factor b and maximum depth m,depth-first-search requires

storage of only bm + 1 nodes.

Using the same assumptions as Figure 2.11,and assuming that nodes at the same depth as the goal

node have no successors,we find the depth-first-search would require 118 kilobytes instead of 10

petabytes,a factor of 10 billion times less space.

Drawback of Depth-first-search

The drawback of depth-first-search is that it can make a wrong choice and get stuck going down

very long(or even infinite) path when a different choice would lead to solution near the root of the

search tree. For example ,depth-first-search will explore the entire left subtree even if node C is a

goal node.

BACKTRACKING SEARCH

A variant of depth-first search called backtracking search uses less memory and only one successor

is generated at a time rather than all successors.; Only O(m) memory is needed rather than O(bm)

2.3.4.4 DEPTH-LIMITED-SEARCH
The problem of unbounded trees can be alleviated by supplying depth-first-search with a pre-

determined depth limit l.That is,nodes at depth l are treated as if they have no successors. This

approach is called depth-limited-search. The depth limit soves the infinite path problem.

Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(b
l
) and its

space compleiy is O(bl). Depth-first-search can be viewed as a special case of depth-limited search

with l = oo

Sometimes,depth limits can be based on knowledge of the problem. For,example,on the map of

Romania there are 20 cities. Therefore,we know that if there is a solution.,it must be of length 19 at

the longest,So l = 10 is a possible choice. However,it oocan be shown that any city can be reached

from any other city in at most 9 steps. This number known as the diameter of the state space,gives

us a better depth limit.

Depth-limited-search can be implemented as a simple modification to the general tree-search

algorithm or to the recursive depth-first-search algorithm. The pseudocode for recursive depth-

limited-search is shown in Figure 1.32.

It can be noted that the above algorithm can terminate with two kinds of failure : the standard

failure value indicates no solution; the cutoff value indicates no solution within the depth limit.

Depth-limited search = depth-first search with depth limit l,

returns cut off if any path is cut off by depth limit

function Depth-Limited-Search(problem, limit) returns a solution/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns solution/fail/cutoff

cutoff-occurred? false

if Goal-Test(problem,State[node]) then return Solution(node)

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node, problem) do

result Recursive-DLS(successor, problem, limit)

if result = cutoff then cutoff_occurred? true

else if result not = failure then return result

if cutoff_occurred? then return cutoff else return failure

Figure 1.32 Recursive implementation of Depth-limited-search:

2.3.4.5 ITERATIVE DEEPENING DEPTH-FIRST SEARCH
Iterative deepening search (or iterative-deepening-depth-first-search) is a general strategy often

used in combination with depth-first-search,that finds the better depth limit. It does this by

gradually increasing the limit – first 0,then 1,then 2, and so on – until a goal is found. This will

occur when the depth limit reaches d,the depth of the shallowest goal node. The algorithm is shown

in Figure 2.14.

Iterative deepening combines the benefits of depth-first and breadth-first-search

Like depth-first-search,its memory requirements are modest;O(bd) to be precise.

Like Breadth-first-search,it is complete when the branching factor is finite and optimal when the

path cost is a non decreasing function of the depth of the node.

Figure 2.15 shows the four iterations of ITERATIVE-DEEPENING_SEARCH on a binary search

tree,where the solution is found on the fourth iteration.

Figure 1.33 The iterative deepening search algorithm ,which repeatedly applies depth-limited-

search with increasing limits. It terminates when a solution is found or if the depth limited search

resturns failure,meaning that no solution exists.

Figure 1.34 Four iterations of iterative deepening search on a binary tree

Iterative search is not as wasteful as it might seem

S

Limit = 0

Iterative search is not as wasteful as it might seem

Properties of iterative deepening search

Figure 1.36

E A D B
Limit = 2

D A D A

S S S

Iterative deepening search

S S

A

Limit = 1

D

Figure 1.35

In general,iterative deepening is the prefered uninformed search method when there is a

large search space and the depth of solution is not known.

1.3.4.6 Bidirectional Search

The idea behind bidirectional search is to run two simultaneous searches –

one forward from he initial state and

the other backward from the goal,

stopping when the two searches meet in the middle (Figure 1.37)

The motivation is that b
d/2

 + b
d/2

 much less than ,or in the figure ,the area of the two small circles

is less than the area of one big circle centered on the start and reaching to the goal.

Figure 1.37 A schematic view of a bidirectional search that is about to succeed,when a
Branch from the Start node meets a Branch from the goal node.

1.3.4.7 Comparing Uninformed Search Strategies

Figure 1.38 compares search strategies in terms of the four evaluation criteria .

Figure 1.38 Evaluation of search strategies,b is the branching factor; d is the depth of the

shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript

caveats are as follows:
a
 complete if b is finite;

b
 complete if step costs >= E for positive E;

c

optimal if step costs are all identical;
d
 if both directions use breadth-first search.

2.3.2 AVOIDING REPEATED STATES
In searching,time is wasted by expanding states that have already been encountered and

expanded before. For some problems repeated states are unavoidable. The search trees for these

problems are infinite. If we prune some of the repeated states,we can cut the search tree down to

finite size. Considering search tree upto a fixed depth,eliminating repeated states yields an

exponential reduction in search cost.

Repeated states ,can cause a solvable problem to become unsolvable if the algorithm does not detect

them.

A
A

B B B

C C C C C

Figure 1.39

Repeated states can be the source of great inefficiency: identical sub trees will be explored many

times!

Figure 1.40

Figure 1.41 The General graph search algorithm. The set closed can be implemented with a hash
table to allow efficient checking for repeated states.

Do not return to the previous state.

• Do not create paths with cycles.

• Do not generate the same state twice.

- Store states in a hash table.

- Check for repeated states.

o Using more memory in order to check repeated state

o Algorithms that forget their history are doomed to repeat it.

o Maintain Close-List beside Open-List(fringe)

Strategies for avoiding repeated states

We can modify the general TREE-SEARCH algorithm to include the data structure called the

closed list ,which stores every expanded node. The fringe of unexpanded nodes is called the open

list.

If the current node matches a node on the closed list,it is discarded instead of being expanded.
The new algorithm is called GRAPH-SEARCH and much more efficient than TREE-SEARCH. The

worst case time and space requirements may be much smaller than O(b
d
).

2.3.2 SEARCHING WITH PARTIAL INFORMATION

o Different types of incompleteness lead to three distinct problem types:

o Sensorless problems (conformant): If the agent has no sensors at all
o Contingency problem: if the environment if partially observable or if

action are uncertain (adversarial)

o Exploration problems: When the states and actions of the environment
are unknown.

o No sensor

o Initial State(1,2,3,4,5,6,7,8)

o After action [Right] the state (2,4,6,8)

o After action [Suck] the state (4, 8)

o After action [Left] the state (3,7)

o After action [Suck] the state (8)

o Answer : [Right,Suck,Left,Suck] coerce the world into state 7 without any
sensor

o Belief State: Such state that agent belief to be there

(SLIDE 7) Partial knowledge of states and actions:

– sensorless or conformant problem

– Agent may have no idea where it is; solution (if any) is a sequence.

– contingency problem

– Percepts provide new information about current state; solution is a tree or
policy; often interleave search and execution.

– If uncertainty is caused by actions of another agent: adversarial problem

– exploration problem

– When states and actions of the environment are unknown.

