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Unit-2: Modular Arithmetic

Random Number Generation — Introduction
to Groups-ring and field — prime and relative
prime numbers — modular arithmetic -
Fermat’s and Euler’s theorem - primality
testing — Euclid’s Algorithm - Chinese

Remainder theorem —discrete algorithms



Randoem Numbers

many. Uses of random NUMBErS In Cryptograpny
o NONCES IN authentication protocels to prevent replay:

o SESSIoNn keys

o public key generation

o Keystream for a one-time pad

In all cases Its critical that these values be

o Statistically randem, uniferm distribution, iIndependent
o Unpredictability of future values frem previoeus values

true randem numbers previde this
care needed with generated random numbers



Pseudoerandom Number
Generaters (PRNGS)

often use deterministic algorithmic
techniques to create ‘random numbers”

o although are not truly randem
o Can pPass many tests ofi ‘randomness™

known as “pseudorandom numbers”

created by “Pseudorandoem Number
Generators (PRNGs)”



Random & Pseudoerandoem
NUmbern Generatorns

Pseudorandom Psendorandom
hit stream value

(b) PRNG {c) PRF



PRING ReqUIEMENTS

randomness

o Unifermity, scalability, consistency
unpredictability

o forward & backward unpredictability
o USE same tests to check

characteristics of the seed
o SEcure

o I KNOWNR adversary can determine output
o SO MUSt be random or pseudorandoem nuMmhber



PRING ReqUIEMENTS

Randomness

o Uniformity — at any point in the generation of
the PRN seguence, the occurrence of a zero
or a one Is equally likely (i.e., p = 0.5)

o Scalability — any: test for randomness
applicable te a seguence can alse be applied
16 any random subseguence (It sheuld pass)

o Consistency — the characteristics of the PRN
sequence of the PRNG must not depend on
the seed used



Sinear Congruential
Generator

common Iterative technigue using:

X . = (aX, + ¢c) mod m

given suitable values of parameters can produce
a long random-like sequence
Sultable criteria to have are:

o function generates a full-period

o generated sequence should appear random

o efficient Implementation with 32-bit arithmetic

note that an attacker can reconstruct seguence
given a small number of values

have poessibilities for making this harder



Bium Bium: Shup Generator

based on public key algorithms

use least significant bit from iterative equation:
e X, = X, 2 mod n

o Where n=p.q, and primes p, g=3 mod 4
Uunpredictable, passes next-bit test

security rests on difficulty of factoring N

IS unpredictable given any run of bits

slew, since very large numbers must be used

too slow for cipher use, good for key generation



Using BlockiCiphers as PRNIGS

for cryptographic applications, can use a block
cipher to generate randoem nUMBErs

often for creating session keys from master key
CIR

psendorandom hits psendorandom hits

(a) CTR Mode (b) OFB Mode



ANSIEXI9ILT PRG

Dti = date and time
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Groups, Rings, Fields

Group

— A set of numbers with some addition operation whose result is also in the set
(closure)

— Obeys associative law, has an identity, has inverses

— If also is commutative its an Abelian group

Ring

—  An Abelian group with a multiplication operation also

—  Multiplication is associative and distributive over addition

— If multiplication is commutative, its a commutative ring

— e.g, integers mod N for any N

Field

—  An Abelian group for addition

— Aring

—  An Abelian group for multiplication (ignoring 0)

— e.g, integers mod P where P is prime



Groups

* A group, G, is a set of elements with an associated binary
operation, o . It is sometimes denoted {G, ¢ }

* For each ordered pair (a, b) of elements in G, there is an
associated element (ae b), such that the following axioms

hold:
1) Closure : If aand be G, then aebeG
2) Associative : ae(bec)=(aeb)ecforalla, b,ceG
3) Identityelement : There is an element e € G such that
aec=ecea=a forallaeG
4) Inverse element : Foreach a <G there Is an element a' € G such that
aea =a'ea=¢e
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Groups

* A finite group is a group with a finite number of elements,
otherwise, a group is an infinite group.

