
Data Structure

Introduction to Data Structure

• Definition:
• A data structure is a particular way of storing and organizing data in a computer so

that it can be used efficiently.

• Example :
• B-tress suits for implementing database, Hast table to look up identifiers used by

compilers

• Advantages :
• Provides a means to manage huge amount of data efficiently.
• Efficient data structure are a key to designing efficient algorithm.

Type of Data structure

• In Linear Data Structure elements or item form a sequence one after
other. It has exactly two neighbours.

• In non Linear Data structure elements or items form a hierarchical
relationship between individual data items.

Arithmetic expression and operation

• Arithmetic expression is one which is evaluated by performing a
sequence of arithmetic operations to obtain a numeric value with
replaces the expression.

• Arithmetic operator : +,-,*,/,Uninary-

• Operand :
• a numeric constant

• a numeric variable which may be preceded by a unary+ or unary –

• A arithmetic expression in parentheses

Arithmetic Evaluation

• Two variable integer I and Real R

• Real variable can hold any value

• Integer variable can hold integer value with any fraction being
truncated

• Eg.R→real, I→Int
• R = ¾ will assign .75 to R

• I = ¾ will assign 0 to I

Strings and String Operations

• String is a finite sequence of symbols that are chosen from alphabets.

• String Operation:
• String Concatenation

• String Length

• String Substring

• String Compare

• String Copy

Strings and String Operations

• Strings in C are represented by arrays of character. The end of the
string is marked with a special character, the null character having
value 0.

• Whenever we write string, enclosed in double quotes, C automatically
creates an array of character, terminated by \0 character.

Eg. Char String[] = ”Hello, world”;

If the dimension is not specified, compiler computes as 13(including \0)

String COPY

• Eg.

• Char String1[]= “Hello, world”;

• Char String2[20];

• Strcpy(String2,String1);

String COMPARE

• This function compares two strings and return 0 if they are identical,
• a negative number if the 1st string is alphabetically “less than” the second

string
• a positive number if the first string is “greater”
• Eg.

Char string3[] = “this is”;
Char string4[] = “atest”;
If (strcmp(string3,string4) == 0

Printf(“string are equal\n”);
Else
Printf(”strings are different\n);

Ans: Strings are different

Strcmp does not return a
Boolean t/f or zero/nonzero

String Concatenation

• Strcat appends one string onto the end of another.

• Eg.

• Char String5[20] = “Hello”;

• Char String6[20] = “world”;

• Strcat(String5, String6);

• Printf(String5);

• Ans: String5 = Helloworld

Relations and Relational Operators

• The relational operator compares two operands and determine the valid of
a relationship.

• Relational Operators:
• <, >, <=, >=, =, ≠
In C the result of of the relational operator is int and has the value 1, if the specified
relationship is true and 0 if false
Eg.
Z = 10, MT = “Good”
Z <= 9/3+Z →False
Z ≠ Z + 5 → True
MT < “Good morning” → True

Logical Operations and Expressions

• Logical Operator : not, and, or

• Operator Precedence
• Parantheses
• Arithmetic
• Relational
• Logical

• Eg. (x < Z + 3) and (X < 0))
• (X < 2) or (X <0)
• Not (one < 2)
• We can have logical variable as character variable.

Higher Precedence

Operations on data Structure

• Create a data structure

• Destroying the data structure

• Access data with a data structure(selection)

• Change in the data structure(update by assignment statement)

Integer

• A quantity representing objects which are discrete in nature can be
represented by an integer.

• Eg. No. of books

• The set of integer I is

• (……….-(n+1),-n,……-2,-1,0,1,2,………n,n+1,….)

• Conventional method for writing negative number is to place a sign
symbol in front of a number. This method called sign and magnitude
method.

Cont..

• Sign is represented as the left most bit of the binary number.

• Eg.

 Numbe signbit Magnitude

 +7 0 000…111

 -6 1 000…010

Adding +7 and -6 requires subtraction operation +7+(-6)

Subtracting -6 from +7 involves addition +7- (-6)

Radix Complement Representation

• In Radix Complement representation all arithmetic operation are
performed modulo M, for M= RN where R is the radix in which the
integer expressed and N is the maximum number of digits required to
represent an integer modulo N.

2’s complement numbers using modulo 16

• N = 4, 24 =16

Integer 2’complement integer 2’s complement

0 0000 -1(16-1=15) 1111

1 0001 -2(16-2=14) 1110

2 0010 -3(16-3=13) 1101

3 0011 -4(16-4=12) 1100

4 0100 -5(16-5=11) 1011

5 0101 -6(16-6=10) 1010

6 0110 -7(16-7=9) 1001

7 0111 -8(16-8=15) 1000

2’s complement modulo 16 system are related to integers from -8 to 7

What is the 2,s complement representation of
-38 expressed as a modulo 32 number?
• Express -38 as modulo 32 number

• -38 mod 32 = -6

• To find 2,s complement representation
• 32 – 6 = 26

• Major advantage of radix complement notation is that we can
perform addition and subtraction operation using only addition and
complementation.