 Figure

Contingency, start in {1,3}.

Murphy‘s law, Suck can dirty a clean carpet.

Local sensing: dirt, location only.

– Percept = [L,Dirty] ={1,3}

– [Suck] = {5,7}

– [Right] ={6,8}

– [Suck] in {6}={8} (Success)

– BUT [Suck] in {8} = failure

Solution??

– Belief-state: no fixed action sequence guarantees solution

Relax requirement:

– [Suck, Right, if [R,dirty] then Suck]

– Select actions based on contingencies arising during execution.

Time and space complexity are always considered with respect to some measure of the problem

difficulty. In theoretical computer science ,the typical measure is the size of the state space.

In AI,where the graph is represented implicitly by the initial state and successor function,the

complexity is expressed in terms of three quantities:

Figure

b,the branching factor or maximum number of successors of any node;

d,the depth of the shallowest goal node; and

m,the maximum length of any path in the state space.

Search-cost - typically depends upon the time complexity but can also include the term for

memory usage.

Total–cost – It combines the search-cost and the path cost of the solution found.

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

2.1.2 Heuristic Functions

2.1.3 Local Search Algorithms and Optimization Problems

2.1.4 Local Search in Continuous Spaces

2.1.5 Online Search Agents and Unknown Environments

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)
2.2.1 Constraint Satisfaction Problems

2.2.2 Backtracking Search for CSPs

2.2.3 The Structure of Problems

2.3 ADVERSARIAL SEARCH
2.3.1 Games

2.3.2 Optimal Decisions in Games

2.3.3 Alpha-Beta Pruning

2.3.4 Imperfect ,Real-time Decisions

2.3.5 Games that include Element of Chance

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

Informed search strategy is one that uses problem-specific knowledge beyond the definition

of the problem itself. It can find solutions more efficiently than uninformed strategy.
Best-first search

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH algorithm in

which a node is selected for expansion based on an evaluation function f(n). The node with lowest

evaluation is selected for expansion,because the evaluation measures the distance to the goal.

This can be implemented using a priority-queue,a data structure that will maintain the fringe in

ascending order of f-values.
2.1.2. Heuristic functions

A heuristic function or simply a heuristic is a function that ranks alternatives in various

search algorithms at each branching step basing on an available information in order to make a

decision which branch is to be followed during a search.

The key component of Best-first search algorithm is a heuristic function,denoted by h(n):

h(n) = extimated cost of the cheapest path from node n to a goal node.

For example,in Romania,one might estimate the cost of the cheapest path from Arad to Bucharest

via a straight-line distance from Arad to Bucharest(Figure 2.1).

Heuristic function are the most common form in which additional knowledge is imparted to the

search algorithm.

Greedy Best-first search

Greedy best-first search tries to expand the node that is closest to the goal,on the grounds that

this is likely to a solution quickly.

It evaluates the nodes by using the heuristic function f(n) = h(n).

Taking the example of Route-finding problems in Romania , the goal is to reach Bucharest starting

from the city Arad. We need to know the straight-line distances to Bucharest from various cities as

shown in Figure 2.1. For example, the initial state is In(Arad) ,and the straight line distance

heuristic hSLD(In(Arad)) is found to be 366.
Using the straight-line distance heuristic hSLD ,the goal state can be reached faster.

Figure 2.1 Values of hSLD - straight line distances to Bucharest

Figure 2.2 stages in greedy best-first search for Bucharest using straight-line distance heuristic
hSLD. Nodes are labeled with their h-values.

Figure 2.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to

Bucharest. The first node to be expanded from Arad will be Sibiu,because it is closer to Bucharest

than either Zerind or Timisoara. The next node to be expanded will be Fagaras,because it is closest.

Fagaras in turn generates Bucharest,which is the goal.

Properties of greedy search

o Complete?? No–can get stuck in loops, e.g.,

Iasi ! Neamt ! Iasi ! Neamt !

Complete in finite space with repeated-state checking

o Time?? O(bm), but a good heuristic can give dramatic improvement

o Space?? O(bm)—keeps all nodes in memory

o Optimal?? No

Greedy best-first search is not optimal,and it is incomplete.

The worst-case time and space complexity is O(b
m

),where m is the maximum depth of the search

space.

A
*
 Search

A* Search is the most widely used form of best-first search. The evaluation function f(n) is

obtained by combining

(1) g(n) = the cost to reach the node,and

(2) h(n) = the cost to get from the node to the goal :

f(n) = g(n) + h(n).

A
*
 Search is both optimal and complete. A

*
 is optimal if h(n) is an admissible heuristic. The obvious

example of admissible heuristic is the straight-line distance hSLD. It cannot be an overestimate.
A

*
 Search is optimal if h(n) is an admissible heuristic – that is,provided that h(n) never

overestimates the cost to reach the goal.

An obvious example of an admissible heuristic is the straight-line distance hSLD that we used in

getting to Bucharest. The progress of an A
*
 tree search for Bucharest is shown in Figure 2.2.

The values of ‗g ‗ are computed from the step costs shown in the Romania map(figure 2.1). Also

the values of hSLD are given in Figure 2.1.

Recursive Best-first Search(RBFS)
Recursive best-first search is a simple recursive algorithm that attempts to mimic the operation of

standard best-first search,but using only linear space. The algorithm is shown in figure 2.4.

Its structure is similar to that of recursive depth-first search,but rather than continuing indefinitely

down the current path,it keeps track of the f-value of the best alternative path available from any

ancestor of the current node. If the current node exceeds this limit,the recursion unwinds back to the

alternative path. As the recursion unwinds,RBFS replaces the f-value of each node along the path

with the best f-value of its children.

Figure 2.5 shows how RBFS reaches Bucharest.

Figure 2.3 Stages in A
*
 Search for Bucharest. Nodes are labeled with f = g + h . The h-values are

the straight-line distances to Bucharest taken from figure 2.1

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure

return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-
cost limit

if GOAL-TEST[problem](STATE[node]) then return node

successors  EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

f [s]  max(g(s) + h(s), f [node])

repeat

best  the lowest f-value node in successors

if f [best] > f_limit then return failure, f [best]

alternative  the second lowest f-value among successors

result, f [best]  RBFS(problem, best, min(f_limit, alternative))

if result  failure then return result

Figure 2.4 The algorithm for recursive best-first search

Figure 2.5 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each

recursive call is shown on top of each current node. (a) The path via Rimnicu Vilcea is followed

until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras).

(b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to

Rimnicu Vilcea;then Fagaras is expanded,revealing a best leaf value of 450.

(c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed upto

Fagaras; then Rimni Vicea is expanded. This time because the best alternative path(through

Timisoara) costs atleast 447,the expansion continues to Bucharest

RBFS Evaluation :

RBFS is a bit more efficient than IDA*

– Still excessive node generation (mind changes)

Like A*, optimal if h(n) is admissible

Space complexity is O(bd).

– IDA* retains only one single number (the current f-cost limit)

Time complexity difficult to characterize

– Depends on accuracy if h(n) and how often best path changes.

IDA* en RBFS suffer from too little memory.

