
SCHOOL OF COMPUTER SCIENCE,ENGINEERING
AND APPLICATIONS ,

BHARATHIDASAN UNIVERSITY,

KHAJAMALAI CAMPUS,

TRICHY-620 023

ARTIFICIAL INTELLIGENCE &
MACHINE LEARNING

 (SUB. CODE: MCA24302)

STUDY MATERIAL

FACULTY NAME : Mrs. R. RAMYA

DESIGNATION : GUEST LECTURER

SEMESTER : III

CLASS : MCA

ARTIFICIAL INTELLIGENCE &
MACHINE LEARNING

Unit – 2:
 Problem solving Methods
 Search Strategies
 Uninformed
 Informed
 Heuristics
 Local Search Algorithms and Optimization Problems
 Searching with Partial Observations
 Constraint Satisfaction Problems
 Constraint Propagation
 Backtracking Search
 Game Playing
 Optimal Decisions in Games
 Alpha - Beta Pruning
 Stochastic Games

PROBLEM SOLVING APPROACH TO TYPICAL AI PROBLEMS

 Artificial Intelligence, Search techniques are universal problem-solving

methods.

 Rational agents or Problem-solving agents in AI mostly used these search

strategies or algorithms to solve a specific problem and provide the best

result.

 Problem- solving agents are the goal-based agents and use atomic

representation.

Some of the most popularly used problem solving with the help of artificial

intelligence are,
1.Chess.
2.Travelling Salesman Problem.
3.Tower of Hanoi Problem.
4.Water-Jug Problem.
5.N-Queen Problem.

Problem Searching
 In general, searching refers to as finding information one needs.
 Searching is the most commonly used technique of problem solving in artificial
intelligence. The searching algorithm helps us to search for solution of particular
problem.
Problem:

Problems are the issues which comes across any system. A solution is needed
to solve that particular problem.
Steps : Solve Problem Using Artificial Intelligence

1.Defining The Problem: The definition of the problem must be included

precisely. It should contain the possible initial as well as final situations which

should result in acceptable solution.

2.Analyzing The Problem: Analyzing the problem and its requirement must

be done as few features can have immense impact on the resulting solution.

3. Identification Of Solutions: This phase generates reasonable amount of

solutions to the given problem in a particular range.

4.Choosing a Solution: From all the identified solutions, the best solution is

chosen basis on the results produced by respective solutions.

5.Implementation: After choosing the best solution, its implementation is

done.

Measuring problem-solving performance

 Completeness: Is the algorithm guaranteed to find a solution when there is one?

 Optimality: Does the strategy find the optimal solution?

 Time complexity: How long does it take to find a solution?

 Space complexity: How much memory is needed to perform the search?

Search Algorithm Terminologies:

Search: Searching is a step by step procedure to solve a search-problem in a given

search space. A search problem can have three main factors:

1. Search Space: Search space represents a set of possible solutions,

which a system may have.

2. Start State: It is a state from where agent begins the search.

3. Goal test: It is a function which observe the current state and returns

whether the goal state is achieved or not.

Search tree: A tree representation of search problem is called Search tree. The

root of the search tree is the root node which is corresponding to the initial

state.

Actions: It gives the description of all the available actions to the agent.

Transition model: A description of what each action do, can be represented

as a transition model.

Path Cost: It is a function which assigns a numeric cost to each path.

Solution: It is an action sequence which leads from the start node to the goal

node.

Optimal Solution: If a solution has the lowest cost among all solutions.

Problem-solving agents:

 A Problem solving agent is a goal-based agent. It decide what to do by

finding sequence of actions that lead to desirable states. The agent can

adopt a goal and aim at satisfying it.

 Goal formulation, based on the current situation and the agent’s

performance measure, is the first step in problem solving.

 The agent’s task is to find out which sequence of actions will get to a goal

state.

 Problem formulation is the process of deciding what actions and states to

consider given a goal.

EXAMPLE PROBLEMS

• The problem solving approach has been applied to a vast array of task

environments. Some best known problems are summarized below. They

are distinguished as toy or real-world problems

• A toy problem is intended to illustrate various problem solving

methods. It can be easily used by different researchers to compare the

performance of algorithms.

For example, Vacuum World, 8-puzzle, 8-Queens problem.

• A real world problem is one whose solutions people actually care

about.

For example, Route-finding Problem, Airline Travel Problem, Touring

Problems, The Travelling Salesperson Problem(TSP).

TOY PROBLEMS(Vacuum World Example)

 States: The agent is in one of two locations, each of which might or might not

contain dirt. Thus there are 2 x 22 = 8 possible world states.

Initial state: Any state can be designated as initial state.

