
OPEN SOURCE TECHNOLOGIES

UNIT-1

Dr. M. Durairaj
Associate Professor
School of Computer Science,
Engineering and Applications
Bharathidasan University

School of Computer Science and
Engineering

Bharathidasan University

Open Source Software - Definition

“OSS is licensed software in which the source code is made
available to users to enable them to modify it for their own
purposes and (within certain restrictions) redistribute
original and derived works as they see fit.”

• No one has exclusive control over the term “open source”
• Not an enforceable copyrighted term or trademark
• Open Source Initiative (OSI) www.opensource.org – was

founded in 1998 & has unofficial power over the core
concepts

2

Open Source Software – Definition

3

Free redistribution “License shall not require a royalty or other fee for such sale”

Source code Must include source code & allow distribution (or a well-
publicized means of obtaining the source code)

Derived works Must allow modifications & allow them to be distributed

Integrity of author’s source
code

License must permit distribution of software built from modified
source code

No discrimination against Persons, groups or fields of endeavor (e.g. genetic research)

Distribution of license Rights to program must apply to all without the need for
execution of additional license

License must not be
specific to a product

The rights attached to a program must not depend on the
program’s being part of a particular software distribution

License must not restrict
other software

Must not insist all other programs distributed on the same
medium must be open-source software

License must be
technology-neutral

No provision of the license may be predicated on any individual
technology or style of interface

Source: http://opensource.org/docs/definition.php; viewed 4/13/09

Free Software

• “Free” software “is software that can be used, studied, and
modified,” copied, changed with little or no restriction, and
which can be copied and redistributed in modified or
unmodified form. Free software is available gratis (free of
charge) in most cases.

• “In practice, for software to be distributed as free software,
the human-readable form of the program (the source code)
must be made available” along “ with a notice granting the”
user permission to further adapt the code and continue its
redistribution for free.

• This notice either grants a "free software license", or releases
the source code into the public domain.

Open Source Software

• In the beginning, all software was free

– in the 1960s ,when IBM and others sold the first large-
scale computers, these machines came with software
which was free.

– This software could be freely shared among users,

• The software came written in a programming language (source
code available), and it could be improved and modified.

• Manufacturers were happy that people were writing software
that made their machines useful. (1)

• Then proprietary software dominated the software landscape
as manufacturers removed access to the source code.

– IBM and others realized that most users couldn’t or didn’t want to
“fix” their own software and

– There was money to be made in leasing or licensing software.

Open Source Software

• By the mid-1970s almost all software was proprietary

• “Proprietary software is software that is owned by
an individual or a company (usually the one that
developed it). There are almost always major
restrictions on its use, and its source code is almost
always kept secret.” (1) users were not allowed to
redistribute it,
– source code is not available

– users cannot modify the programs.

– Software is an additional product that was for sale

– In 1980 US copyright law was modified to include software
(1)

Open Source Software
• In late 1970s and early 1980s, two different groups

started what became known as the open source
software movement:

• East coast, Richard Stallman (1985), formerly a
programmer at the MIT AI Lab, launched the GNU
Project and the Free Software Foundation.
– “to satisfy the need for and give the benefit of ‘software

freedom’ to computer users.” (1)

– ultimate goal of the GNU Project was to build a free
operating system

– the GNU General Public License (GPL) was designed to
ensure that the software produced by GNU will remain
free, and to promote the production of more and more
free software.

Free Software Foundation
Guiding Principles

• “Free software is a matter of liberty, not price.

• To understand the concept, you should think of free as in free
speech (right), not as in free beer (gift).

• Free software is a matter of the users' freedom to run, copy,
distribute, study, change and improve the software.
– The freedom to run the program, for any purpose (freedom 0).

– The freedom to study how the program works, and adapt it to your
needs (freedom 1). Access to the source code is a precondition for
this.

– The freedom to redistribute copies so you can help your neighbor
(freedom 2).