* A group is said to be an abelian group if it satisfies the
following condition:

5) Commutative: aeb=Dbeaforalla, beG

* Examples of abelian groups:

* The set of integers (negative, zero, and positive), Z, under addition.
The identity element of Z under addition is 0;
the inverse of g is -a, for all ain Z.

* The set of non-zero real numbers, R*, under multiplication.
The identity element of R* under multiplication is 1;
the inverse of a is 1/a for all a in R*.
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Exponentiation and Cyclic Groups

* Exponentiation within a group is repeated application of
the group operator, such that:

a’=e, theidentity element
a"=aeae---ea (i.e.eapplied n-1times)
a" =(a")", where a'is the inverse of a

* A group G is cyclic if every element of G is a power g« (k is
an integer) of a fixed elementg € G. The element g is said
to generate the group, or to be a generator of the group.

* A cyclic group is always abelian, and may be finite or infinite

* Example of a cyclic group:
* The group of positive integers, {N, +}, (N ={1, 2, 3, ...}) under addition is
an infinite cyclic group generated by the element 1. (i,e.1+1=2,1+1
+1=3, etc.)



Rings

* Aring, R, denoted by {R, +x }, is a set of elements with two binary
operations, called addition (+) and multiplication ( ), such that, for a, b,
cinR:

addition and multiplication are abstract operations here

1)-5) R is an abelian group with respect to addition; for this case of an additive
group, we denote the identity element as 0, and the inverse of a as -a.

6) Closure under multiplication:
If a and b belong to R, thenaX bisalsoin R

7) Associativity of multiplication: Note that we often
a (bxc)=(axb) cforalla, b, c inR write ax b as simply ab

8) Distributive Laws:
axX(b+c)=aX b+aXc foralla, b, c,inR
(a+b)Xc=ax c+b xc foralla, b, c,inR



Commutative Rings

* Aring is commutative if it satisfies the following additional
condition:

9) Commutativity of multiplication:
a b=bxa foralla,b,c inR

Example of a commutative ring:

The set of even integers, {..., -4, -2, 0, 2, 4, ...}) under the normally
defined integer operations of addition and multiplication.



Integral Domains

* An integral domain is a commutative ring that obeys the
following:

10) Multiplicative identity:

Thereisan element 1in Rsuchthatax 1=1xa=aforallainR
11)No zero divisors:

Ifa, binRand ax b =0, then eithera=00rh=0

Example of an integral domain:

The set of all integers (Z={...,-3,-2,-1,0, 1, 2, 3, ...}) under the normally
defined integer operations of addition and multiplication, {Z, +, }



Fields

* A field, F, denoted by {F, +, x}, is a set of elements with two binary
operations, called addition and multiplication, such that, forall a, b, cin
F, the following apply:

Again, addition and multiplication are abstract operations

1)-11) F is an integral domain

11)  Multiplicative inverse:
For each a in F, except 0, there is an element a! in F such that:
X al=glXa=1



Fields

* A field is a set in which we can do addition, subtraction,
multiplication, and division without leaving the set.

 Division is defined:

a/b = a(b?)

Examples:

* The set of rational numbers, Q; the set of real numbers, R, the
set of complex numbers, C.

* The set of all integers, Z, is not a field, because only the
elements 1 and -1 have multiplicative inverses in the integers.
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Groups, Rings, and Fields

Groups

Abelian Groups

Rings

Commutative Rings

Integer Domains
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Prime Number

» Prime numbers only have divisors of 1 and self they cannot be written as a

product of other numbers.

eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

» prime numbers are central to number theory

» list of prime number less than 200 is:
2357111317192329 3137 4143475359
6167 71737983 8997 101 103 107 109 113 127
131 137 139 149 151 157 163 167 173 179 181 191
193 197 199




» Aninteger p > 11s a prime number if and only if its only divisors are + 1 and 1p.
» Any integer a » 1 can be factored in a unique way as

a=pips...pl

» where p1 <p, <.., < p, are prime numbers and where each is a positive integer. This
is known as the fundamental theorem of arithmetic

919 =7x13
3600 =24x3x5
11011 =7x112x13




» If P is the set of all prime numbers, then any positive integer a can be written
uniquely in the following form:

Q= qp"r where cach a, 2 0
pel

» The right-hand side is the product over all possible prime numbers p; for any
particular value of a, most of the exponents a, will be 0.