2.1.2 Heuristic Functions
A heuristic function or simply a heuristic is a function that ranks alternatives in various search

algorithms at each branching step basing on an available information in order to make a decision

which branch is to be followed during a search

The 8-puzzle

The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to slide the tiles

horizontally or vertically into the empty space until the configuration matches the goal

configuration(Figure 2.6)

The average cost for a randomly generated 8-puzzle instance is about 22 steps. The branching factor

is about 3.(When the empty tile is in the middle,there are four possible moves;when it is in the

corner there are two;and when it is along an edge there are three). This means that an exhaustive

search to depth 22 would look at about 3
22

 approximately = 3.1 X 10
10

 states.

By keeping track of repeated states,we could cut this down by a factor of about 170,000,because

there are only 9!/2 = 181,440 distinct states that are reachable. This is a manageable number ,but the

corresponding number for the 15-puzzle is roughly 10
13

.

If we want to find the shortest solutions by using A
*
,we need a heuristic function that never

overestimates the number of steps to the goal.

The two commonly used heuristic functions for the 15-puzzle are :
(1) h1 = the number of misplaced tiles.

For figure 2.6 ,all of the eight tiles are out of position,so the start state would have h1 = 8. h1 is an

admissible heuristic.

Figure 2.6 A typical instance of the 8-puzzle.

The solution is 26 steps long.

(2) h2 = the sum of the distances of the tiles from their goal positions. This is called the city

block distance or Manhattan distance.

h2 is admissible ,because all any move can do is move one tile one step closer to the goal.

Tiles 1 to 8 in start state give a Manhattan distance of

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

Neither of these overestimates the true solution cost ,which is 26.

The Effective Branching factor

One way to characterize the quality of a heuristic is the effective branching factor b*. If the total

number of nodes generated by A* for a particular problem is N,and the solution depth is d,then b
*

is the branching factor that a uniform tree of depth d would have to have in order to contain N+1

nodes. Thus,

N + 1 = 1 + b
*
 + (b

*
)
2
+…+(b

*
)
d

For example,if A
*
 finds a solution at depth 5 using 52 nodes,then effective branching factor is 1.92.

A well designed heuristic would have a value of b
*
 close to 1,allowing failru large problems to be

solved.

To test the heuristic functions h1 and h2,1200 random problems were generated with solution lengths
from 2 to 24 and solved them with iterative deepening search and with A

*
 search using both h1 and

h2. Figure 2.7 gives the averaghe number of nodes expanded by each strategy and the effective
branching factor.

The results suggest that h2 is better than h1,and is far better than using iterative deepening search.
For a solution length of 14,A

*
 with h2 is 30,000 times more efficient than uninformed iterative

deepening search.

Inventing admissible heuristic functions

 Relaxed problems

o A problem with fewer restrictions on the actions is called a relaxed problem
o The cost of an optimal solution to a relaxed problem is an admissible heuristic for the

original problem

o If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the
shortest solution

Figure 2.7 Comparison of search costs and effective branching factors for the ITERATIVE-
DEEPENING-SEARCH and A

*
 Algorithms with h1,and h2. Data are average over 100 instances of

the 8-puzzle,for various solution lengths.

o If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the
shortest solution

2.1.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION

PROBLEMS
o In many optimization problems, the path to the goal is irrelevant; the goal state itself is the

solution

o For example,in the 8-queens problem,what matters is the final configuration of queens,not
the order in which they are added.

o In such cases, we can use local search algorithms. They operate using a single current

state(rather than multiple paths) and generally move only to neighbors of that state.

o The important applications of these class of problems are (a) integrated-circuit
design,(b)Factory-floor layout,(c) job-shop scheduling,(d)automatic
programming,(e)telecommunications network optimization,(f)Vehicle routing,and (g)
portfolio management.

Key advantages of Local Search Algorithms

(1) They use very little memory – usually a constant amount; and
(2) they can often find reasonable solutions in large or infinite(continuous) state spaces for which

systematic algorithms are unsuitable.

OPTIMIZATION PROBLEMS

Inaddition to finding goals,local search algorithms are useful for solving pure optimization

problems,in which the aim is to find the best state according to an objective function.

State Space Landscape

To understand local search,it is better explained using state space landscape as shown in figure

2.8.

A landscape has both ―location‖ (defined by the state) and ―elevation‖(defined by the value of the

heuristic cost function or objective function).

If elevation corresponds to cost,then the aim is to find the lowest valley – a global minimum; if

elevation corresponds to an objective function,then the aim is to find the highest peak – a global

maximum.

Local search algorithms explore this landscape. A complete local search algorithm always finds a
goal if one exists; an optimal algorithm always finds a global minimum/maximum.

Hill-climbing search
The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that continually moves

in the direction of increasing value – that is,uphill. It terminates when it reaches a ―peak‖ where no

neighbor has a higher value.

function HILL-CLIMBING(problem) return a state that is a local maximum
input: problem, a problem

local variables: current, a node.

neighbor, a node.

current  MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor  a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

current  neighbor

Figure 2.9 The hill-climbing search algorithm (steepest ascent version),which is the most basic

local search technique. At each step the current node is replaced by the best neighbor;the neighbor

with the highest VALUE. If the heuristic cost estimate h is used,we could find the neighbor with the
lowest h.

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor state

without thinking ahead about where to go next. Greedy algorithms often perform quite well.

Problems with hill-climbing
Hill-climbing often gets stuck for the following reasons :

o Local maxima : a local maximum is a peak that is higher than each of its neighboring
states,but lower than the global maximum. Hill-climbing algorithms that reach the vicinity

Figure 2.8 A one dimensional state space landscape in which elevation corresponds to the

objective function. The aim is to find the global maximum. Hill climbing search modifies the

current state to try to improve it ,as shown by the arrow. The various topographic features are

defined in the text

of a local maximum will be drawn upwards towards the peak,but will then be stuck with

nowhere else to go

o Ridges : A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima that
is very difficult for greedy algorithms to navigate.

o Plateaux : A plateau is an area of the state space landscape where the evaluation function is
flat. It can be a flat local maximum,from which no uphill exit exists,or a shoulder,from
which it is possible to make progress.

Hill-climbing variations

 Stochastic hill-climbing

o Random selection among the uphill moves.

o The selection probability can vary with the steepness of the uphill move.
 First-choice hill-climbing

o cfr. stochastic hill climbing by generating successors randomly until a better one is
found.

 Random-restart hill-climbing

o Tries to avoid getting stuck in local maxima.

Simulated annealing search
A hill-climbing algorithm that never makes ―downhill‖ moves towards states with lower value(or

higher cost) is guaranteed to be incomplete,because it can stuck on a local maximum.In contrast,a

purely random walk –that is,moving to a successor choosen uniformly at random from the set of

successors – is complete,but extremely inefficient.

Simulated annealing is an algorithm that combines hill-climbing with a random walk in someway

that yields both efficiency and completeness.

Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of

picking the best move,however,it picks the random move. If the move improves the situation,it is

always accepted. Otherwise,the algorithm accepts the move with some probability less than 1. The

probability decreases exponentially with the ―badness‖ of the move – the amount E by which the

evaluation is worsened.

Figure 2.10 Illustration of why ridges cause difficulties for hill-climbing. The grid of states(dark

circles) is superimposed on a ridge rising from left to right,creating a sequence of local maxima that

are not directly connected to each other. From each local maximum,all th available options point

downhill.

Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s. It

has been applied widely to factory scheduling and other large-scale optimization tasks.