Successor function: This generates the legal states that results from trying the

three actions (left, right, suck). The complete state space is shown in figure

Goal Test: This tests whether all the squares are clean.

Path test: Each step costs one, so that the path cost is the number of steps in the

path.

AIRLINE TRAVEL PROBLEM

The airline travel problem is specifies as follows:

 States: Each is represented by a location (e.g., an airport) and the current

time.

Initial state: This is specified by the problem.

Successor function: This returns the states resulting from taking any

scheduled flight(further specified by seat class and location),leaving later

than the current time plus the within-airport transit time, from the current

airport to another.

Goal Test: Are we at the destination by some prespecified time?

Path cost: This depends upon the monetary cost, waiting time, flight time,

customs and immigration procedures, seat quality, time of date, type of air

plane, frequent-flyer mileage awards, and so on.

Internet Searching

In recent years there has been increased demand for software robots that
perform Internet searching, looking for answers to questions, for related
information, or for shopping deals. The searching techniques consider internet as
a graph of nodes(pages) connected by links.

UNINFORMED SEARCH STRATGES
• Uninformed Search Strategies have no additional information about states

beyond that provided in the problem definition.

• Strategies that know whether one non goal state is “more promising” than

another are Informed search or heuristic search strategies.

• There are five uninformed search strategies as given below.

 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening search

Breadth-first search

• Breadth-first search is a simple strategy in which the root node is expanded first, then

all successors of the root node are expanded next, then their successors, and so on.

• Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe

that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will

be expanded first.

Uniform-cost search

• Instead of expanding the shallowest node, uniform-cost search expands the

node n with the lowest path cost. Uniform-cost search does not care about the

number of steps a path has, but only about their total cost.

Depth-first search
• Depth-first-search always expands the deepest node in the current fringe of the

search tree.
• The search proceeds immediately to the deepest level of the search tree, where

the nodes have no successors.
• This strategy can be implemented by TREE-SEARCH with a last-in-first-out

(LIFO) queue, also known as a stack.

BACKTRACKING SEARCH
• A variant of depth-first search called backtracking search uses less memory and only one

successor is generated at a time rather than all successors.; Only O(m) memory is
needed rather than O(bm)

Depth-limited search
• The problem of unbounded trees can be alleviated by supplying depth-first-search with a

pre- determined depth limit l. That is, nodes at depth l are treated as if they have no
successors. This approach is called depth-limited-search. The depth limit solves the
infinite path problem.

Iterative deepening search
• Iterative deepening combines the benefits of depth-first and breadth-first-search

Like depth-first-search, its memory requirements are modest; O(bd) to be
precise.

Bidirectional Search

• Bidirectional Search as the name suggests is a combination of forwarding and

backward search.

1. Forward Search: Looking in-front of the end from start.

2. Backward Search: Looking from end to the start back-wards.

INFORMED SEARCH
• Informed search strategy is one that uses problem-specific knowledge

beyond the definition of the problem itself.
• It can find solutions more efficiently than uninformed strategy.
Best-first search
• Best-first search is an instance of general TREE-SEARCH or GRAPH-

SEARCH algorithm in which a node is selected for expansion based on an
evaluation function f(n).

• The node with lowest evaluation is selected for expansion, because the
evaluation measures the distance to the goal.

• This can be implemented using a priority-queue, a data structure that will
maintain the fringe in ascending order of f-values.

HEURISTIC FUNCTIONS
• A heuristic function is a function that ranks alternatives in various search

algorithms at each branching step basing on an available information in order to
make a decision which branch is to be followed during a search.

• The key component of Best-first search algorithm is a heuristic function, denoted
by h(n): h(n) = estimated cost of the cheapest path from node n to a goal node.

Greedy Best-first search
• Greedy best-first search tries to expand the node that is closest to the goal, on

the grounds that this is likely to a solution quickly.
• It evaluates the nodes by using the heuristic function f(n) = h(n).
Example ,
• Route-finding problems in Romania, the goal is to reach Bucharest starting

from the city Arad. We need to know the straight-line distances to Bucharest from
various cities as shown in Figure. For example, the initial state is In(Arad),and the
straight line distance heuristic hSLD (In(Arad)) is found to be 366.

• Using the straight-line distance heuristic hSLD, the goal state can be reached
faster.

LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS
Local Search Algorithms:
 In many optimization problems, the path to the goal is irrelevant; the goal state itself is

the solution. In such cases, we can use local search algorithms. They operate using a
single current state (rather than multiple paths) and generally move only to
neighbors of that state.

