MCA : MCA23203

CRYPTOGRAPHY & NETWORK SECURITY

UNIT - 1

Unit-1: Introduction to Cryptography and Block Ciphers

Introduction to Cryptography- Conventional Encryption: Conventional encryption model- classical encryption techniquessubstitution ciphers and transposition ciphers cryptanalysissteganography- stream and block ciphers- block ciphers principles- data encryption standard (DES)- DES Encryption and Decryption – DES example – Strength of DES – AES Structure and Transformation functions.

Introduction to Cryptography

What is Cryptography

• Cryptography

- In a narrow sense
 - Mangling information into apparent unintelligibility
 - Allowing a secret method of un-mangling
- In a broader sense
 - Mathematical techniques related to information security
 - About secure communication in the presence of adversaries
- o Cryptanalysis
 - The study of methods for obtaining the meaning of encrypted information without accessing the secret information
- Cryptology
 - Cryptography + cryptanalysis

Conventional Encryption Model

- **Conventional encryption** is a cryptographic system that uses the same key used by the sender to encrypt the message and by the receiver to decrypt the message.
- It was the only type of encryption in use prior to the development of public-key encryption.

Conventional Encryption Model

- Suppose A wants to send a message to B, that message is called plaintext.
- Now, to avoid hackers reading plaintext, the plaintext is encrypted using an algorithm and a secret key (at 1).
- This encrypted plaintext is called ciphertext. Using the same secret key and encryption algorithm run in reverse(at 2),
- B can get plaintext of A, and thus the message is read and security is maintained.
- Conventional encryption has mainly 5 ingredients :
 - 1. Plain text
 - 2. Encryption algorithm
 - 3. Secret key
 - 4. Ciphertext
 - 5. Decryption algorithm

Conventional Encryption Techniques

Symmetric Encryption

- conventional / secret-key / single-key
- Sender and recipient share a common key
- All classical encryption algorithms are secretkey-based
- Was the only type prior to the invention of public-key in 1970's
- By far most widely used

Conventional Encryption Principles

- An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

Some Basic Terminology

- Cipher
 - Algorithm for transforming plaintext to ciphertext
- Encipher (encrypt)
 - Converting plaintext to ciphertext
- Decipher (decrypt)
 - Recovering ciphertext from plaintext
- Cryptography
 - Study of encryption principles/methods
- Cryptanalysis (codebreaking)
 - Study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology
 - Field of both cryptography and cryptanalysis

Conventional Encryption Principles

Figure 2.1 Simplified Model of Conventional Encryption

Requirements

- Two requirements for secure use of symmetric encryption:
 - A strong encryption algorithm
 - A secret key known only to sender and receiver
- Mathematically we have:
 - $Y = \mathcal{E}_{K}(X)$ $X = \mathcal{D}_{K}(Y)$
- Assume encryption algorithm is known
- Implies a secure channel to distribute key

Cryptography

- Characterize cryptographic systems by:
 - Type of encryption operations used
 - Substitution / transposition / product
 - Some examples will be discussed later
 - Number of keys used
 - Single-key or secret / two-key or public
 - Way in which plaintext is processed
 - Block / stream

Cryptanalysis

• Objective

- Recover key not just message

- General approaches:
 - Cryptanalytic attack
 - Brute-force attack

Cryptanalytic Attacks

• Ciphertext only

 Only know algorithm & ciphertext, is statistical, know or can identify plaintext

Known plaintext

- Know/suspect plaintext & ciphertext

Chosen plaintext

- Select plaintext and obtain ciphertext
- Chosen ciphertext
 - Select ciphertext and obtain plaintext

• Chosen text

Select plaintext or ciphertext to en/decrypt

15

More Definitions

• Unconditional security

 No matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

• Computational security

 Given limited computing resources (e.g. time needed for calculations is greater than the age of universe), the cipher cannot be broken

Brute Force Search (Exhaustive Key Search)

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know / recognize plaintext

Average time (1/2)

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/μs		
32	$2^{32} = 4.3 \times 10^9$				
56	$2^{56} = 7.2 \times 10^{16}$				
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{years}$	5.4×10^{18} years		
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{years}$	5.9×10^{30} years		
26 letters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years		

Classical Substitution Ciphers

• Letters of plaintext are replaced by other letters or numbers or symbols

– A popular TV show?

