MCA : MCA23203 CRYPTOGRAPHY 8z **NETWORK SECURITY**

UNIT - 2

Unit-2: Modular Arithmetic

Random Number Generation – Introduction to Groups-ring and field – prime and relative prime numbers – modular arithmetic – Fermat's and Euler's theorem – primality testing – Euclid's Algorithm – Chinese Remainder theorem –discrete algorithms

Random Numbers

➢ many uses of **random numbers** in cryptography

- ⚫ nonces in authentication protocols to prevent replay
- ⚫ session keys
- ⚫ public key generation
- keystream for a one-time pad
- \triangleright in all cases its critical that these values be
	- statistically random, uniform distribution, independent
	- ⚫ unpredictability of future values from previous values
- \triangleright true random numbers provide this
- ➢ care needed with generated random numbers

Pseudorandom Number Generators (PRNGs)

 \triangleright often use deterministic algorithmic techniques to create "random numbers" • although are not truly random ⚫ can pass many tests of "randomness" ➢ known as "pseudorandom numbers" ➢ created by "Pseudorandom Number Generators (PRNGs)"

Random & Pseudorandom Number Generators

PRNG Requirements

➢ randomness

- ⚫ uniformity, scalability, consistency
- ➢ unpredictability
	- ⚫ forward & backward unpredictability
	- ⚫ use same tests to check
- ➢ characteristics of the seed
	- ⚫ secure
	- if known adversary can determine output
	- ⚫ so must be random or pseudorandom number

PRNG Requirements

➢ Randomness

- ⚫ Uniformity at any point in the generation of the PRN sequence, the occurrence of a zero or a one is equally likely (i.e., $p = 0.5$)
- Scalability any test for randomness applicable to a sequence can also be applied to any random subsequence (it should pass)
- ⚫ Consistency the characteristics of the PRN sequence of the PRNG must not depend on the seed used

Linear Congruential Generator

➢ common iterative technique using:

 $X_{n+1} = (aX_n + c) \mod m$

- ➢ given suitable values of parameters can produce a long random-like sequence
- ➢ suitable criteria to have are:
	- ⚫ function generates a full-period
	- ⚫ generated sequence should appear random
	- ⚫ efficient implementation with 32-bit arithmetic
- ➢ note that an attacker can reconstruct sequence given a small number of values
- ➢ have possibilities for making this harder

Blum Blum Shub Generator

➢ based on public key algorithms ➢ use least significant bit from iterative equation: \bullet $x_i = x_{i-1}^2$ mod n • where $n=p$.q, and primes p , $q=3 \mod 4$ ➢ unpredictable, passes **next-bit** test ➢ security rests on difficulty of factoring N \triangleright is unpredictable given any run of bits ➢ slow, since very large numbers must be used ➢ too slow for cipher use, good for key generation

Using Block Ciphers as PRNGs

➢ for cryptographic applications, can use a block cipher to generate random numbers

➢ often for creating session keys from master key

 $>$ CTR X_i = $E_K[V_i]$ ➢ OFB $X_i = E_K[X_{i-1}]$

ANSI X9.17 PRG

 Dt i = date and time

Groups, Rings, Fields

- Group
	- A set of numbers with some addition operation whose result is also in the set (closure)
	- Obeys associative law, has an identity, has inverses
	- If also is commutative its an Abelian group
- Ring
	- An Abelian group with a multiplication operation also
	- Multiplication is associative and distributive over addition
	- If multiplication is commutative, its a commutative ring
	- e.g., integers mod N for any N
	- Field
		- An Abelian group for addition
		- A ring
		- An Abelian group for multiplication (ignoring 0)
		- e.g., integers mod P where P is prime

Groups

- A *group*, *G*, is a *set of elements with an associated binary operation*, \bullet . It is sometimes denoted $\{G, \bullet\}$
	- For each ordered pair (*a*, *b*) of elements in G, there is an associated element (a. b), such that the following axioms hold:
	- It is sometimes denoted { G , }