 The important applications of these class of problems are
(a) Integrated-circuit design,
(b) Factory-floor layout,
(c) Job-shop scheduling,
(d) Automatic programming,
(e) Telecommunications network optimization,
(f) Vehicle routing, and
 (g) Portfolio management.

 Key advantages of Local Search Algorithms
(1) They use very little memory – usually a constant amount; and
(2) they can often find reasonable solutions in large or infinite(continuous) state

spaces for which systematic algorithms are unsuitable.

Optimization Problems
 An local search algorithms are useful for solving pure optimization

problems, in which the aim is to find the best state according to an objective
function.
1. State Space Landscape:
 A landscape has both “location” (defined by the state) and “elevation” (defined

by the value of the heuristic cost function or objective function).
 If elevation corresponds to cost, then the aim is to find the lowest valley – a

global minimum; if elevation corresponds to an objective function, then the
aim is to find the highest peak – a global maximum.

2. Hill-climbing search
The hill-climbing search algorithm is simply a loop that continually

moves in the direction of increasing value – that is, uphill. It terminates when it
reaches a “peak” where no neighbor has a higher value.

3. Simulated annealing search:

Simulated annealing is an algorithm that combines hill-climbing with a

random walk in someway that yields both efficiency and completeness.

4. Genetic algorithms
A Genetic algorithm (or GA) is a variant of stochastic beam search in

which successor states are generated by combining two parent states, rather than
by modifying a single state.

SEARCHING WITH PARTIAL INFORMATION
Different types of incompleteness lead to three distinct problem types:

 Sensorless problems (conformant): If the agent has no sensors at all.

 Contingency problem: if the environment if partially observable or if action are

uncertain (adversarial).

 Exploration problems: When the states and actions of the environment are

unknown.

• No sensor

• Initial State(1,2,3,4,5,6,7,8)

• After action [Right] the state (2,4,6,8)

• After action [Suck] the state (4, 8)

• After action [Left] the state (3,7)

• After action [Suck] the state (8)

• Answer : [Right, Suck, Left, Suck] coerce

 the world into state 7 without any sensor

• Belief State: Such state that agent belief to be there

ARTIFICIAL INTELLIGENCE &
MACHINE LEARNING

Unit -3

KNOWLEDGE REPRESENTATION

 First Order Predicate Logic

 Prolog Programming

 Unification

 Forward Chaining-

 Backward Chaining

 Resolution

 Knowledge Representation

 Ontological Engineering

 Categories and Objects

 Events

 Mental Events and Mental Objects

 Reasoning Systems for Categories

 Reasoning with Default Information.

FIRST ORDER PREDICATE LOGIC
 First-order logic is another way of knowledge representation in artificial

intelligence. It is an extension to propositional logic.
 FOL is sufficiently expressive to represent the natural language statements

in a concise way.
 First-order logic is also known as Predicate logic or First-order

predicate logic. First-order logic is a powerful language that develops
information about the objects in a more easy way and can also express the
relationship between those objects.

 First-order logic (like natural language) does not only assume that the
world contains facts like propositional logic but also assumes the following
things in the world:
– Objects: A, B, people, numbers, colors, wars, theories, squares, pits,

wumpus,
– Relations: It can be unary relation such as: red, round, is

adjacent, or n-any relation such as: the sister of, brother of, has color,
comes between

– Function: Father of, best friend, third inning of, end of,

 As a natural language, first-order logic also has two main parts:
– Syntax
– Semantics

Syntax of First-Order logic:
 The syntax of FOL determines which collection of symbols is a logical expression

in first-order logic. The basic syntactic elements of first-order logic are symbols.
We write statements in short-hand notation in FOL.

Atomic sentences:
 Atomic sentences are the most basic sentences of first-order logic. These

sentences are formed from a predicate symbol followed by a parenthesis
with a sequence of terms.

 We can represent atomic sentences as Predicate (term1, term2,, term
n).

 Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
 Chinky is a cat: => cat (Chinky).

Complex Sentences:
 Complex sentences are made by combining atomic sentences using

connectives.
 First-order logic statements can be divided into two parts:

 Subject: Subject is the main part of the statement.
 Predicate: A predicate can be defined as a relation, which binds two

atoms together in a statement.

 Consider the statement:

Quantifiers in First-order logic:

 A quantifier is a language element which generates quantification, and quantification specifies the

quantity of specimen in the universe of discourse.

 These are the symbols that permit to determine or identify the range and scope of the variable in

the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Universal Quantifier:

 Universal quantifier is a symbol of logical representation, which specifies that the statement within

its range is true for everything or every instance of a particular thing.

 The Universal quantifier is represented by a symbol , which resembles an inverted A.∀

 Note: In universal quantifier we use implication "→".