Relatively Prime Numbers

» Two numbers a,b are relatively prime (coprime) if they have no common divisors
apart from 1

-9, 8 and 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15
and 1 is the only common factor.



Modular Anthmetic

Given two positive integer n and a, if we divide a by n, we get an integer

quatient q and an integer remainder r that obey the following relationship:
g=gntr 0sr<mg=|ah



Properties of Modular Arithmetic

Modulo arithmeticoverZ_ = {0, 1, ..., n-1} (called a set of residues of modulo
n)
Integers modulo n with addition and multiplication form a commutative ring

—  Commutative laws (a + b) modn = (b +a) modn
(a xb) modn = (b xa) modn
— Associative laws [ta+b)+c]modn=[a+ (b+c)] modn
[(a xb) xc] modn = [a x(b xc)] modn
— Distributive laws [a x(b+c)] modn = [(a xb) + (a xc)] modn
— Identities (a + 0) modn = amodn

(a x1)modn=amodn

— Additive inverse (-a) va € Z,3bs.t. a+ b =0modn
—  Multiplicative inverse (a) va (=0) € Z,, if a is relative prime to n,

Fbs.t.a xb=1modn
If nis not prime, Z, is a ring, but not a field
Z,is a field




Modular Arithmetic Operations

»  Modulo arithmetic operation over Z, = {0, 1, ..., n-1}
* Properties

— [(amodn) + (b mod n)] modn = (a + b) modn

— [(amodn) — (b mod n)] modn = (a —b) modn

— [tamodn) x (b modn)] modn = (a xb) modn

Table 7.2 Arithmetic Modulo 8
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(a) Addition modulo 8 (b) Multiplication modulo 8
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Modular 7 Arithmetic
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(a) Addition modulo 7 (b) Multiplication modulo 7
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THE EUCLIDEAN ALGORITHM ‘

» One of the basic techniques of number theory is the Euclidean algorithm, which is
a simple procedure for determining the greatest common divisor of two positive
integers.



Greatest Common Divisor

» The greatest common divisor of a and b is the largest integer that divides
both a and b . We also define gcd(0, 0) = 0.

» The positive integer ¢ is said to be the greatest common divisor of a and b if
* cisadivisor of a and of b;

. any divisor of a and b is a divisor of c.
| » An equivalent definition is the following:
& gcd(a, b) = max[k, such that k|a and k|b]
gcd(60, 24) = ged(60,-24) = 12
In general, gcd(a, b) = ged(|al, |b]).




Finding the Greatest Common Divisor

» The Euclidean algorithm is based on the following theorem: For any nonnegative
integer a and any positive integer b,

ged(a,b)=ged(b,a mod b)
ged(55, 22) = ged(22, 55 mod 22) = ged(22, 11) = 11




a=qb+n 0<n<b

b=qn+n 0<n<n
n=qntn 0<n<n
. .

Tn-2 = Qnlp-1 + hy 0< In < Iy-
Fa=1 = Qus1hy +0
d = ged(a, b) = 1,




Example GCD(1970,1066)

1970 = 1 x 1066 + 904 gcd (1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 =1 x 94 + 68 ged(94, 68)

94 =1 x 68 + 26 ged (68, 26)

68 = 2 x 26 + 16 ged (26, 16)

26 =1 x 16 + 10 ged (16, 10)

16 =1x10 + 6 ged (10, 6)

100=1x6+4 gecd(6, 4)
=1x4+2 ged(4, 2)

§=2x2+0 ged(2, 0)

GCD(1970,1066)=2




CONGRUENT MODULO

» Two integers a and b are said to be congruent modulo of n if
a mod n= b mod n.

then this is written asa = b mod n.

Ex: a=73 b=4 and n=23

73 mod 23 =4

4 mod 23 =4

So73 =4 mod 23




Properties of Congruences

Congruences have the following properties:
L.a=b(modn)ifnl(a = b).