	1) ordered pair (a, b) of elements in G, there is an

	ed element $(a \cdot b)$, such that the following axioms

	If a and $b \in G$, then $a \cdot b \in G$
 $ve: a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in G$
 4) *Inverse element* : For each $a \in G$ there is an element $a' \in G$ such that $a \bullet e = e \bullet a = a$ for all $a \in G$ 3) *Identity element*: There is an element $e \in G$ such that 2) **Associative**: $a \bullet (b \bullet c) = (a \bullet b) \bullet c$ for all $a, b, c \in G$ 1) *Closure* : $\qquad \qquad$ If a and $b \in G$, then $a \bullet b \in G$ *Closure*
		- $a \bullet a' = a' \bullet a = e$

Groups

- A *finite group* is a group with a finite number of elements, otherwise, a group is an *infinite group*.
- A group is said to be an *abelian group* if it satisfies the following condition:

- Examples of abelian groups:
- The set of integers (negative, zero, and positive), *Z*, under addition. The identity element of *Z* under addition is 0; the inverse of *a* is -*a*, for all *a* in *Z*. 5) *Commutative* : $a \cdot b = b \cdot a$ for all $a, b \in G$
amples of abelian groups:
The set of integers (negative, zero, and positive), **Z**, under addition.
The identity element of **Z** under addition is 0;
The set of non-zero real
	- The set of non-zero real numbers, *R**, under multiplication. The identity element of *R** under multiplication is 1; the inverse of *a* is 1/*a* for all *a* in *R**.

Exponentiation and Cyclic Groups

• *Exponentiation* within a group is repeated application of the group operator, such that:

 $a^0 = e$, the identity element

 $a^n = a \bullet a \bullet \cdots \bullet a$ (i.e. \bullet applied *n*-1 times)

 $a^{-n} = (a')^n$, where a' is the inverse of a

- A group *G* is *cyclic* if every element of *G* is a power *g k* (*k* is an integer) of a fixed element $q \in G$. The element q is said to *generate the group*, or to be *a generator of the group*.
- A cyclic group is always abelian, and may be finite or infinite
	- Example of a cyclic group:
- The group of positive integers, $\{N, +\}$, $(N = \{1, 2, 3, ...\})$ under addition is an infinite cyclic group generated by the element 1. (i.e. $1 + 1 = 2$, $1 + 1$) reger) or a rixed eiement $g \in$
nerate the group, or to be **a**
ic group is always abelian, an
mple of a cyclic group:
The group of positive integers, {**N**, +}, an infinite cyclic group generated by tl
+ 1 = 3, etc.)

Rings

• A *ring*, R, denoted by {R, + \times }, is a set of elements with two binary operations, called *addition* (+) *and multiplication* (), such that, for *a*, *b*, *c* in *R*:

addition and *multiplication* are abstract operations here

- **1)-5)** *R is an abelian group with respect to addition*; for this case of an additive group, we denote the identity element as 0, and the inverse of *a* as -*a*.
- **6)** *Closure under multiplication:* If *a* and *b* belong to *R*, then *a b* is also in *R* **7)** *Associativity of multiplication:*

a (*b c*) = (*a b*) *c* for all *a*, *b*, *c*, in *R*

8) *Distributive Laws:*

 $a \times (b + c) = a \times b + a \times c$ for all *a*, *b*, *c*, in *R* $(a + b)^\times c = a^\times c + b \times c$ for all *a*, *b*, *c*, in *R*

Note that we often write $a \times b$ as simply ab

Commutative Rings

- A ring is *commutative* if it satisfies the following additional condition:
	- **9)** *Commutativity of multiplication:*
		- a b = $b \times$ a for all *a*, *b*, *c*, in *R*

Example of a commutative ring:

The set of even integers, $\{..., -4, -2, 0, 2, 4, ...\}$ under the normally defined integer operations of addition and multiplication.