Figure 2.11 The simulated annealing search algorithm,a version of stochastic hill climbing where
some downhill moves are allowed.

Genetic algorithms
A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor states are

generated by combining two parent states,rather than by modifying a single state.

Like beam search,Gas begin with a set of k randomly generated states,called the population. Each

state,or individual,is represented as a string over a finite alphabet – most commonly,a string of 0s

and 1s. For example,an 8 8-quuens state must specify the positions of 8 queens,each in acolumn of

8 squares,and so requires 8 x log2 8 = 24 bits.

Figure 2.12 The genetic algorithm. The initial population in (a) is ranked by the fitness function in
(b),resulting in pairs for mating in (c). They produce offspring in (d),which are subjected to

Figure 2.12 shows a population of four 8-digit strings representing 8-queen states. The production

of the next generation of states is shown in Figure 2.12(b) to (e).

In (b) each state is rated by the evaluation function or the fitness function.

In (c),a random choice of two pairs is selected for reproduction,in accordance with the probabilities

in (b).

Figure 2.13 describes the algorithm that implements all these steps.

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual
input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual

repeat

new_population  empty set

loop for i from 1 to SIZE(population) do

x  RANDOM_SELECTION(population, FITNESS_FN)

y  RANDOM_SELECTION(population, FITNESS_FN)

child  REPRODUCE(x,y)

if (small random probability) then child  MUTATE(child)
add child to new_population

population  new_population

until some individual is fit enough or enough time has elapsed
return the best individual

Figure 2.13 A genetic algorithm. The algorithm is same as the one diagrammed in Figure 2.12,with
one variation:each mating of two parents produces only one offspring,not two.

2.1.4 LOCAL SEARCH IN CONTINUOUS SPACES
 We have considered algorithms that work only in discrete environments,

but real-world environment are continuous

 Local search amounts to maximizing a continuous objective function

in a multi-dimensional vector space.

 This is hard to do in general.

 Can immediately retreat

o Discretize the space near each state
o Apply a discrete local search strategy (e.g., stochastic hill climbing,

simulated annealing)

 Often resists a closed-form solution

o Fake up an empirical gradient

o Amounts to greedy hill climbing in discretized state space
 Can employ Newton-Raphson Method to find maxima
 Continuous problems have similar problems: plateaus, ridges, local

maxima, etc.

2.1.5 Online Search Agents and Unknown Environments

Online search problems

 Offline Search (all algorithms so far)

mutation in (e).

 Compute complete solution, ignoring environment Carry out
action sequence

 Online Search
 Interleave computation and action
 Compute—Act—Observe—Compute—·

 Online search good

 For dynamic, semi-dynamic, stochastic domains
 Whenever offline search would yield exponentially many contingencies

 Online search necessary for exploration problem
 States and actions unknown to agent
 Agent uses actions as experiments to determine what to do

Examples
Robot exploring unknown building

Classical hero escaping a labyrinth

 Assume agent knows
 Actions available in state s

Step-cost function c(s,a,s
′
)

State s is a goal state
 When it has visited a state s previously Admissible heuristic function

h(s)

 Note that agent doesn‘t know outcome state (s
′
) for a given action (a) until it tries the action

(and all actions from a state s)

 Competitive ratio compares actual cost with cost agent would follow if it knew the search
space

 No agent can avoid dead ends in all state spaces

 Robotics examples: Staircase, ramp, cliff, terrain

 Assume state space is safely explorable—some goal state is always reachable

Online Search Agents

 Interleaving planning and acting hamstrings offline search

 A* expands arbitrary nodes without waiting for outcome of action Online

algorithm can expand only the node it physically occupies Best to explore

nodes in physically local order
 Suggests using depth-first search
 Next node always a child of the current

 When all actions have been tried, can‘t just drop state

Agent must physically backtrack

 Online Depth-First Search

 May have arbitrarily bad competitive ratio (wandering past goal) Okay for
exploration; bad for minimizing path cost

 Online Iterative-Deepening Search

 Competitive ratio stays small for state space a uniform tree

Online Local Search

 Hill Climbing Search
 Also has physical locality in node expansions

Is, in fact, already an online search algorithm
 Local maxima problematic: can‘t randomly transport agent to new state in

effort to escape local maximum

 Random Walk as alternative
 Select action at random from current state
 Will eventually find a goal node in a finite space
 Can be very slow, esp. if ―backward‖ steps as common as ―forward‖

 Hill Climbing with Memory instead of randomness
 Store ―current best estimate‖ of cost to goal at each visited state Starting

estimate is just h(s)
 Augment estimate based on experience in the state space Tends to

―flatten out‖ local minima, allowing progress Employ optimism under
uncertainty

 Untried actions assumed to have least-possible cost Encourage
exploration of untried paths

Learning in Online Search

o Rampant ignorance a ripe opportunity for learning Agent learns a ―map‖

of the environment

o Outcome of each action in each state

o Local search agents improve evaluation function accuracy

o Update estimate of value at each visited state

o Would like to infer higher-level domain model

o Example: ―Up‖ in maze search increases y -coordinate Requires
o Formal way to represent and manipulate such general rules (so far, have hidden rules

within the successor function)
o Algorithms that can construct general rules based on observations of the effect of

actions

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables ,X1,X2,….Xn,and

a set of constraints C1,C2,…,Cm. Each variable Xi has a nonempty domain D,of possible values.
Each constraint Ci involves some subset of variables and specifies the allowable combinations of
values for that subset.

A State of the problem is defined by an assignment of values to some or all of the variables,{Xi =

vi,Xj = vj,…}. An assignment that does not violate any constraints is called a consistent or legal

assignment. A complete assignment is one in which every variable is mentioned,and a solution to a
CSP is a complete assignment that satisfies all the constraints.

Some CSPs also require a solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

Figure 2.15 shows the map of Australia showing each of its states and territories. We are given the

task of coloring each region either red,green,or blue in such a way that the neighboring regions have

the same color. To formulate this as CSP ,we define the variable to be the regions

:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set {red,green,blue}.The

constraints require neighboring regions to have distinct colors;for example,the allowable

combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

The constraint can also be represented more succinctly as the inequality WA not = NT,provided the

constraint satisfaction algorithm has some way to evaluate such expressions.) There are many

possible solutions such as

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}.

It is helpful to visualize a CSP as a constraint graph,as shown in Figure 2.15(b). The nodes of the

graph corresponds to variables of the problem and the arcs correspond to constraints.

Figure 2.15 (a) Principle states and territories of Australia. Coloring this map can be viewed as
aconstraint satisfaction problem. The goal is to assign colors to each region so that no neighboring

regions have the same color.

Figure 2.15 (b) The map coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows :

 Initial state : the empty assignment {},in which all variables are unassigned.

 Successor function : a value can be assigned to any unassigned variable,provided that it

does not conflict with previously assigned variables.

 Goal test : the current assignment is complete.

 Path cost : a constant cost(E.g.,1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are n

variables.

Depth first search algorithms are popular for CSPs
Varieties of CSPs

(i) Discrete variables

Finite domains

The simplest kind of CSP involves variables that are discrete and have finite domains. Map

coloring problems are of this kind. The 8-queens problem can also be viewed as finite-domain

CSP,where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and each

variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a CSP is

d,then the number of possible complete assignments is O(d
n
) – that is,exponential in the number of

variables. Finite domain CSPs include Boolean CSPs,whose variables can be either true or false.