 If x is a variable, then x is read as:∀

• For all x

• For each x

• For every x.

Existential Quantifier:

 Existential quantifiers are the type of quantifiers, which express that the

statement within its scope is true for at least one instance of something.

 It is denoted by the logical operator , which resembles as inverted E. When ∃

it is used with a predicate variable then it is called as an existential quantifier.

 Note: In Existential quantifier we always use AND or Conjunction symbol

().∧

 If x is a variable, then existential quantifier will be x or (x). And it will be ∃ ∃

read as:

• There exists a 'x.'

• For some 'x.'

• For at least one 'x.'

Properties of Quantifiers:
 In universal quantifier, x y is similar to y x.∀ ∀ ∀ ∀
 In Existential quantifier, x y is similar to y x.∃ ∃ ∃ ∃
 ∃x y is not similar to y x.∀ ∀ ∃

Some Examples of FOL using quantifier:
1. All birds fly.

In this question the predicate is "fly(bird)."
And since there are all birds who fly so it will be represented as follows.
 x bird(x) →fly(x)∀ .

2. Every man respects his parent.
In this question, the predicate is "respect(x, y)," where x=man, and y= parent.
Since there is every man so will use , and it will be represented as follows:∀
 x man(x) → respects (x, parent)∀ .

3. Some boys play cricket.
In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are some boys so
we will use , and it will be represented as∃ :
 x boys(x) → play(x, cricket)∃ .

4. Not all students like both Mathematics and Science.
In this question, the predicate is "like(x, y)," where x= student, and y= subject.
Since there are not all students, so we will use with negation, so∀ following representation for this:
 ¬ (x) [student(x) → like(x, Mathematics) like(x, Science)].∀ ∧

5. Only one student failed in Mathematics.
In this question, the predicate is "failed(x, y)," where x= student, and y= subject.
Since there is only one student who failed in Mathematics, so we will use following representation for this:
 (x) [student(x) → failed (x, Mathematics) (y) [¬(x==y) student(y) → ¬failed (x, ∃ ∧∀ ∧
Mathematics)].

Free and Bound Variables:

 The quantifiers interact with variables which appear in a suitable way.

There are two types of variables in First-order logic which are given

below:

 Free Variable: A variable is said to be a free variable in a formula if it

occurs outside the scope of the quantifier.

 Example: x (y)[P (x, y, z)], where z is a free variable.∀ ∃

 Bound Variable: A variable is said to be a bound variable in a formula if it

occurs within the scope of the quantifier.

 Example: x [A (x) B(y)], here x and y are the bound variables.∀

Prolog Programming
Prolog is a logic programming language. It has important role in artificial

intelligence. Unlike many other programming languages, Prolog is intended primarily
as a declarative programming language
Key Features :

1. Unification : The basic idea is, can the given terms be made to represent the
same structure.
2. Backtracking : When a task fails, prolog traces backwards and tries to satisfy
previous task.
3. Recursion : Recursion is the basis for any search in program.

Advantages :
1. Easy to build database. Doesn’t need a lot of programming effort.
2. Pattern matching is easy. Search is recursion based.
3. It has built in list handling. Makes it easier to play with any algorithm involving
lists.

Disadvantages :
1. LISP (another logic programming language) dominates over prolog with respect
to I/O features.
2. Sometimes input and output is not easy.

Applications :
• Prolog is highly used in artificial intelligence(AI). Prolog is also used for pattern

matching over natural language parse trees.

UNIFICATION

 Unification is a process of making two different logical atomic expressions identical by

finding a substitution. Unification depends on the substitution process.

 It takes two literals as input and makes them identical using substitution.

 Let Ψ1 and Ψ2 be two atomic sentences and be a unifier such that, 𝜎 Ψ1 = Ψ𝜎 2𝜎, then it

can be expressed as UNIFY(Ψ1, Ψ2).

 Example: Find the MGU for Unify{King(x), King(John)}

Let Ψ1 = King(x), Ψ2 = King(John),

Substitution θ = {John/x} is a unifier for these atoms and applying this substitution, and both

expressions will be identical.

 The UNIFY algorithm is used for unification, which takes two atomic sentences and

returns a unifier for those sentences (If any exist).

 Unification is a key component of all first-order inference algorithms.

 It returns fail if the expressions do not match with each other.

 The substitution variables are called Most General Unifier or MGU.

 E.g. Let's say there are two different expressions, P(x, y), and P(a, f(z)).

 In this example, we need to make both above statements identical to each other. For this, we

will perform the substitution.

P(x,y).........(i), P(a, f(z))......... (ii)

 Substitute x with a, and y with f(z) in the first expression, and it will be represented

as a/x and f(z)/y.