• If plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- Earliest known substitution cipher
 By Julius Caesar
- First attested use in military affairs
- Replaces each letter by the 3rd letter following
- Example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

- Define transformation (mapping scheme) as: a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
- Assign each letter a number
 - abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 - 21 22 23 24 25
- Mathematical form of Caesar cipher:

 $c = E(p) = (p + k) \mod (26)$ $p = D(c) = (c - k) \mod (26)$

One mapping scheme → one key/cipher How many possible keys/ciphers are there?

Cryptanalysis of Caesar Cipher

- Only have 26 possible ciphers – Map A to A, B,..., or Z
- Could simply try each in turn
- A brute force search
 - Given ciphertext, just try all shifts of letters
 - Need to recognize when have plaintext
 - e.g. break ciphertext "GCUA VQ DTGCM"
 - One student works on one cipher each

Monoalphabetic Cipher

- Rather than just shifting the alphabet
- Could shuffle (jumble) the letters arbitrarily
- Each plaintext letter maps to a different random ciphertext letter
- Hence key is 26 letters long Plain: a b c d e f g h i j k l m n o p q r s t u v w x y z Cipher: D K V Q F I B J W P E S C X H T M Y A U O L R G Z N

Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

• How many possible keys in total?

Monoalphabetic Cipher Security

- A total of 26! = 4^1026 keys
- With so many keys, one might think it is secure
- But would be **!!!WRONG!!!**
- Problem is language characteristics

Language Redundancy and Cryptanalysis

- Human languages are **redundant**
 - e.g. "th lrd s m shphrd shll nt wnt"
- Letters are not equally commonly used
- In English
 - E is by far the most common letter
 - Followed by T, R, N, I, O, A, S
 - Other letters like Z, J, K, Q, X are fairly rare
 - Which set of characters are most commonly used in Chinese?
- Have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- Key concept
 - Monoalphabetic substitution ciphers do not change relative letter frequencies
 - Discovered by Arabian scientists in 9th century
 - Calculate letter frequencies for ciphertext
 - Compare counts/plots against known values
- Caesar cipher looks for common peaks/troughs
 - Peaks at: A-E-I triple, NO pair, RST triple
 - Troughs at: JK, X-Z
- Monoalphabetic must identify each letter
 - Tables of common double/triple letters help

Example Cryptanalysis

• Given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- Count relative letter frequencies (see text)
 - Guess which two individual letters are for e & t (with the highest frequencies)?

Many other substitution methods...

- Playfair Cipher
- Polyalphabetic Ciphers
- Vigenère Cipher
- Aids
- Kasiski Method
- Autokey Cipher
- One-Time Pad

Transposition Ciphers

- Now consider classical **transposition** or **permutation** ciphers
- These hide the message
 - By rearranging the letter order
 - Without altering the actual letters used
- Does the cipher text have the same frequency distribution as the original text?
- Is it subject to the language frequency cryptanalysis?

Rail Fence Cipher

- Write message letters out diagonally over a number of rows
- Then read off cipher row by row

```
– E.g. write message out as:
mematrhtgpry
etefeteoaat
```

• Giving ciphertext MEMATRHTGPRY ETEFETEOAAT

Row Transposition Ciphers

- A more complex transposition
- Write letters of message out in rows over a specified number of columns
- Then reorder the columns according to some key before reading off the rows

Key:	3~	4	2	1	5	6	7
Plaintext:	а	t	t	а	С	k	р
rting from the 3rd column,	0	S	t	р	0	n	е
4th one, and so on.	d	u	n	t	i	1	t
	W	0	a	m	Х	У	Z

Read sta then the

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ Method (algorithm) is not a secret, but key is the key!

Product Ciphers (Hybrid Scheme)

- Ciphers using substitutions or transpositions are not secure because of language characteristics
- Hence consider using several ciphers in succession to make harder, but:
 - Two substitutions make a more complex substitution
 - Two transpositions make a more complex transposition
 - But <u>a substitution followed by a transposition</u> makes a new much harder cipher
- This is the bridge from classical to modern ciphers!