Infinite domains

Discrete variables can also have infinite domains – for example,the set of integers or the set of

strings. With infinite domains,it is no longer possible to describe constraints by enumerating all

allowed combination of values. Instead a constraint language of algebric inequalities such as

Startjob1 + 5 <= Startjob3.
(ii) CSPs with continuous domains

CSPs with continuous domains are very common in real world. For example ,in operation research

field,the scheduling of experiments on the Hubble Telescope requires very precise timing of

observations; the start and finish of each observation and maneuver are continuous-valued variables

that must obey a variety of astronomical,precedence and power constraints. The best known

category of continuous-domain CSPs is that of linear programming problems,where the

constraints must be linear inequalities forming a convex region. Linear programming problems can

be solved in time polynomial in the number of variables.
Varieties of constraints :

(i) unary constraints involve a single variable.
Example : SA # green

(ii) Binary constraints involve paris of variables.

Example : SA # WA

(iii) Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles.

Figure 2.16 (a) Cryptarithmetic problem. Each letter stands for a distinct digit;the aim is to

find a substitution of digits for letters such that the resulting sum is arithmetically

correct,with the added restriction that no leading zeros are allowed. (b) The constraint

hypergraph for the cryptarithmetic problem,showint the Alldiff constraint as well as the

column addition constraints. Each constraint is a square box connected to the variables it
contains.

2.2.2 Backtracking Search for CSPs
The term backtracking search is used for depth-first search that chooses values for one variable at

a time and backtracks when a variable has no legal values left to assign. The algorithm is shown in

figure 2.17.

Figure 2.17 A simple backtracking algorithm for constraint satisfaction problem. The algorithm is
modeled on the recursive depth-first search

Figure 2.17(b) Part of search tree generated by simple backtracking for the map coloring problem.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that the

variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the

constraints earlier in the search, or even before the search has started, we can drastically

reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking. Whenever a variable X
is assigned, the forward checking process looks at each unassigned variable Y that is connected to X by a

constraint and deletes from Y ‘s domain any value that is inconsistent with the value chosen for X. Figure 5.6

shows the progress of a map-coloring search with forward checking.

Constraint propagation
Although forward checking detects many inconsistencies, it does not detect all of them.
Constraint propagation is the general term for propagating the implications of a constraint on one variable

onto other variables.

Arc Consistency

k-Consistency

Local Search for CSPs

2.2.3 The Structure of Problems

Problem Structure

Independent Subproblems

Tree-Structured CSPs

2.4 ADVERSARIAL SEARCH
Competetive environments,in which the agent‘s goals are in conflict,give rise to adversarial search

problems – often known as games.

2.4.1 Games

Mathematical Game Theory,a branch of economics,views any multiagent environment as a game

provided that the impact of each agent on the other is ―significant‖,regardless of whether the agents

are cooperative or competitive. In,AI,‖games‖ are deterministic,turn-taking,two-player,zero-sum

games of perfect information. This means deterministic,fully observable environments in which

there are two agents whose actions must alternate and in which the utility values at the end of the

game are always equal and opposite. For example,if one player wins the game of chess(+1),the

other player necessarily loses(-1). It is this opposition between the agents‘ utility functions that

makes the situation adversarial.

Formal Definition of Game

We will consider games with two players,whom we will call MAX and MIN. MAX moves first,and

then they take turns moving until the game is over. At the end of the game, points are awarded to

the winning player and penalties are given to the loser. A game can be formally defined as a search

problem with the following components :

o The initial state,which includes the board position and identifies the player to move.
o A successor function,which returns a list of (move,state) pairs,each indicating a legal move

and the resulting state.

o A terminal test,which describes when the game is over. States where the game has ended
are called terminal states.

o A utility function (also called an objective function or payoff function),which give a
numeric value for the terminal states. In chess,the outcome is a win,loss,or draw,with values

+1,-1,or 0. he payoffs in backgammon range from +192 to -192.

Game Tree

The initial state and legal moves for each side define the game tree for the game. Figure 2.18

shows the part of the game tree for tic-tac-toe (noughts and crosses). From the initial state,MAX has

nine possible moves. Play alternates between MAX‘s placing an X and MIN‘s placing a 0 until we

reach leaf nodes corresponding to the terminal states such that one player has three in a row or all

the squares are filled. He number on each leaf node indicates the utility value of the terminal state

from the point of view of MAX;high values are assumed to be good for MAX and bad for MIN. It is

the MAX‘s job to use the search tree(particularly the utility of terminal states) to determine the best

move.

2.4.2 Optimal Decisions in Games

In normal search problem,the optimal solution would be a sequence of move leading to a goal

state – a terminal state that is a win. In a game,on the other hand,MIN has something to say about

it,MAX therefore must find a contingent strategy,which specifies MAX‘s move in the initial

state,then MAX‘s moves in the states resulting from every possible response by MIN,then MAX‘s

moves in the states resulting from every possible response by MIN those moves,and so on. An

optimal strategy leads to outcomes at least as good as any other strategy when one is playing an

infallible opponent.

Figure 2.18 A partial search tree . The top node is the initial state,and MAX move first,placing an X in an

empty square.

The minimax Algorithm

The minimax algorithm(Figure 2.20) computes the minimax decision from the current state.

It uses a simple recursive computation of the minimax values of each successor state,directly

implementing the defining equations. The recursion proceeds all the way down to the leaves

of the tree ,and then the minimax values are backed up through the tree as the recursion

unwinds. For example in Figure 2.19,the algorithm first recourses down to the three bottom

left nodes,and uses the utitliy function on them to discover that their values are 3,12,and 8

respectively. Then it takes the minimum of these values,3,and returns it as the backed-up

value of node B. A similar process gives the backed up values of 2 for C and 2 for D.

Finally,we take the maximum of 3,2,and 2 to get the backed-up value of 3 at the root node.

The minimax algorithm performs a complete depth-first exploration of the game tree. If the

maximum depth of the tree is m,and there are b legal moves at each point,then the time

Figure 2.19 A two-ply game tree. The nodes are ―MAX nodes‖,in which it is AMX‘s turn to

move,and the nodes are ―MIN nodes‖. The terminal nodes show the utility values for MAX;

the other nodes are labeled with their minimax values. MAX‘s best move at the root is a1,because it

leads to the successor with the highest minimax value,and MIN‘s best reply is b1,because it leads to

the successor with the lowest minimax value.

Figure 2.20 An algorithm for calculating minimax decisions. It returns the

action corresponding to the best possible move,that is,the move that leads to the

outcome with the best utility,under the assumption that the opponent plays to

minimize utility. The functions MAX-VALUE and MIN-VALUE go through

the whole game tree,all the way to the leaves,to determine the backed-up value

of a state.

complexity of the minimax algorithm is O(b
m

). The space complexity is O(bm) for an

algorithm that generates successors at once.

2.4.3 Alpha-Beta Pruning

The problem with minimax search is that the number of game states it has to examine is

exponential in the number of moves. Unfortunately,we can‘t eliminate the exponent,but we can

effectively cut it in half. By performing pruning,we can eliminate large part of the tree from

consideration. We can apply the technique known as alpha beta pruning ,when applied to a

minimax tree ,it returns the same move as minimax would,but prunes away branches that cannot

possibly influence the final decision.