2 a = b(modn)implics b = a (mod n).
Loaw=h(modn)and b = ¢ (mod i) imply a = ¢ (mod n),



\

FERMATS AND EULER"S THEOREMS

» Two theorems that play important roles in public-key cryptography are Fermat's
theorem and Euler's theorem,



Fermat’s Theorem

» Fermat's theorem states the following: If 'p' is prime and 'a’ is a positive integer no
divisible by p, then

a*'= 1 mod p |



» a=1p=19

a=Tp=1
7 =49 = 1(mod 19)
7 = 121 = 7(mod 19)
7" = 49 = 11(mod 19)
7% = 121 = 7(mod 19)

=270 T w7 X 1] = 1(mod 19)




Euler's Totient Function

» It is defined as the number of positive integers less than ‘n’ and relatively prime t
‘n' and is written as o(n). By convention o(1)=1.

» It should be clear that, for a prime number p,
ap)=p-1
0(37) = 36

» To determine o(35), we list all of the positive integers less than 35 that are relatively
prime to it:

1,2,3,4,6,8,9, 11,12, 13, 16, 17, 18,19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34
There are 24 numbers on the list, so . 9(35) = 24

Now suppose that we have two prime numbers p and g with p # ¢. Then we can
show that, for n = pq.

d(n) = dlpqg) = dp) X dlg) = (p = 1) X (g = 1)




d2)=dB) XN =B-1)X(T-1)=2X6=12
where the 12 integers are {1.2,4,5,8, 10, 11,13, 16,17, 19, 20).




Euler’s Theorem

Euler's theorem states that for every a and n that are relatively prime:
a*" &1(mod n)



THE CHINESE REMAINDER THEOREM

The Chinese remainder theorem (CRT) is used to solve a set of
congruent equations with one variable but different moduli, which
are relatively prime, as shown below:

x-a‘ (M ',)
x =a, (mod m,)

x=ay (mod my)

The Chinese remainder theorem states that the above equations
have a unique solution if the moduli are relatively prime.




SOLUTION The solution to the set of equations follows these steps:
. FindM=m;xm,x .. xm,. Thisis the common modulus.

2. FindM,=Mm,M,=Mm, ..., M, =Mm,.

3. Find the multiplicative inverse of M, M,, ..., M, using the
corresponding moduli (my, m,, ..., my). Call the inverses

MM M
4. The solution to the simultaneous equations is

(@ XMy XM 4 ay XMy X My™ 4 oo 4 ag XM X M) mod M



M=3x5x7=105
M, =105/3 = 35, M, = 105/5 = 21, M; = 105/7 = 15
The inverses are M, =2, M, =1, M, =1

X=(2x35x2+3x21x1+2x15x1)mod 105 = 23 mod
105

AR L -




EXAMPLE 9.37 Find an integer that has a remainder of 3
when divided by 7 and 13, but is divisible by
12.



re=lmod 7
L=Jmod 13
r=0mod 12

1=



Primality Test

Naive Primality Test

Input: Integer n> 2
Output: PRIME or COMPOSITE

for (i from 2 to n-1){
if (/1 divides n)
return COMPOSITE;

}
return PRIME;



Still Naive Primality Test

Input/Output: same as the naive test

for (ifrom 1 to vn |{
if (/ divides n)
return COMPOSITE;

}
return PRIME;



Primality Testing

Two categories of primality tests

* Probablistic
— Miller-Rabin Probabilistic Primality Test
— Cyclotomic Probabilistic Primality Test
— Elliptic Curve Probabilistic Primality Test

* Deterministic
— Miller-Rabin Deterministic Primality Test
— Cyclotomic Deterministic Primality Test
— Agrawal-Kayal-Saxena (AKS) Primality Test



Running Time of Primality Tests

* Miller-Rabin Primality Test

— Polynomial Time
* Cyclotomic Primality Test

— Exponential Time, but a/most poly-time

* Elliptic Curve Primality Test
— Don’t know. Hard to Estimate, but /ooks like poly-time.

* AKS Primality Test
— Poly-time, but only asymptotically good.