 With both the substitutions, the first expression will be identical to the second expression

and the substitution set will be: [a/x, f(z)/y].

Conditions for Unification:

Following are some basic conditions for unification:

 Predicate symbol must be same, atoms or expression with different predicate symbol can

never be unified.

 Number of Arguments in both expressions must be identical.

 Unification will fail if there are two similar variables present in the same expression.

Implementation of the Algorithm
Step.1: Initialize the substitution set to be empty.
Step.2: Recursively unify atomic sentences:

• Check for Identical expression match.
• If one expression is a variable vi, and the other is a term ti which does not

contain variable vi, then:
– Substitute ti / vi in the existing substitutions
– Add ti /vi to the substitution setlist.
– If both the expressions are functions, then function name must be

similar, and the number of arguments must be the same in both the
expression.

Inference engine
• The inference engine is the component of the intelligent system in artificial

intelligence, which applies logical rules to the knowledge base to infer new
information from known facts.

• The first inference engine was part of the expert system. Inference engine
commonly proceeds in two modes, which are:

a. Forward chaining
b. Backward chaining

Forward-Chaining

 It is a down-up approach, as it moves from bottom to top.

 It is a process of making a conclusion based on known facts or data, by

starting from the initial state and reaches the goal state.

 Forward-chaining approach is also called as data-driven as we reach to the

goal using available data.

 Forward -chaining approach is commonly used in the expert system, such

as CLIPS, business, and production rule systems.

Facts Conversion into FOL
 It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and

r are variables)
American (p) weapon(q) sells (p, q, r) hostile(r) → Criminal(p) …(1)∧ ∧ ∧

 Country A has some missiles. p Owns(A, p) Missile(p). It can be written in ∃ ∧
twodefinite clauses by using Existential Instantiation, introducing new Constant
T1.

Owns(A, T1) …(2)
Missile(T1) …(3)

 All of the missiles were sold to country A by Robert.
∀p Missiles(p) Owns (A, p) → Sells (Robert, p, A) …(4)∧

 Missiles are weapons.
Missile(p) → Weapons (p) …(5)

 Enemy of America is known as hostile.
Enemy(p, America) →Hostile(p) …(6)

 Country A is an enemy of America.
Enemy (A, America) …(7)

 Robert is American
American(Robert). …(8)

Forward chaining proof
Step-1

In the first step we will start with the known facts and will choose the sentences
which do not have implications, such as: American (Robert), Enemy(A, America),
Owns(A, T1), and Missile(T1). All these facts will be represented as below.

Step-2
At the second step, we will see those facts which infer from available facts and

with satisfied premises.
Rule-(1) does not satisfy premises, so it will not be added in the first iteration.
Rule-(2) and (3) are already added.
Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which
infers
from the conjunction of Rule (2) and (3).
Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers
from
Rule-(7).

Step-3
• At step-3, as we can check Rule-(1) is satisfied with the substitution

{p/Robert, q/T1,r/A}, so we can add Criminal (Robert) which infers all the
available facts. And hence we reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

Backward chaining
 Backward-chaining is also known as a backward deduction or backward reasoning

method when using an inference engine.
 It is known as a top-down approach.
 Backward-chaining is based on modus ponens inference rule.
 In backward chaining, the goal is broken into sub-goal or sub-goals to prove the

facts true.
 It is called a goal-driven approach, as a list of goals decides which rules are

selected and used.
 Backward -chaining algorithm is used in game theory, automated theorem proving

tools, inference engines, proof assistants, and various AI applications.
 The backward-chaining method mostly used a depth-first search strategy for proof.

Example
 In backward-chaining, we will use the same above example, and will rewrite all the

rules.
American (p) weapon(q) sells (p, q, r) hostile(r) → Criminal(p)…(1)∧ ∧ ∧
Owns(A, T1) …(2)

 Missile(T1) …(3)
 ?p Missiles(p) Owns (A, p) → Sells (Robert, p, A) …(4)∧
 Missile(p) → Weapons (p) …(5)
 Enemy(p, America) →Hostile(p) …(6)
 Enemy (A, America) …(7)
 American (Robert).
Backward-Chaining proof
Step-1
• At the first step, we will take the goal fact. And from the goal fact, we will

infer other facts, and at last, we will prove those facts true. So our goal fact is
"Robert is Criminal," so following is the predicate of it.

Step-2
• At the second step, we will infer other facts form goal fact which satisfies the

rules. So as we can see in Rule-1, the goal predicate Criminal (Robert) is
present with substitution {Robert/P}. So we will add all the conjunctive facts
below the first level and will replace p with Robert.

• Here we can see American (Robert) is a fact, so it is proved here.