Alpha Beta pruning gets its name from the following two parameters that describe bounds

on the backed-up values that appear anywhere along the path:

o α : the value of the best(i.e.,highest-value) choice we have found so far at any choice point

along the path of MAX.

o β: the value of best (i.e., lowest-value) choice we have found so far at any choice point
along the path of MIN.

Alpha Beta search updates the values of α and β as it goes along and prunes the remaining branches

at anode(i.e.,terminates the recursive call) as soon as the value of the current node is known to be

worse than the current α and β value for MAX and MIN,respectively. The complete algorithm is

given in Figure 2.21.

The effectiveness of alpha-beta pruning is highly dependent on the order in which the successors

are examined. It might be worthwhile to try to examine first the successors that are likely to be the

best. In such case,it turns out that alpha-beta needs to examine only O(b
d/2

) nodes to pick the best

move,instead of O(b
d
) for minimax. This means that the effective branching factor becomes sqrt(b)

instead of b – for chess,6 instead of 35. Put anotherway alpha-beta cab look ahead roughly twice as

far as minimax in the same amount of time.

Figure 2.21 The alpha beta search algorithm. These routines are the same as the

minimax routines in figure 2.20,except for the two lines in each of MIN-VALUE and

MAX-VALUE that maintain α and β

2.4.4 Imperfect , Real-time Decisions
The minimax algorithm generates the entire game search space,whereas the alpha-beta algorithm allows

us to prune large parts of it. However,alpha-beta still has to search all the way to terminal states for atleast a

portion of search space. Shannon‘s 1950 paper,Programming a computer for playing chess,proposed that

programs should cut off the search earlier and apply a heuristic evaluation function to states in the

search,effectively turning nonterminal nodes into terminal leaves. The basic idea is to alter minimax or

alpha-beta in two ways :

(1) The utility function is replaced by a heuristic evaluation function EVAL,which gives an estimate of the

position‘s utility,and

(2) the terminal test is replaced by a cutoff test that decides when to apply EVAL.

2.4.5 Games that include Element of Chance

Evaluation functions

An evaluation function returns an estimate of the expected utility of the game from a given position,just as

the heuristic function return an estimate of the distance to the goal.

Games of imperfect information

o Minimax and alpha-beta pruning require too much leaf-node evaluations.
May be impractical within a reasonable amount of time.

o SHANNON (1950):

o Cut off search earlier (replace TERMINAL-TEST by CUTOFF-TEST)

o Apply heuristic evaluation function EVAL (replacing utility function of alpha-beta)

Cutting off search

Change:

– if TERMINAL-TEST(state) then return UTILITY(state)

into

– if CUTOFF-TEST(state,depth) then return EVAL(state)

Introduces a fixed-depth limit depth

– Is selected so that the amount of time will not exceed what the rules of the game

allow.

When cuttoff occurs, the evaluation is performed.
Heuristic EVAL

Idea: produce an estimate of the expected utility of the game from a given position.

Performance depends on quality of EVAL.

Requirements:

– EVAL should order terminal-nodes in the same way as UTILITY.

– Computation may not take too long.

– For non-terminal states the EVAL should be strongly correlated with the actual
chance of winning.

Only useful for quiescent (no wild swings in value in near future) states
Weighted Linear Function

The introductory chess books give an approximate material value for each piece : each pawn is

worth 1,a knight or bishop is worth 3,a rook 3,and the queen 9. These feature values are then added

up toobtain the evaluation of the position. Mathematically,these kind of evaluation fuction is called

weighted linear function,and it can be expressed as :

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black queens), etc.

Games that include chance

In real life,there are many unpredictable external events that put us into unforeseen situations.

Many games mirror this unpredictability by including a random element,such as throwing a dice.

Backgammon is a typical game that combines luck and skill. Dice are rolled at the beginning of

player‘s turn to determine the legal moves. The backgammon position of Figure 2.23,for

example,white has rolled a 6-5,and has four possible moves.

 White moves clockwise toward 25

 Black moves counterclockwise

toward 0

 A piece can move to any position

unless there are multiple opponent

pieces there; if there is one

opponent, it is captured and

must start over.

 White has rolled 6-5 and must

choose among four legal moves:

(5-10, 5-11), (5-11, 19-24)

(5-10, 10-16), and (5-11, 11-16)

--

Figure 2.23 A typical backgammon position. The goal of the game is to move all

one‘s pieces off the board. White moves clockwise toward 25,and black moves

counterclockwise toward 0. A piece can move to any position unless there are

multiple opponent pieces there; if there is one opponent ,it is captured and must

start over. In the position shown,white has rolled 6-5 and must choose among four

legal moves (5-10,5-11),(5-11,19-24),(5-10,10-16),and (5-11,11-16)

Figure 2-24 Schematic game tree for a backgammon position.

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=

UTILITY(n)

If n is a terminal

maxs  successors(n)

1

MINIMAX-VALUE(s) If n is a max node

mins  successors(n)

MINIMAX-VALUE(s) If n is a max node

s  successors(n)

P(s) .

EXPECTEDMINIMAX(s) If n is a chance node

These equations can be backed-up recursively all the way to the root of

the game tree.

2

UNIT III KNOWLEDGE REPRESENTATION 9

First Order Predicate Logic – Prolog Programming – Unification – Forward

Chaining-Backward Chaining – Resolution – Knowledge Representation -

Ontological Engineering-Categories and Objects – Events - Mental Events

and Mental Objects - Reasoning Systems for Categories - Reasoning with

Default Information

UNIT-III Question and

Answers

(1) How Knowledge is represented?
A variety of ways of knowledge(facts) have been exploited in AI programs.

Facts : truths in some relevant world. These are things we want to represent.

(2) What is propositional logic?
It is a way of representing knowledge.
In logic and mathematics, a propositional calculus or logic is a formal system in which

formulae representing propositions can be formed by combining atomic propositions

using logical connectives

Sentences considered in propositional logic are not arbitrary sentences but are the ones

that are either true or false, but not both. This kind of sentences are called propositions.

Example
Some facts in propositional logic:
It is raning. - RAINING

It is sunny - SUNNY

It is windy - WINDY

If it is raining ,then it is not sunny - RAINING -> SUNNY

(3) What are the elements of propositional logic?
Simple sentences which are true or false are basic propositions. Larger and more complex

sentences are constructed from basic propositions by combining them with connectives.

Thus propositions and connectives are the basic elements of propositional logic. Though

there are many connectives, we are going to use the following five basic connectives

here:

NOT, AND, OR, IF_THEN (or IMPLY), IF_AND_ONLY_IF.

They are also denoted by the symbols:

, , , , , respectively.

http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Formal_system
http://en.wikipedia.org/wiki/Propositional_formula
http://en.wikipedia.org/wiki/Atomic_formula
http://en.wikipedia.org/wiki/Logical_connective

3

(4) What is inference?
Inference is deriving new sentences from old.

4

(5) What are modus ponens?
There are standard patterns of inference that can be applied to derive chains of

conclusions that lead to the desired goal. These patterns of inference are called

inference rules. The best-known rule is called Modus Ponens and is written as

follows:

(6) What is entailment?
Propositions tell about the notion of truth and it can be applied to logical reasoning.

We can have logical entailment between sentences. This is known as entailment where a

sentence follows logically from another sentence. In mathematical notation we write :

(7) What are knowledge based agents?
The central component of a knowledge-based agent is its knowledge base, or KB.