Integral Domains

• An *integral domain* is a commutative ring that obeys the following:

10) *Multiplicative identity:*

There is an element 1 in *R* such that $a \times 1 = 1 \times a = a$ for all *a* in *R* **11)***No zero divisors:*

If *a*, *b* in *R* and $a \times b$ = 0, then either a = 0 or $b \times = 0$

Example of an integral domain:

The set of all integers (*Z* = {..., -3, -2, -1, 0, 1, 2, 3, ...}) under the normally defined integer operations of addition and multiplication, {*Z*, +, } \times 1 = 1 \times *a* = *a* for all *a* in μ
= 0 or *b*_{\times} = 0
2, 3, ...}) under the norma
ultiplication, {**Z**, +, }

Fields

• A *field, F*, denoted by {F, +, x}, is a set of elements with two binary operations, called *addition* and *multiplication*, such that, for all *a*, *b*, *c* in *F*, the following apply:

 \times

Again, *addition* and *multiplication* are abstract operations

1)-11) *F is an integral domain*

11) *Multiplicative inverse:*

For each a in F , except 0 , there is an element a^{-1} in F such that: a^{\times} $a^{-1} = a^{-1}^{\times} a = 1$

Fields

- A field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set.
- Division is defined:

 $a/b = a(b^{-1})$

Examples:

- The set of rational numbers, *Q*; the set of real numbers, *R*, the set of complex numbers, *C*.
- The set of all integers, *Z*, is *not* a field, because only the elements 1 and -1 have multiplicative inverses in the integers.

Groups, Rings, and Fields

Prime Number

- Prime numbers only have divisors of 1 and self they cannot be written as a product of other numbers.
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is: Þ

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191

193 197 199

An integer $p > 1$ is a prime number if and only if its only divisors are ± 1 and $\pm p$. Any integer a > 1 can be factored in a unique way as

$$
a = p_1^{a_1} p_2^{a_2} \dots p_t^{a_t}
$$

where $p1 \le p_2 \le ... \le p_t$ are prime numbers and where each is a positive integer. This is known as the fundamental theorem of arithmetic

If P is the set of all prime numbers, then any positive integer a can be written uniquely in the following form:

$$
a = \prod_{p \in P} p^{a_p} \quad \text{where each } a_p \ge 0
$$

The right-hand side is the product over all possible prime numbers p; for any particular value of a, most of the exponents a_n will be 0.

Relatively Prime Numbers

- Two numbers a,b are relatively prime (coprime) if they have no common divisors apart from 1
- eg. 8 and 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor.

Modular Arithmetic

Given two positive integer n and a , if we divide a by n , we get an integer quotient q and an integer remainder r that obey the following relationship: $a = qn + r$ $0 \le r < n$; $q = |a/n|$

Properties of Modular Arithmetic

- Modulo arithmetic over $Z_n = \{0, 1, ..., n-1\}$ (called a set of residues of modulo \bullet $n)$
- Integers modulo n with addition and multiplication form a commutative ring ۰
	- Commutative laws
	- $-$ Associative laws
	- Distributive laws
	- Identities
	- Additive inverse (-a)
	- Multiplicative inverse (a^{-1})

 $(a + b) \mod n = (b + a) \mod n$ $(a \times b) \mod n = (b \times a) \mod n$ $[(a + b) + c] \mod n = [a + (b + c)] \mod n$ $\int (a \times b) \times c \cdot b$ mod $n = [a \times (b \times c)]$ mod n $[a \times (b + c)] \mod n = [(a \times b) + (a \times c)] \mod n$ $(a + 0) \mod n = a \mod n$ $(a \times l) \mod n = a \mod n$ $\forall a \in Z_n \exists b \text{ s.t. } a + b \equiv 0 \bmod n$ $\forall a (\neq 0) \in Z_m$ if a is relative prime to n, $\exists b \text{ s.t. } a \times b \equiv l \mod n$

- If n is not prime, Z_n is a ring, but not a field
- Z_p is a field

Modular Arithmetic Operations

- Modulo arithmetic operation over $Z_n = \{0, 1, ..., n-1\}$
- Properties
	- $-$ [(a mod n) + (b mod n)] mod n = (a + b) mod n
	- $-$ [(a mod n) $-(b \mod n)$] mod $n = (a b) \mod n$
	- $\int (a \mod n) \times (b \mod n) \mod n = (a \times b) \mod n$

(a) Addition modulo 8

(b) Multiplication modulo 8

Modular 7 Arithmetic

(a) Addition modulo 7

(b) Multiplication modulo 7

(c) Additive and multiplicative
inverses modulo 7

THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest common divisor of two positive integers.