– The freedom to improve the program, and release your improvements
(and modified versions in general) to the public, so that the whole
community benefits (freedom 3). Access to the source code is a
precondition for this.” http://www.gnu.org/philosophy/free-sw.html

Free Software Foundation
Guiding Principles

• “A program is free software if users have all of these
freedoms. Thus, you should be free to redistribute copies,
either with or without modifications, either gratis or charging
a fee for distribution, to anyone anywhere. Being free to do
these things means (among other things) that you do not
have to ask or pay for permission.

• You should also have the freedom to make modifications and
use them privately in your own work or play, without even
mentioning that they exist. If you do publish your changes,
you should not be required to notify anyone in particular, or in
any particular way.” http://www.gnu.org/philosophy/free-sw.html

• This is a philosophy, a world view.

Free Software Foundation

• Very counter-culture
• Hacker is considered a “good-guy”

– “Hacker (computer security) someone involved in computer
security/insecurity

– Hacker (programmer subculture), a programmer subculture
originating in the US academia in the 1960s, which is nowadays mainly
notable for the free software/open source movement

– Hacker (hobbyist), an enthusiastic home computer hobbyist”
http://en.wikipedia.org/wiki/Hacker

• Cracker is a “bad-guy”
– A cracker is someone who cracks software or digital media
– “Software cracking is the modification of software to remove

protection methods: copy protections, trial/demo version, serial
number, hardware key, date checks, CD check or software annoyances
like nag screens and adware”. http://en.wikipedia.org/wiki/Cracker_(computing)

Open Source Software

• West coast, the Computer Science Research Group
(CSRG) of the University of California at Berkeley was
improving the Unix system, and building applications
which quickly become “BSD Unix”.

• Unix was initially developed by AT&T employees (1)

– efforts were funded mainly by DARPA contracts
– a network of Unix programmers around the world helped

to debug, maintain and improve the system.
– in late 1980s, distributed under the ``BSD license'' (one of

the first open source licenses).
– Unfortunately, still contained some components that were

proprietary requiring a license from AT&T

Adapted from http://eu.conecta.it/paper/brief_history_open_source.html
(1)http://en.wikipedia.org/wiki/UNIX

Open Source Software

• During the 1980s and early 1990s, open source
software continued its development, initially in
several relatively isolated groups.

• Slowly, much of the software was integrated

• The various groups merged

• As a result of this, complete operating
environments could be built on top of Unix using
open source software.

• Many Internet ISPs use UNIX as their operating
system of choice.

Open Source Software

• 1991-1992, the open source world
improved

• In California, Bill Jolitz implementing a
version of BSD Unix free of AT & T’s
copyright.
– The work was covered by the BSD license

making it completely free.
– It included other free software GNU licenses

Open Source Software

• Also during 1991-1992
• In Finland, Linus Torvalds, a Finnish computer science

student, was implementing the first versions of
Linux.

• Other people joined to collaboration to create the
GNU/Linux operating system.

• By 1993, both GNU/Linux and BSD Unix were free
stable operating environments.
– Both continue to evolve

Open Source Software

• “Open source is a development method for software
that harnesses the power of distributed peer review
and transparency of process.

• The promise of open source is better quality, higher
reliability, more flexibility, lower cost, and an end to
predatory vendor lock-in.

• The Open Source Initiative (OSI) is a non-profit
corporation formed to educate about and advocate
for the benefits of open source.”

• OSI includes a standards body, maintaining the Open
Source Definition for the good of the community.

Open Source Software

• Today there are many who believe proprietary
software is the only possible model
– Microsoft
– Apple, especially for the iPod and iPhone

• Recently the software industry has begun to
considered free software as an option again.
– Apple’s OS X and Leopard are based on Unix
– Google’s Chrome
– Mozilla Firefox

Open Source vs Proprietary Software

Why choose proprietary software over open source? Survey says!by Matt Asay http://news.cnet.com/8301-13505_3-9789275-16.html

Open Source vs Proprietary Software

Why choose proprietary software over open source? Survey says!by Matt Asay http://news.cnet.com/8301-13505_3-9789275-16.html

Open Source Software
See for Yourself

Revolution OS
• “Revolution OS is a 2001 documentary which traces the history of GNU,