Step-3
• t At step-3, we will extract further fact Missile(q) which infer from

Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with the
substitution of a constant T1 at q.

Step-4
• At step-4, we can infer facts Missile(T1) and Owns(A, T1) form

Sells(Robert, T1, r) which satisfies the Rule- 4, with the substitution of A
in place of r. So these two statements are proved here.

Step-5
• At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which

satisfies Rule- 6. And hence all the statements are proved true using
backward chaining.

• Suppose you have a production system with the FOUR rules: R1: IF A
AND C then F R2: IF A AND E, THEN G R3: IF B, THEN E R4: R3: IF
G, THEN D and you have four initial facts: A, B, C, D. PROVE A&B
TRUE THEN D IS TRUE. Explain what is meant by “forward chaining”,
and show explicitly how it can be used in this case to determine new facts.

Resolution
• Resolution is a theorem proving technique that proceeds by building refutation proofs, i.e.,

proofs by contradictions. It was invented by a Mathematician John Alan Robinson in the year
1965.

• Resolution is used, if there are various statements are given, and we need to prove a conclusion
of those statements. Unification is a key concept in proofs by resolutions. Resolution is a single
inference rule which can efficiently operate on the conjunctive normal form or clausal form.

Steps for Resolution:
1. Conversion of facts into first-order logic.
2. Convert FOL statements into CNF
3. Negate the statement which needs to prove (proof by contradiction)
4. Draw resolution graph (unification).

Example:
a. John likes all kind of food.
b. Apple and vegetable are food
c. Anything anyone eats and not killed is food.
d. Anil eats peanuts and still alive
e. Harry eats everything that Anil eats.

Prove by resolution that:
f. John likes peanuts.

Step-1: Conversion of Facts into FOL

• In the first step we will convert all the given statements into its first order

logic.

Step-2: Conversion of FOL into CNF
• In First order logic resolution, it is required to convert the FOL into CNF

as CNF form makes easier for resolution proofs.

• Rename variables or standardize variables

a. ∀x ¬ food(x) V likes(John, x)

b. food(Apple) Λ food(vegetables)

c. ∀y z ¬ eats(y, z) V killed(y) V food(z)∀

d. eats (Anil, Peanuts) Λ alive(Anil)

e. ∀w¬ eats(Anil, w) V eats(Harry, w)

f. ∀g ¬killed(g)] V alive(g)

g. ∀k ¬ alive(k) V ¬ killed(k)

h. likes(John, Peanuts).

• Eliminate existential instantiation quantifier by elimination.

In this step, we will eliminate existential quantifier , and this process is ∃

known as Skolemization. But in this example problem since there is no

existential quantifier so all the statements will remain same in this step.

Drop Universal quantifiers.
In this step we will drop all universal quantifier since all the statements are
not implicitly quantified so we don't need it.
a. ¬ food(x) V likes(John, x)
b. food(Apple)
c. food(vegetables)
d. ¬ eats(y, z) V killed(y) V food(z)
e. eats (Anil, Peanuts)
f. alive(Anil)
g. ¬ eats(Anil, w) V eats(Harry, w)
h. killed(g) V alive(g)
i. ¬ alive(k) V ¬ killed(k)
j. likes(John, Peanuts).

• Note: Statements "food(Apple) Λ food(vegetables)" and "eats (Anil,
Peanuts) Λ alive(Anil)" can be written in two separate statements.

Distribute conjunction over disjunction ¬.∧
This step will not make any change in this problem.

Step-3: Negate the statement to be proved
• In this statement, we will apply negation to the conclusion statements, which

will be written as ¬likes(John, Peanuts)
Step-4: Draw Resolution graph:
• Now in this step, we will solve the problem by resolution tree using

substitution. For the above problem, it will be given as follows:

Hence the negation of the conclusion has been proved as a complete
contradiction with the given set of statements.

UNIT 4

MACHINE LEARNING

• Machine learning (ML) is a type of artificial
intelligence (AI) that allows software
applications to become more accurate at
predicting outcomes without being explicitly
programmed to do so. Machine learning
algorithms use historical data as input to
predict new output values.

•Machine Learning is the most popular technique of predicting the
future or classifying information to help people in making necessary
decisions.

•Machine Learning algorithms are trained over instances or examples through
which they learn from past experiences and also analyze the historical data.

•Therefore, as it trains over the examples, again and again, it is able to
identify patterns in order to make predictions about the future.

Why Machine Learning?
• Machine Learning has revolutionized industries

like medicine, healthcare, manufacturing, banking, and several
other industries. Therefore, Machine Learning has become
an essential part of modern industry.