Informally, a knowledge base is a set of sentences. Each

sentence is expressed in a language called a knowledge representation language and

represents some assertion about the world.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents,
it takes a percept as input and returns an action. The agent maintains a knowledge

base, KB, which may initially contain some background knowledge. Each time the

agent program is called, it does three things. First, it TELLS the knowledge base what it

perceives. Second, it ASKS the knowledge base what action it should perform. In the

process of answering this

5

query, extensive reasoning may be done about the current state of the world, about

the outcomes of possible action sequences, and so on.

(8) Explain in detail the connectives used in propositional
logic.

The syntax of propositional logic defines the allowable sentences. The atomic

sentences- the indivisible syntactic elements-consist of a single proposition symbol.

Each such symbol stands for a proposition that can be true or false. We will use

uppercase names for
symbols: P, Q, R, and so on.

Complex sentences are constructed from simpler sentences using logical connectives.
There are five connectives in common use:

Figure 7.7 gives a formal grammar of propositional logic;

(9) Define First order Logic?
Whereas propositional logic assumes the world contains facts,
first-order logic (like natural language) assumes the world contains

Objects: people, houses, numbers, colors, baseball games, wars, …

Relations: red, round, prime, brother of, bigger than, part of, comes between,

…

6

Functions: father of, best friend, one more than, plus, …

(10) Specify the syntax of First-order logic in BNF form.

(11) Compare different knowledge representation languages.

7

(12) What are the syntactic elements of First Order Logic?

The basic syntactic elements of first-order logic are the symbols that stand for

objects,

relations, and functions. The symbols,come in three kinds:

a) constant symbols, which stand for objects;

b) predicate symbols, which stand for relations;

c) and function symbols, which stand for functions.

We adopt the convention that these symbols will begin with uppercase letters.

Example:

Constant symbols :

Richard and John;

predicate symbols :

Brother, OnHead, Person, King, and Crown;

function symbol :

LeftLeg.

(13) What are quantifiers?
There is need to express properties of entire collections of objects,instead of

enumerating the objects by name. Quantifiers let us do this.

FOL contains two standard quantifiers called

a) Universal () and

b) Existential ()

Universal quantification
(x) P(x) : means that P holds for all values of x in the domain associated

with that variable

E.g., (x) dolphin(x) => mammal(x)

Existential quantification
( x)P(x) means that P holds for some value of x in the domain associated
with that variable

E.g., ( x) mammal(x) ^ lays-eggs(x)

Permits one to make a statement about some object without naming it

(14) Explain Universal Quantifiers with an example.
Rules such as "All kings are persons,'' is written in first-order logic as

x King(x) => Person(x)

where  is pronounced as ― For all ..‖

Thus, the sentence says, "For all x, if x is a king, then z is a person."

The symbol x is called a variable(lower case letters)

The sentence x P,where P is a logical expression says that P is true for every

object x.

8

(15) Explain Existential quantifiers with an example.
Universal quantification makes statements about every object.

It is possible to make a statement about some object in the universe without

naming it,by using an existential quantifier.

Example

―King John has a crown on his head‖

x Crown(x) ^ OnHead(x,John)

x is pronounced ―There exists an x such that ..‖ or ― For some x ..‖

(16) What are nested quantifiers?

Example-2

―Everybody loves somebody‖ means that

for every person,there is someone that person loves

x  y Loves(x,y)

(17) Explain the connection between  and 
―Everyone likes icecream ― is equivalent

―there is no one who does not like ice cream‖

This can be expressed as :

x Likes(x,IceCream) is equivalent to

 Likes(x,IceCream)

(18) What are the steps associated with the

knowledge Engineering process?

Discuss them by applying the steps to any real world application of your choice.

Knowledge Engineering
The general process of knowledge base constructiona process is called

knowledge engineering.

A knowledge engineer is someone who investigates a particular domain, learns

what concepts are important in that domain, and creates a formal representation

of the objects and relations in the domain. We will illustrate the knowledge

engineering process in an electronic circuit domain that should already be fairly

familiar,

The steps associated with the knowledge engineering process are :
1. Identfy the task.

9

. The task will determine what knowledge must be represented in order to connect

problem instances to answers. This step is analogous to the PEAS process for

designing agents.
2. Assemble the relevant knowledge. The knowledge engineer might already be an expert

in the domain, or might need to work with real experts to extract what they know-a

process called knowledge acquisition.

3. Decide on a vocabulary of predicates, functions, and constants. That is, translate the

important domain-level concepts into logic-level names.

Once the choices have been made. the result is a vocabulary that is known as the
ontology of the domain. The word ontology means a particular theory of the nature of

being or
existence.
4. Encode general /cnowledge about the domain. The knowledge engineer writes down

the axioms for all the vocabulary terms. This pins down (to the extent possible) the

meaning of the terms, enabling the expert to check the content. Often, this step reveals

misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and

iterating through the process.

5. Encode a description of the specijic problem insttznce.

For a logical agent, problem instances are supplied by the sensors, whereas a

"disembodied" knowledge base is supplied with additional sentences in the same way

that traditional programs are supplied with input data.
6. Pose queries to the inference procedure and get answers. This is where the reward is:

we can let the inference procedure operate on the axioms and problem-specific facts to

derive the facts we are interested in knowing.

7. Debug the knowledge base.

x NumOfLegs(x,4) => Mammal(x)

Is false for reptiles ,amphibians.

To understand this seven-step process better, we now apply it to an extended

example-the domain of electronic circuits.

The electronic circuits domain
We will develop an ontology and knowledge base that allow us to reason about digital

circuits of the kind shown in Figure 8.4. We follow the seven-step process for

knowledge engineering.

10

Identify the task

There are many reasoning tasks associated with digital circuits. At the highest

level, one analyzes the circuit's functionality. For example, what are all the gates

connected to the first input terminal? Does the circuit contain feedback loops?

These will be our tasks in this section.

Assemble the relevant knowledge
What do we know about digital circuits? For our purposes, they are composed of

wires and gates. Signals flow along wires to the input terminalls of gates, and each

gate produces a signal on the output terminal that flows along another wire.

Decide on a vocabulary
We now know that we want to talk about circuits, terminals, signals, and gates. The

next step is to choose functions, predicates, and constants to represent them. We

will start from individual gates and move up to circuits.

First, we need to be able to distinguish a gate from other gates. This is

handled by naming gates with constants: X I , X2, and so on

Encode general knowledge of the domain
One sign that we have a good ontology is that there are very few general rules

which need to be specified. A sign that we have a good vocabulary is that each rule

can be stated clearly

and concisely. With our example, we need only seven simple rules to describe

everything we need to know about circuits:
1. If two terminals are connected, then they have the same signal:

2. The signal at every terminal is either 1 or 0 (but not both):

3. Connected is a commutative predicate:
4. An OR gate's output is 1 if and only if any of its inputs is 1:

5. An A.ND gate's output is 0 if and only if any of its inputs is 0:

6. An XOR gate's output is 1 if and only if its inputs are different:
7. A NOT gate's output is different from its input:

Encode the specific problem instance
The circuit shown in Figure 8.4 is encoded as circuit C1 with the following

description. First, we categorize the gates:
Type(X1)= XOR Type(X2)= XOR

Pose queries to the inference procedure
What combinations of inputs would cause the first output of Cl (the sum bit) to be 0

and the second output of C1 (the carry bit) to be l?
Debug the knowledge base

We can perturb the knowledge base in various ways to see what kinds of erroneous

behaviors emerge.