Rotor Machines

- Before modern ciphers, rotor machines were most common complex ciphers in use
- Widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- Implemented a very complex, varying *substitution* cipher
- Used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- With 3 cylinders have $26^3 = 17576$ alphabets

Hagelin Rotor Machine

Steganography (藏头/尾诗)

- An alternative to encryption
- Hides existence of message
 - Using only a subset of letters/words in a longer message marked in some way
 - Using invisible ink
 - Hiding in LSB in graphic image or sound file
- Has drawbacks

Block vs. Stream Ciphers

- Block ciphers
 - Process messages in blocks, each of which is then en/decrypted
 - Like a substitution on very big characters
 - 64-bits or more
 - Need a table of 2^64 entries for a 64-bit block
 - Instead, create from smaller building blocks
 - Using the idea of a product cipher
 - Many current ciphers are block ciphers
 - A wide range of applications
- Stream ciphers

- Process messages a bit or byte at a time when en/decrypting
Ideal Block Cipher

Conventional Encryption Algorithms

- Data Encryption Standard (DES)
 - The most widely used encryption scheme
 - The algorithm is reffered to as the Data Encryption Algorithm (DEA)
 - DES is a block cipher
 - The plaintext is processed in 64-bit blocks
 - The key is 56-bits in length (original version)

Figure 2.3 General Depiction of DES Encryption Algorithm

Figure 2.4 Single Round of DES Algorithm

DES

 Mathematically, the overall processing at each iteration:

$$-L_i = R_{i-1}$$

- Ri = Li-1 \otimes F(Ri-1, Ki)
- Concerns about:
 - The algorithm and the key length (56-bits)

Avalanche Effect

- An important desirable property of encryption algorithm
 - A change of **one** input or key bit results in changing approx **half** output bits
 - Making attacks by guessing keys impossible
- DES exhibits strong avalanche

Time to break a code (10⁶ decryptions/µs)

43

Key length (bits)

Strength of DES - Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values - Brute force search looks hard
- Recent advances have shown possibilities
 - In 1997 on the Internet in a few months
 - In 1998 on dedicated h/w (EFF) in a few days
 - In 1999 above combined in 22 hrs!
- Still must be able to recognize plaintext

Strength of DES -Analytic Attacks

- Several analytic attacks utilizing some deep structure of the cipher
 - By gathering information about encryptions
 - Can eventually recover some/all of the sub-key bits
 - If necessary then exhaustively search for the rest
- Statistical attacks
 - Differential cryptanalysis
 - Linear cryptanalysis
 - Related key attacks
- Must now consider alternatives to DES

Alternatives to DES

- A replacement for DES was needed
 - Have theoretical attacks that can break it
 - have demonstrated exhaustive key search attacks
- A strengthened DES
 - Triple-DEA (Triple-DES)

Triple DEA

 Use three keys and three executions of the DES algorithm (encrypt-decryptencrypt)

- C = ciphertext
- P = Plaintext
- EK[X] = encryption of X using key K
- DK[Y] = decryption of Y using key K
- Effective key length of

Triple DEA

(a) Encryption

(b) Decryption

Figure 2.6 Triple DEA

Alternatives to DES

- Triple-DES
 - Slow
 - Use small blocks
- AES Cipher Rijndael
 - Designed by Joan. Daemen and Vincent Rijmen in Belgium
 - Has 128/192/256-bit keys, 128-bit data
 - An **iterative** rather than **feistel** cipher
 - Processes data as block of 4 columns of 4 bytes
 - Operates on entire data block in every round

Substitution-Permutation (S-P) Ciphers

- S-P: substitution-permutation
 - Two primitive cryptographic operations
 - *Substitution* (S-box)
 - *Permutation* (P-box)
 - Introduced by Claude Shannon in 1949 paper
 - Form the basis of modern block ciphers
 - Provide confusion & diffusion of message & key

Confusion and Diffusion

- Cipher needs to completely obscure statistical properties of the original message
 - A one-time pad does this
- More practically, Shannon suggested combining S & P elements to obtain:

– Diffusion

• Dissipates statistical structure of plaintext over bulk of ciphertext

- Confusion

• Makes relationship between ciphertext and key as complex as possible

Other Symmetric Block Ciphers

- International Data Encryption Algorithm (IDEA)
 - 128-bit key
 - Used in PGP
- Blowfish
 - Easy to implement
 - High execution speed
 - Run in less than 5K of memory

Other Symmetric Block Ciphers

• RC5

- Suitable for hardware and software
- Fast, simple
- Adaptable to processors of different word lengths
- Variable number of rounds
- Variable-length key
- Low memory requirement
- High security
- Data-dependent rotations
- Cast-128
 - Key size from 40 to 128 bits
 - The round function differs from round to round

Advanced Encryption Standard

Origins

- clear a replacement for DES was needed
 - have theoretical attacks that can break it
 - have demonstrated exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- issued as FIPS PUB 197 standard in Nov-2001