Greatest Common Divisor

- The greatest common divisor of a and b is the largest integer that divides both a and b. We also define $gcd(0, 0) = 0$.
- The positive integer c is said to be the greatest common divisor of a and b if
- c is a divisor of a and of b;
- any divisor of a and b is a divisor of c.
- An equivalent definition is the following:

 $gcd(a, b) = max[k, such that k | a and k | b]$

 $gcd(60, 24) = gcd(60, -24) = 12$

In general, $gcd(a, b) = gcd(|a|, |b|)$.

Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any positive integer b,

$gcd(a, b) = gcd(b, a \mod b)$

 $gcd(55, 22) = gcd(22, 55 \mod 22) = gcd(22, 11) = 11$

$$
a = q_1b + r_1 \t 0 < r_1 < b
$$

\n
$$
b = q_2r_1 + r_2 \t 0 < r_2 < r_1
$$

\n
$$
r_1 = q_3r_2 + r_3 \t 0 < r_3 < r_2
$$

\n...
\n...
\n
$$
r_{n-2} = q_n r_{n-1} + r_n \t 0 < r_n < r_{n-1}
$$

\n
$$
r_{n-1} = q_{n+1}r_n + 0
$$

\n
$$
d = \gcd(a, b) = r_n
$$

Example GCD(1970, 1066)

 $1970 = 1 \times 1066 + 904 \text{ gcd}(1066, 904)$ $1066 = 1 \times 904 + 162 \quad \text{gcd}(904, 162)$ $904 = 5 \times 162 + 94 \text{ gcd}(162, 94)$ gcd (94, 68) $162 = 1 \times 94 + 68$ $94 = 1 \times 68 + 26$ gcd(68, 26) $68 = 2 \times 26 + 16$ gcd(26, 16) $26 = 1 \times 16 + 10$ gcd(16, 10) $16 = 1 \times 10 + 6$ $gcd(10, 6)$ $10 = 1 \times 6 + 4$ $gcd(6, 4)$ $6 = 1 \times 4 + 2$ $gcd(4, 2)$ $4 = 2 \times 2 + 0$ $gcd(2, 0)$ GCD (1970, 1066)=2

CONGRUENT MODULO

 \triangleright Two integers a and b are said to be congruent modulo of n if

a mod n= b mod n.

then this is written as $a \equiv b \mod n$.

```
Ex: a=73 b=4 and n=23
```
73 $mod 23 = 4$

```
4 mod 23 = 4
```
So $73 \equiv 4 \mod 23$

Properties of Congruences

Congruences have the following properties:

1.
$$
a \equiv b \pmod{n}
$$
 if $n|(a-b)$.

2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$.

3. $a = b \pmod{n}$ and $b = c \pmod{n}$ imply $a = c \pmod{n}$.

FERMAT'S AND EULER'S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.

Fermat's Theorem

Fermat's theorem states the following: If 'p' is prime and 'a' is a positive integer not divisible by p, then

$$
a=7, p=19
$$

\n
$$
a = 7, p = 19
$$

\n
$$
72 = 49 = 11 \pmod{19}
$$

\n
$$
74 = 121 = 7 \pmod{19}
$$

\n
$$
78 = 49 = 11 \pmod{19}
$$

\n
$$
716 = 121 = 7 \pmod{19}
$$

\n
$$
ap-1 = 718 = 716 × 72 = 7 × 11 = 1 \pmod{19}
$$

Euler's Totient Function

- It is defined as the number of positive integers less than 'n' and relatively prime to 'n' and is written as $\varphi(n)$. By convention $\varphi(1)=1$.
- It should be clear that, for a prime number p,