Example:

A. 3 + 4 = (0011)2 + (0100)2 = (0111)2 = 7

B. 3 – 4 = (0011)2 + 2’s Comp(0100)2

 = (0011)2 + (1100)2

 = (1111)2 = -1

C. -3 + 4 = 2’s comp(0011)2 + (0100)2

 = (1101)2 + (0100)2

 = (0001)2=1

D. 7 + 7 = (0111)2 + (0111)2 = (1110)2 = -2

E. -7-7 = 2’s comp(0111)2 + 2’s comp(0111)2

 = (1001)2 + (1001)2 = (0010)2 = 2

The range of 2’s complement form assuming a modulo 16 system is -8 to +7

So 7 + 7 and -7-7 will cause overflow.

1s complement form

a. 3 + 4 = (0011)2 + (0100)2 = (0111)2 = 7
b. 3 - 4 = (0011)2 + 1’s comp(0100)2 = (0011)2 + (1011)2

 = (1110)2 = -1
c. -3 +4 = (1’s comp(0011)2) + (0100)2

 = 1100 + 0100 = 0001
d. 7 + 7 = (0111)2 + (0111)2 = (1110)2 = -1
e. -7-7 = 1s’comp(0111)2 + 1’scomp(0111)2

 (1000)2 + (1000)2 = (0000)2 = 0
(d,e) it is a overflow
2’s comp form I preferred than 1’scomp form because +0, -0 controversy is
avoided.

Integer

• Integer values that can be expressed using an n-bit storage representation

 20 + 21 + 22 + -------- + 2n-1 is σ𝑖=0
𝑛−1 2𝑛-1

In a n-bit 2’s comp storage representation, the first bit expresses the sign of
the integer. Therefore positive integer in the range
 0 to 2n-1 -1
In general, we find that an integer N can be accommodated using a n bit 2’s
complement storage representation if
 - 2n-1 <= N <= 2 n-1 -1
Because both +0 and -0 can be represented, the range of integer
representation in I’s complement is one less than the range of
2’scomplement.
 - 2n-1 +1 <= N <= 2 n-1 -1

Real Numbers

Fixed- point representation for a real number AR in radix system R as

AR = ± aN-1 aN-2 …….. A1 a0. a-1 a-2……. A -(M-1) a-M)R

which has a literal expansion of

A = ± σ𝑖=−𝑀
𝑁−1 𝑎𝑖

𝑅𝑖

 Fixed point notation is sufficient to represent most of real numbers.

Limitation in fixed point representation

• Distance 16,800,000,000,000 km in celestial bodies

• .000000000082 meters energy emission in bubble chamber.

• Cost of computer is directly affected by Precision of the number that
can be handled in computation.

• Greater the precision allowed the larger and more complex in the
arithmetic unit.

• Arithmetic computation of real numbers requires a precision of
27decimal digits, when representing in binary it takes 90 binary digits
or bits.

• Computer with word size 90 is not economical.

Floating point or scientific notation

16,800,000,000,000 in short .168 X 1014

 .0000000000832 in short .832 X10-10

The Fraction part should be normalized

F lie in the interval R-1 <= F < 1

2-1 <= F <= 1 if in binary

16-1<= F <= 1 if in hexadecimal

Sign Exponent Fraction

Character Information

• Two mainly used Character set

EBCDIC (Extended Binary Coded Decimal Interchange Code)

ASCII (American standard code for Information Interchange)

A character is represented in memory as a sequence of bits where a
distinctive bit sequence is assigned to each character in the character
set. Fixed length and variable length is available. Fixed length is
preferable.

Logical Information

• Only two logic constants exists true and False.

• The storage representation of logical values id dependent upon the
language compiler or interpreter. The most obvious storage structure
that can be applied to logical data is the single bit.

Pointer Information

Storage Representation
of 3.14

Pointer

Pointer

T 3.14

P 3.14

C 3.14

V 3.14

Suppose a program contains four occurrences of the real constant 3.14. During the compilation process, four
copies of 3.14 is created. But by using pointers one copy + 3 pointers is sufficient.
• Less space is occupied by pointers rather than fixed point representation for real numbers.
• Homogenous method of referring any data structure by having single fixed size data item.
• They permit faster insertion and deletion of elements to and from a data structure.

Non-Primitive Data Structure

Arrays

• An ordered set which consists of a fixed number of objects.

No deletion or insertion operation are performed on arrays.

• Operations:

• Elements can be changed to a new value.

• To delete an element, we can make it to zero.