AES Requirements

- private key symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- stronger & faster than Triple-DES
- active life of 20-30 years (+ archival use)
- provide full specification & design details
- both C & Java implementations
- NIST have released all submissions & unclassified analyses

AES Evaluation Criteria

- initial criteria:
 - security effort for practical cryptanalysis
 - cost in terms of computational efficiency
 - algorithm & implementation characteristics
- final criteria
 - general security
 - ease of software & hardware implementation
 - implementation attacks
 - flexibility (in en/decrypt, keying, other factors)

AES Shortlist

- after testing and evaluation, shortlist in Aug-99:
 - MARS (IBM) complex, fast, high security margin
 - RC6 (USA) v. simple, v. fast, low security margin
 - Rijndael (Belgium) clean, fast, good security margin
 - Serpent (Euro) slow, clean, v. high security margin
 - Twofish (USA) complex, v. fast, high security margin
- then subject to further analysis & comment
- saw contrast between algorithms with
 - few complex rounds verses many simple rounds
 - which refined existing ciphers verses new proposals

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data
- an iterative rather than feistel cipher
 - processes data as block of 4 columns of 4 bytes
 - operates on entire data block in every round
- designed to be:
 - resistant against known attacks
 - speed and code compactness on many CPUs
 - design simplicity

Rijndael

- data block of 4 columns of 4 bytes is state
- key is expanded to array of words
- has 9/11/13 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multipy of groups)
 - add round key (XOR state with key material)
 - view as alternating XOR key & scramble data bytes
- initial XOR key material & incomplete last round
- with fast XOR & table lookup implementation

Rijndael

Byte Substitution

- a simple substitution of each byte
- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}
- S-box constructed using defined transformation of values in GF(2⁸)
- designed to be resistant to all known attacks

Byte Substitution

Shift Rows

- a circular byte shift in each each
 - -1^{st} row is unchanged
 - 2nd row does 1 byte circular shift to left
 - 3rd row does 2 byte circular shift to left
 - 4th row does 3 byte circular shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

Shift Rows

Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- effectively a matrix multiplication in GF(2⁸) using prime poly m(x) =x⁸+x⁴+x³+x+1

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

Mix Columns

Mix Columns

- can express each col as 4 equations
 - to derive each new byte in col
- decryption requires use of inverse matrix

 with larger coefficients, hence a little harder
- have an alternate characterisation
 - each column a 4-term polynomial
 - with coefficients in GF(28)
 - and polynomials multiplied modulo (x⁴+1)

Add Round Key

- XOR state with 128-bits of the round key
- again processed by column (though effectively a series of byte operations)
- inverse for decryption identical
 - since XOR own inverse, with reversed keys
- designed to be as simple as possible
 - a form of Vernam cipher on expanded key
 - requires other stages for complexity / security

Add Round Key

s _{0,0}	s _{0,1}	\$ _{0,2}	S _{0,3}
s _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}
\$ _{2,0}	\$ _{2,1}	\$ _{2,2}	\$ _{2,3}
S _{3,0}	S _{3,1}	\$ _{3,2}	\$ _{3,3}

 \oplus

wi	W _{i+1}	W _{i+2}	W _{i+3}	

=

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Round

AES Key Expansion

- takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous & 4 places back
 - in 3 of 4 cases just XOR these together
 - 1st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4th back
AES Key Expansion

Key Expansion Rationale

- designed to resist known attacks
- design criteria included
 - knowing part key insufficient to find many more
 - invertible transformation
 - fast on wide range of CPU's
 - use round constants to break symmetry
 - diffuse key bits into round keys
 - enough non-linearity to hinder analysis
 - simplicity of description

AES Decryption

- AES decryption is not identical to encryption since steps done in reverse
- but can define an equivalent inverse cipher with steps as for encryption
 - but using inverses of each step
 - with a different key schedule
- works since result is unchanged when
 - swap byte substitution & shift rows
 - swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects

- can efficiently implement on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is simple byte shift
 - add round key works on byte XOR's
 - mix columns requires matrix multiply in GF(2⁸)
 which works on byte values, can be simplified to use table lookups & byte XOR's

Implementation Aspects

- can efficiently implement on 32-bit CPU
 - redefine steps to use 32-bit words
 - can precompute 4 tables of 256-words
 - then each column in each round can be computed using 4 table lookups + 4 XORs
 - at a cost of 4Kb to store tables
- designers believe this very efficient implementation was a key factor in its selection as the AES cipher