 $\varnothing(p) = p - 1$ $\varnothing(37) = 36$

To determine ø(35), we list all of the positive integers less than 35 that are relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34 There are 24 numbers on the list, so . \varnothing (35) = 24

Now suppose that we have two prime numbers p and q with $p \neq q$. Then we can show that, for $n = pq$,

 $\phi(n) = \phi(pq) = \phi(p) \times \phi(q) = (p-1) \times (q-1)$

$$
\phi(21) = \phi(3) \times \phi(7) = (3 - 1) \times (7 - 1) = 2 \times 6 = 12
$$

where the 12 integers are {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime: a^{e(n)} ≡1(mod n)

THE CHINESE REMAINDER THEOREM

The Chinese remainder theorem (CRT) is used to solve a set of congruent equations with one variable but different moduli, which are relatively prime, as shown below:

> $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$ $x \equiv a_k \pmod{m_k}$

The Chinese remainder theorem states that the above equations have a unique solution if the moduli are relatively prime.

SOLUTION The solution to the set of equations follows these steps:

- Find $M = m_1 \times m_2 \times ... \times m_k$. This is the common modulus. 1.
- $2.$ Find $M_1 = M/m_1$, $M_2 = M/m_2$, ..., $M_k = M/m_k$.
- 3. Find the multiplicative inverse of $M_1, M_2, ..., M_k$ using the corresponding moduli $(m_1, m_2, ..., m_k)$. Call the inverses

 $M_1^{-1}, M_2^{-1}, \ldots, M_k^{-1}.$

4. The solution to the simultaneous equations is

 $x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + \dots + a_k \times M_k \times M_k^{-1}) \text{ mod } M$

$$
x \equiv 2 \pmod{3}
$$

$$
x \equiv 3 \pmod{5}
$$

$$
x \equiv 2 \pmod{7}
$$

\n- 1.
$$
M = 3 \times 5 \times 7 = 105
$$
\n- 2. $M_1 = 105/3 = 35$, $M_2 = 105/5 = 21$, $M_3 = 105/7 = 15$
\n- 3. The inverses are $M_1^{-1} = 2$, $M_2^{-1} = 1$, $M_3^{-1} = 1$
\n- 4. $x = (2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1) \mod 105 = 23 \mod 105$
\n

Find an integer that has a remainder of 3 EXAMPLE 9.37 when divided by 7 and 13, but is divisible by

 $12.$

$$
x = 3 \mod 7
$$

$$
x = 3 \mod 13
$$

$$
x = 0 \mod 12
$$

$$
\chi=276
$$

Primality Test

Naïve Primality Test

```
Input: Integer n > 2Output: PRIME or COMPOSITE
```

```
for (i \text{ from } 2 \text{ to } n-1){
   if (i \text{ divides } n)return COMPOSITE;
∤
return PRIME;
```
Still Naïve Primality Test

Input/Output: same as the naïve test

```
for (i from 1 to \sqrt{n} ){
   if (i \text{ divides } n)return COMPOSITE;
∤
return PRIME;
```
Primality Testing

Two categories of primality tests

- Probablistic \bullet
	- Miller-Rabin Probabilistic Primality Test
	- Cyclotomic Probabilistic Primality Test
	- Elliptic Curve Probabilistic Primality Test
- Deterministic
	- Miller-Rabin Deterministic Primality Test
	- Cyclotomic Deterministic Primality Test
	- Agrawal-Kayal-Saxena (AKS) Primality Test

Running Time of Primality Tests

- **Miller-Rabin Primality Test** \bullet
	- Polynomial Time
- Cyclotomic Primality Test
	- Exponential Time, but almost poly-time
- **Elliptic Curve Primality Test** \bullet
	- Don't know. Hard to Estimate, but looks like poly-time.
- **AKS Primality Test** \bullet
	- Poly-time, but only asymptotically good.