Lists

• An ordered set consisting of a variable number of elements to which
insertions and deletions can be made.

• A list which displays the relationship of adjacency between elements is said
to be linear.

• Operations:
• All the operations that carried out in array.
• Insertion and deletion of elements in a list in specified position.
• Split a list into a number of other list.
• Copy a list
• No. of elements in a list.
• Sorting the elements in ascending or decending
• Searching a list foe an element.

Difference between Arrays and List

• In list the size of a list may be changed by updating.

• Each element in a list is composed of one or more fields. A field can
be considered to be the smallest piece of information that can be
referenced in a programming Language.

File

• A large list that is stored in the eternal memory of a computer.

• File has records that are accessed in frequently.

Storage Structure for Arrays

Storage Structure for Arrays….

Storage Structure for Arrays….

Stack

Stack Representation

Stack- PUSH Operation

Stack- POP Operation

Applications of Stack

• Recursion(When functions are called)

• Polish expression and their compilation
• To convert infix to postfix

• To Evaluate a postfix expression

Polish Notation

• Infix Notation
• Operator symbol is placed between its two operands.

• A + B, C – D, E * F

• Polish Notation(Prefix)
• Operator symbol is placed before its two operands.

• +AB, -CD, *EF, /gh

• (a+b)*c = *+abc

• A+(B*c) = +A*BC

• Reverse Polish Notation(postfix)
• AB+,CD-,EF*,GH/

Infix to Postfix Conversion
• If Token is

• (i) a left Parenthesis: Push it onto the stack.

• (ii) A right Parenthesis : Pop and Display stack element until a left
 parenthesis is popped, but donot display it(*It is
 an error if the stack becomes empty with no left
 parenthesis is found)

• (iii) an operator: If the stack is empty or Token has a higher
 Priority(not even =) than the top stack, Push
 token onto the stack, otherwise, pop and display the

 top stack element.
Then repeat the comparison of Token with the new
top stack item.
A left Parenthesis is in the stack, is assumed to have a
lower priority than that of operators.

• (iv) an operand: Display it.

Example 1:(infix to Postfix)
Given expression: A + B * C – D / E
Steps Infix Stack Postfix

a) A+B*C-D/E Empty Empty

b) +B*C-D/E Empty A

c) B*C-D/E + A

d) *C-D/E + AB

e) C-D/E +* AB

f) -D/E +* ABC

g) D/E - ABC*+

h) /E - ABC*+D

i) E -/ ABC*+D

j) -/ ABC*+DE/-

Example 2:(infix to Postfix)
Given expression: A + B – (C +D) +E
Steps Infix Stack Postfix

a) A*B-(C+D)+E Empty Empty

b) *B-(C+D)+E Empty A

c) B-(C+D)+E * A

d) -(C+D)+E * AB

e) (C+D)+E - AB*

f) C+D)+E -(AB*

g) +D)+E -(AB*C

h) D)+E -(+ AB*C

i))+E -(+ AB*CD

j) +E - AB*CD+

k) E + AB*CD+-

l) + AB*CD+-E

m) AB*CD+-E+

Postfix Evaluation

• Operand : Push

• Operator : Pop operands, do the maths, push result back onto stack

• Given Postfix Expression : 123+*

Steps Postfix Stack

a) 123+* Empty

b) 23+* 1

c) 3+* 1 2

d) +* 1 2 3

e) * 1 5 //5 from 2 + 3

f) 5 //5 from 1 X 5

Recursion

• A recursive algorithm definition is when something is defined partly in terms of itself

• Mathematical definition of Factorial

Factorial(n) =ቊ
1, 𝑖𝑓 𝑛 ≤ 1

𝑛 ∗ 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑛 − 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Static int factorial(int n)

Int r = 1;

{ If (n <=1) return 1

 else {r = n* return n * factorial(n-1);

 return r;}

Calling the function as

X = factorial(3), this enters the factorial function with n=3 on the stack.

Implementation of Factorial Recursive Function

r = 1

N = 3

Factorial(3) Factorial(2)

r= 1

N = 2

r= 1

N = 3

Factorial(1)

r= 1

N = 1

r= 1

N = 2

r= 1

N= 3

Factorial(1) = 1

r = 1

N = 2

r = 1

N = 3

Factorial(2) = 2

r = 1

N = 3 Factorial(3) = 6

(a) (b) (c) (d) (e) (f)

Queues

• A queue is a linear list of elements in which deletion can take place
only at one end called the FRONT and insertion can be placed only at
the other end called the REAR.

• Queue are also called First In First Out(FIFO) lists, since the first
element in a queue will be the first element out of the queue.

• Example: Waiting line in the bank.

• Queues may be represented either by list or arrays. Queue maintains
two pointers
• FRONT: contains the location of the front element of the queue.