(19) Give examples on usage of First Order Logic.

The best way to find usage of First order logic is through examples. The examples can

be taken from some simple domains. In knowledge representation, a domain is just

some part of
the world about which we wish to express some knowledge.

Assertions and queries in first-order logic
Sentences are added to a knowledge base using TELL, exactly as in propositional

11

logic. Such sentences are called assertions.

12

For example, we can assert that John is a king and that kings are persons:

TELL(KB, King (John)) .

Where KB is knowledge base.

TELL(KB, x King(x) => Person(x)).

We can ask questions of the knowledge base using ASK. For example,

returns true.

Questions asked using ASK are called queries or goals
ASK(KB,Person(John))

Will return true.

(ASK KBto find whther Jon is a king)

ASK(KB, x person(x))

The kinship domain
The first example we consider is the domain of family relationships, or kinship.
This domain includes facts such as

"Elizabeth is the mother of Charles"

and

"Charles is the father of William7' and rules

such as "One's grandmother is the mother of

one's parent." Clearly, the objects in our

domain are people.
We will have two unary predicates, Male and Female.
Kinship relations-parenthood, brotherhood, marriage, and so on-will be represented by binary

predicates: Parent, Sibling, Brother, Sister, Child, Daughter,Son, Spouse, Husband,

Grandparent, Grandchild, Cousin, Aunt, and Uncle.

We will use functions for Mother and Father.

(20) What is universal instantiation?

13

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by

it:

v α

Subst({v/g}, α)

for any variable v and ground term g

• E.g., x King(x)  Greedy(x)  Evil(x) yields:

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(Father(John))  Greedy(Father(John))  Evil(Father(John))

.

.

.

Existential instantiation (EI)
• For any sentence α, variable v, and constant

symbol k that does not appear elsewhere in the
knowledge base:

v α

Subst({v/k}, α)

• E.g., x Crown(x)  OnHead(x,John) yields:

Crown(C1)  OnHead(C1,John)

provided C1 is a new constant symbol,
called a Skolem constant

(21) What is forward chaining? Explain with an example.

14

Using a deduction to reach a conclusion from a set of antecedents is called forward

chaining. In other words,the system starts from a set of facts,and a set of rules,and tries to

find the way of using these rules and facts to deduce a conclusion or come up with a

suitable couse of action. This is known as data driven reasoning.

EXAMPLE

The proof tree generated by forward chaining.

Example knowledge base

• The law says that it is a crime for an American to sell weapons to hostile nations.

The country Nono, an enemy of America, has some missiles, and all of its

missiles were sold to it by Colonel West, who is American.

• Prove that Col. West is a criminal

... it is a crime for an American to sell weapons to hostile nations:

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x)  Missile(x):

Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:
Missile(x)  Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America)  Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

Note:

15

Fig : Proof tree constructed by backward chaining to prove that West is criminal.

(a) The initial facts appear in the bottom level

(b) Facts inferred on the first iteration is in the middle level

(c) The facts inferered on the 2
nd

 iteration is at the top level

Forward chaining algorithm

(22) What is backward chaining ? Explain with an example.
Forward chaining applies a set of rules and facts to deduce whatever conclusions can

be derived.

In backward chaining ,we start from a conclusion,which is the hypothesis we wish

to prove,and we aim to show how that conclusion can be reached from the rules and

facts in the data base.

The conclusion we are aiming to prove is called a goal ,and the reasoning in this way

is known as goal-driven.

Backward chaining example

16

Note:

(a) To prove Criminal(West) ,we have to prove four conjuncts below it.

(b) Some of which are in knowledge base,and others require further backward

chaining.

(23) Explain conjunctive normal form for first-order logic with an example.

Every sentence of first-order logic can be converted into an inferentially equivalent CNF

sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence

is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

Here we have to eliminate existential quantifiers. We will illustrate the procedure by

translating the sentence "Everyone who loves all animals is loved by someone," or

(24) What is Ontological Engineering?

17

Ontology refers to organizing every thing in the world into hierarch of categories.

Representing the abastract concepts such as Actions,Time,Physical Objects,and Beliefs is

called Ontological Engineering.

(25) How categories are useful in Knowledge representation?

CATEGORIES AND OBJECTS

The organization of objects into categories is a vital part of knowledge representation.

Although interaction with the world takes place at the level of individual objects, much

reasoning
takes place at the level of categories.

(26) What is taxonomy?

Subclass relations organize categories into a taxonomy, or taxonomic hierarchy.

Taxonomies have been used explicitly for centuries in technical fields. For example,

systematic

biology aims to provide a taxonomy of all living and extinct species; library science

has developed a taxonomy of all fields of knowledge, encoded as the Dewey

Decimal system; and

tax authorities and other government departments have developed extensive

taxoriornies of occupations and commercial products. Taxonomies are also an

important aspect of general commonsense knowledge.

First-order logic makes it easy to state facts about categories, either by relating

objects to categories or by quantifying over their members:

18

(27) What is physical composition?

(28) Explain the Ontology of Situation calculus.
Situations are logical terms consisting of the initial situation (usually called

So) and all situations that are generated by applying an action to a situation.

The function Result(a, s) (sometimes called Do) names the situation that

results when action a is executed in situation s. Figure 10.2 illustrates this

idea.

Fluents are functions and predicates that vary from one situation to the next,

such as the location of the agent or the aliveness of the wumpus. The

dictionary says a fluent is something that fllows, like a liquid. In this use, it

means flowing or changing across situations. By convention, the situation is

always the last argument of a fluent. For example, lHoldzng(G1, So) says that

the agent is not holding the gold GI in the initial situation So. Age(Wumpus, So)

refers to the wumpus's age in So.

Atemporal or eternal predicates and functions are also allowed. Examples include the

predicate Gold (GI) and the function LeftLeg Of (Wumpus).

19

(29) What is event calculus?

Time and event calculus
Situation calculus works well when there is a single agent performing instantaneous,

discrete actions. When actions have duration and can overlap with each other,

situation calculus becomes somewhat awkward. Therefore, we will cover those topics

with an alternative for- EVENTCALCULUS malism known as event calculus, which is based

on points in time rather than on situations.

(The terms "event7' and "action" may be used interchangeably. Informally, "event"

connotes a wider class of actions, including ones with no explicit agent. These are

easier to handle in event calculus than in situation calculus.)

In event calculus, fluents hold at points in time rather than at situations, and the

calculus is designed to allow reasoning over intervals of time. The event calculus

axiom says that a

fluent is true at a point in time if the fluent was initiated by an event at some time in
the past and was not terminated by an intervening event. The Initiates and

Terminates relations play a role similar to the Result relation in situation calculus;
Initiates(e, f , t) means that

the occurrence of event e at time t causes fluent f to become true, while Terminates (w , f, t)
means that f ceases to be true. We use Happens(e, t) to mean that event e happens at time t,

(30) What are semantic networks?

(31) Semantic networks are capable of representing individual

objects,categories of objects,and relation among objects. Objects or Ctegory

names are represented in ovals and are connected by labeled arcs.

Semantic network example

20

21