Linux, and the open source and free software movements. “
http://video.google.ca/videoplay?docid=7707585592627775409

• Richard Stallman & Opensource
http://www.youtube.com/watch?v=kSZZraHN0Yg&feature=PlayList&p=65
CA10D0F42E48FD&playnext=1&playnext_from=PL&index=7

• Free software CNet
http://www.youtube.com/watch?v=a9fqlI9B6QU&feature=PlayList&p=65C
A10D0F42E48FD&playnext=1&playnext_from=PL&index=9

• Linux -- IBM
http://www.youtube.com/watch?v=KwEWxpOWOok

• Linux commercials
http://www.youtube.com/watch?v=aufL76bXLAg&feature=related

The Linux Kernel:
Introduction

History
● UNIX: 1969 Thompson & Ritchie AT&T Bell Labs.
● BSD: 1978 Berkeley Software Distribution.
● Commercial Vendors: Sun, HP, IBM, SGI, DEC.
● GNU: 1984 Richard Stallman, FSF.
● POSIX: 1986 IEEE Portable Operating System unIX.
● Minix: 1987 Andy Tannenbaum.
● SVR4: 1989 AT&T and Sun.
● Linux: 1991 Linus Torvalds Intel 386 (i386).
● Open Source: GPL.

Linux Features
● UNIX-like operating system.
● Features:

○ Preemptive multitasking.

○ Virtual memory (protected memory, paging).

○ Shared libraries.

○ Demand loading, dynamic kernel modules.

○ Shared copy-on-write executables.

○ TCP/IP networking.

○ SMP support.

○ Open source.

What’s a Kernel?
● AKA: executive, system monitor.
● Controls and mediates access to hardware.
● Implements and supports fundamental abstractions:

○ Processes, files, devices etc.

● Schedules / allocates system resources:
○ Memory, CPU, disk, descriptors, etc.

● Enforces security and protection.
● Responds to user requests for service (system calls).
● Etc…etc…

Kernel Design Goals
● Performance: efficiency, speed.

○ Utilize resources to capacity with low overhead.

● Stability: robustness, resilience.
○ Uptime, graceful degradation.

● Capability: features, flexibility, compatibility.
● Security, protection.

○ Protect users from each other & system from bad users.

● Portability.
● Extensibility.

Example “Core” Kernel
Applications

System Libraries (libc)

System Call Interface

Hardware

Architecture-Dependent Code

I/O Related Process Related
Scheduler
Memory

Management
IPC

File Systems
Networking

Device Drivers

M
od

ul
es

Architectural Approaches
● Monolithic.
● Layered.
● Modularized.
● Micro-kernel.
● Virtual machine.

Linux Source Tree Layout
/usr/src/linuxDocumentation

arch
fs

init kernel

include

ipc

drivers

net
mmlib

script
s

alpha
arm
i386
ia64
m68k
mips
mips64
ppc
s390
sh
sparc
sparc6
4

acorn
atm
block
cdrom
char
dio
fc4
i2c
i2o
ide
ieee1394
isdn
macintos
h
misc
net
…

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs
…

asm-alpha
asm-arm
asm-generic
asm-i386
asm-ia64
asm-m68k
asm-mips
asm-mips64
linux
math-emu
net
pcmcia
scsi
video …

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs …

802
appletalk
atm
ax25
bridge
core
decnet
econet
ethernet
ipv4
ipv6
ipx
irda
khttpd
lapb
…

linux/arch
● Subdirectories for each current port.
● Each contains kernel, lib, mm, boot and other directories whose

contents override code stubs in architecture independent code.
● lib contains highly-optimized common utility routines such as memcpy,

checksums, etc.
● arch as of 2.4:

○ alpha, arm, i386, ia64, m68k, mips, mips64.