• REAR: contains the location of the rear element of the queue.

QUEUE : Example
a. Intially Empty F=0

R=0

b. A,B,C INSERTED F=1
R=3

A B C

C A DELETED F=2
R=3

B C

D D,E INSERTED F=2
R=5

B C D E

E B,C DELETED F=4
R=5

D E

F F INSERTED F=4
R=1

F D E

G D DELETED F = 5
R = 1

F E

H G,H INSERTED F = 5
R = 3

F G H E

I E DELETED F = 1
R = 3

F G H

J F DELETED F = 2
R = 3

G H

K K INSERTED F = 2
R = 4

G H K

L G AND H DELETED F = 4
R = 4

K

M K DELETED, QUEUE EMPTY F = 0
R = 0

1 2 3 4 5

Points to remember during queue implementation

• FRONT = NULL will indicate that the queue is empty
• When an element is deleted from the queue FRONT = FRONT + 1
• When an element is inserted from the queue REAR = REAR + 1
• After N insertion , REAR will be pointing to QUEUE[N] or last part of the

array. This condition occurs even though the queue itself may not contain
many elements.

• When inserting element at REAR = N one way to do this is to simply move
the entire queue to the beginning of the array, changing FRONT and REAR
accordingly. But this procedure is expensive.

• So we assume the array is circular ie. QUEUE[1] comes after QUEUE[N].
• Similarly, if FRONT = N and an element of queue is deleted, we reset
FRONT = 1 instead of increasing FRONT to N + 1

Queue Insert

QINSERT(QUEUE,N,FRONT,REAR,ITEM)

//This Procedure inserts an element ITEM into a queue

1. If FRONT = 1 and REAR = N, or if

 FRONT = REAR + 1 then Write “Overflow” and Return.

2. [find new value of REAR]

 If FRONT = NULL then [queue initially empty]

 set FRONT = 1 AND REAR = 1

 else if REAR = N then SET REAR = 1

 else set REAR = REAR + 1

3. SET Queue[REAR]= ITEM

4. RETURN.

Queue Delete

QDELETE(QUEUE,N,FRONT,REAR,ITEM)

//This Procedure deletes an element from a queue and assigns it to the variable ITEM

1. [Queue already empty]

If FRONT = NULL, then Write “underflow” and Return.

2. Set ITEM = QUEUE[FRONT]

3. [Find new value of FRONT]

 If FRONT = REAR then [queue has only one element to start]

 set FRONT = NULL AND REAR = NULL

 else if FRONT = N then SET FRONT = 1

 else set FRONT= FRONT + 1

4. RETURN.

	Slide 1: Data Structure
	Slide 2: Introduction to Data Structure
	Slide 3: Type of Data structure
	Slide 4
	Slide 5: Arithmetic expression and operation
	Slide 6: Arithmetic Evaluation
	Slide 7: Strings and String Operations
	Slide 8: Strings and String Operations
	Slide 9: String COPY
	Slide 10: String COMPARE
	Slide 11: String Concatenation
	Slide 12: Relations and Relational Operators
	Slide 13: Logical Operations and Expressions
	Slide 14: Operations on data Structure
	Slide 15: Integer
	Slide 16: Cont..
	Slide 17: Radix Complement Representation
	Slide 18: 2’s complement numbers using modulo 16
	Slide 19: What is the 2,s complement representation of -38 expressed as a modulo 32 number?
	Slide 20: Example:
	Slide 21: 1s complement form
	Slide 22: Integer
	Slide 23: Real Numbers
	Slide 24: Limitation in fixed point representation
	Slide 25: Floating point or scientific notation
	Slide 26: Character Information
	Slide 27: Logical Information
	Slide 28: Pointer Information
	Slide 1: Non-Primitive Data Structure
	Slide 2: Arrays
	Slide 3: Lists
	Slide 4: Difference between Arrays and List
	Slide 5: File
	Slide 6: Storage Structure for Arrays
	Slide 7: Storage Structure for Arrays….
	Slide 8: Storage Structure for Arrays….
	Slide 9: Stack
	Slide 10: Stack Representation
	Slide 11: Stack- PUSH Operation
	Slide 12: Stack- POP Operation
	Slide 13: Applications of Stack
	Slide 14: Polish Notation
	Slide 15: Infix to Postfix Conversion
	Slide 16: Example 1:(infix to Postfix) Given expression: A + B * C – D / E
	Slide 17: Example 2:(infix to Postfix) Given expression: A + B – (C +D) +E
	Slide 18: Postfix Evaluation
	Slide 19: Recursion
	Slide 20: Implementation of Factorial Recursive Function
	Slide 21: Queues
	Slide 22: QUEUE : Example
	Slide 23: Points to remember during queue implementation
	Slide 24: Queue Insert
	Slide 25: Queue Delete