• Data is powerful and in order to harness the power of this data,
added by the massive increase in computation power, Machine
Learning has added another dimension to the way we perceive
information. Example:

• The electronic devices we use is a powerful machine learning
algorithms.

• Machine Learning example – Google is able to provide you with
appropriate search results based on browsing habits.

How does machine learning works?
• With an exponential increase in data, there is a

need for having a system that can handle
this massive load of data.

• Machine Learning models like Deep Learning allow
the vast majority of data to be handled with
an accurate generation of predictions.

• Machine Learning has revolutionized the way
we perceive information and the various
insights we can gain out of it.

•These machine learning algorithms use the patterns contained in the
training data to perform classification and future predictions.

•Whenever any new input is introduced to the ML model, it applies its
learned patterns over the new data to make future predictions.

•Based on the final accuracy, one can optimize their models using various
 standardized approaches.

Types of ML
• Supervised Learning
• Unsupervised Learning
• Reinforcement Learning

Supervised Learning
• Supervised learning is that the machine learning

task of learning a function that maps an input to
an output supported example input-output pairs.

• In Supervised Learning, the dataset on which we
train our model is labeled. There is a clear
and distinct mapping of input and output. Based on
the example inputs, the model is able to
get trained in the instances.

• An example of supervised learning is spam filtering.

Unsupervised Learning
• It allows the model to figure on its own to

get patterns and knowledge that was previously undetected. It mainly
deals with the unlabeled data.

• In Unsupervised Learning, there is no labeled data. The algorithm
identifies the patterns within the dataset and learns them. The algorithm
groups the data into various clusters based on their density. Using it, one
can perform visualization on high dimensional data.

• One example of this type of Machine learning algorithm is the Principle
Component Analysis

• K-Mean Cluster is another type of Unsupervised Learning where the data
is clustered in groups of a similar order. The learning process in
Unsupervised Learning is solely on the basis of finding patterns in
the data..

Reinforcement Learning
• Reinforcement learning is one among three basic

machine learning paradigms, alongside supervised
learning and unsupervised learning.

• Reinforcement Learning is an emerging and most
popular type of Machine Learning Algorithm. It is
used in various autonomous
systems like cars and industrial robotics. The aim of
this algorithm is to reach a goal in a dynamic
environment. It can reach this goal based on several
rewards that are provided to it by the system.

• It is most heavily used in programming
robots to perform autonomous actions. It is
also used in making intelligent self-driving cars.

• Let us consider the case of robotic navigation.
• Furthermore, the efficiency can be improved

with further experimentation with the agent in
its environment. This the main principle
behind reinforcement learning.

Machine Learning Algorithms
• Linear regression
• Logistic regression
• Decision tree
• SVM algorithm
• Naive Bayes algorithm
• KNN algorithm
• K-means
• Random forest algorithm
• Dimensionality reduction algorithms
• Gradient boosting algorithm and AdaBoosting algorithm

UNIT 5

Support Vector Machine Algorithm

• Support Vector Machine or SVM is one of the most popular
Supervised Learning algorithms, which is used for Classification as
well as Regression problems.
• However, primarily, it is used for Classification problems in Machine

Learning.
• The goal of the SVM algorithm is to create the best line or decision

boundary that can segregate n-dimensional space into classes so that
we can easily put the new data point in the correct category in the
future. This best decision boundary is called a hyperplane.

• SVM chooses the extreme points/vectors that help in creating the
hyperplane. These extreme cases are called as support vectors, and
hence algorithm is termed as Support Vector Machine.

EXAMPLE

SVM algorithm can be used for Face detection,
 image classification, text categorization, etc.

Types of SVM

• Linear SVM: Linear SVM is used for linearly separable data, which
means if a dataset can be classified into two classes by using a single
straight line, then such data is termed as linearly separable data, and
classifier is used called as Linear SVM classifier.
• Non-linear SVM: Non-Linear SVM is used for non-linearly separated

data, which means if a dataset cannot be classified by using a straight
line, then such data is termed as non-linear data and classifier used is
called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

• Hyperplane: There can be multiple lines/decision boundaries to
segregate the classes in n-dimensional space, but we need to find out
the best decision boundary that helps to classify the data points. This
best boundary is known as the hyperplane of SVM.
• Support Vectors:
• The data points or vectors that are the closest to the hyperplane and

which affect the position of the hyperplane are termed as Support
Vector. Since these vectors support the hyperplane, hence called a
Support vector.

How does SVM works?

• Linear SVM:
• 2D space
• X1 and y1 is features (green,
Blue)
• Classify these two feature by
Using classifier alg.

Non-Linear SVM:

• Can’t draw single straight line 3D line

3D space
After converts 3D to 2D space

Application of AI

What exactly is Deep Learning?

• Deep Learning is a subset of Machine Learning, which on the other hand is a
subset of Artificial Intelligence.
• Artificial Intelligence is a general term that refers to techniques that enable

computers to mimic human behavior.
• Machine Learning represents a set of algorithms trained on data that make all of

this possible.

• Deep Learning, on the other hand, is just a type of Machine Learning,
inspired by the structure of a human brain.
• Deep learning algorithms attempt to draw similar conclusions as

humans would by continually analyzing data with a given logical
structure.
• To achieve this, deep learning uses a multi-layered structure of

algorithms called neural networks

A neural network generally consists of a collection of connected units or nodes. We
call these nodes neurons. These artificial neurons loosely model the biological
neurons of our brain.

• Neural networks enable us to perform many tasks, such as
clustering, classification or regression.
• With neural networks, we can group or sort unlabeled data according

to similarities among the samples in this data. Or in the case of
classification, we can train the network on a labeled dataset in order
to classify the samples in this dataset into different categories.
• In general, neural networks can perform the same tasks as classical

algorithms of machine learning.

Advantages

• The first advantage of deep learning over machine learning is the needlessness of
the so-called feature extraction.
• Feature Extraction is usually quite complex and requires detailed knowledge of

the problem domain. This preprocessing layer must be adapted, tested and
refined over several iterations for optimal results.

• Second thing is, the huge amounts of data we can feed to these
algorithms
• Deep Learning models tend to increase their accuracy with the

increasing amount of training data, where’s traditional machine
learning models such as SVM and Naive Bayes classifier stop
improving after a saturation point.

What Is Computer Vision?

• Computer vision is an area of machine learning dedicated to
interpreting and understanding images and video. It is used to help
teach computers to “see” and to use visual information to perform
visual tasks that humans can.
• Computer vision models are designed to translate visual data based

on features and contextual information identified during training. This
enables models to interpret images and video and apply those
interpretations to predictive or decision making tasks.

Image Classification

• Image classification is where a computer can analyse an image and
identify the ‘class’ the image falls under. (Or a probability of the image
being part of a ‘class’.) A class is essentially a label, for instance, ‘car’,
‘animal’, ‘building’ and so on.
• For example, you input an image of a sheep. Image classification is

the process of the computer analysing the image and telling you it’s a
sheep. (Or the probability that it’s a sheep.)

Teaching computer to recognize images and
classify them

Robotics in Deep Learning

• Robotic platforms now deliver vast amounts of sensor data from large
unstructured environments.
• Robots can learn, navigate, and make decisions all by themselves
• Important Robot Components
• The element that enables a robot to become a physical part

of its surroundings are the components that are located on-board;
Specifically, the Sensors.
• Sensors are crucial in a robotic system as they reduce the need for

interaction, hence increasing the autonomous levels in a system.

A list of sensors that are available on the
market are as follows
• Light sensors.
• – Temperature sensors.
• – Pressure sensors.
• – Position sensors.
• – Hall sensors.
• – Flex sensors.
• – Sound sensors.
• – Ultrasonic sensors.
• – Touch sensors.
• – PIR sensors.
• – Tilt sensors.
• – Gas sensors.

	ARTIFICIAL INTELLIGENCE & MACHINE LEARNING
	Slide 2
	PROBLEM SOLVING APPROACH TO TYPICAL AI PROBLEMS
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Internet Searching
	UNINFORMED SEARCH STRATGES
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	INFORMED SEARCH
	HEURISTIC FUNCTIONS
	Slide 24
	LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	SEARCHING WITH PARTIAL INFORMATION
	ARTIFICIAL INTELLIGENCE & MACHINE LEARNING
	Slide 2
	FIRST ORDER PREDICATE LOGIC
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Prolog Programming
	UNIFICATION
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	UNIT 4
	MACHINE LEARNING
	Slide 3
	Why Machine Learning?
	How does machine learning works?
	Slide 6
	Types of ML
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Slide 11
	Slide 12
	Machine Learning Algorithms
	UNIT 5
	Support Vector Machine Algorithm
	Slide 3
	EXAMPLE
	Types of SVM
	Hyperplane and Support Vectors in the SVM algorithm:
	How does SVM works?
	Non-Linear SVM:
	Slide 9
	Application of AI
	What exactly is Deep Learning?
	Slide 12
	A neural network generally consists of a collection of connecte
	Slide 14
	Advantages
	Slide 16
	What Is Computer Vision?
	Image Classification
	Teaching computer to recognize images and classify them
	Robotics in Deep Learning
	A list of sensors that are available on the market are as follo