○ ppc, s390, sh, sparc, sparc64.

linux/drivers
● Largest amount of code in the kernel tree (~1.5M).
● device, bus, platform and general directories.
● drivers/char – n_tty.c is the default line discipline.
● drivers/block – elevator.c, genhd.c, linear.c, ll_rw_blk.c, raidN.c.
● drivers/net –specific drivers and general routines Space.c and

net_init.c.
● drivers/scsi – scsi_*.c files are generic; sd.c (disk), sr.c

(CD-ROM), st.c (tape), sg.c (generic).
● General:

○ cdrom, ide, isdn, parport, pcmcia, pnp, sound, telephony,
video.

● Buses – fc4, i2c, nubus, pci, sbus, tc, usb.
● Platforms – acorn, macintosh, s390, sgi.

linux/fs

● Contains:
○ virtual filesystem (VFS) framework.
○ subdirectories for actual filesystems.

● vfs-related files:
○ exec.c, binfmt_*.c - files for mapping new process images.
○ devices.c, blk_dev.c – device registration, block device

support.
○ super.c, filesystems.c.
○ inode.c, dcache.c, namei.c, buffer.c, file_table.c.
○ open.c, read_write.c, select.c, pipe.c, fifo.c.
○ fcntl.c, ioctl.c, locks.c, dquot.c, stat.c.

linux/include

● include/asm-*:
○ Architecture-dependent include subdirectories.

● include/linux:
○ Header info needed both by the kernel and user apps.
○ Usually linked to /usr/include/linux.
○ Kernel-only portions guarded by #ifdefs

■ #ifdef __KERNEL__
■ /* kernel stuff */
■ #endif

● Other directories:
○ math-emu, net, pcmcia, scsi, video.

linux/init
● Just two files: version.c, main.c.
● version.c – contains the version banner that prints at boot.
● main.c – architecture-independent boot code.
● start_kernel is the primary entry point.

linux/ipc
● System V IPC facilities.
● If disabled at compile-time, util.c exports stubs that simply return

–ENOSYS.
● One file for each facility:

○ sem.c – semaphores.

○ shm.c – shared memory.

○ msg.c – message queues.

linux/kernel

● The core kernel code.
● sched.c – “the main kernel file”:

○ scheduler, wait queues, timers, alarms, task queues.
● Process control:

○ fork.c, exec.c, signal.c, exit.c etc…
● Kernel module support:

○ kmod.c, ksyms.c, module.c.
● Other operations:

○ time.c, resource.c, dma.c, softirq.c, itimer.c.
○ printk.c, info.c, panic.c, sysctl.c, sys.c.

linux/lib
● kernel code cannot call standard C library routines.
● Files:

○ brlock.c – “Big Reader” spinlocks.

○ cmdline.c – kernel command line parsing routines.

○ errno.c – global definition of errno.

○ inflate.c – “gunzip” part of gzip.c used during boot.

○ string.c – portable string code.
■ Usually replaced by optimized, architecture-dependent routines.

○ vsprintf.c – libc replacement.

linux/mm
● Paging and swapping:

○ swap.c, swapfile.c (paging devices), swap_state.c (cache).
○ vmscan.c – paging policies, kswapd.
○ page_io.c – low-level page transfer.

● Allocation and deallocation:
○ slab.c – slab allocator.
○ page_alloc.c – page-based allocator.
○ vmalloc.c – kernel virtual-memory allocator.

● Memory mapping:
○ memory.c – paging, fault-handling, page table code.
○ filemap.c – file mapping.
○ mmap.c, mremap.c, mlock.c, mprotect.c.

linux/scripts
● Scripts for:

○ Menu-based kernel configuration.

○ Kernel patching.

○ Generating kernel documentation.

Summary
● Linux is a modular, UNIX-like monolithic kernel.
● Kernel is the heart of the OS that executes with special hardware

permission (kernel mode).
● “Core kernel” provides framework, data structures, support for drivers,

modules, subsystems.
● Architecture dependent source sub-trees live in /arch.

Booting and Kernel
Initialization

System Lifecycle: Ups & Downs

Power
on

Power
off

Boot Kernel
Init

OS
Init

RUN! Shut
down

Boot Terminology
● Loader:

○ Program that moves bits from disk (usually)
to memory and then transfers CPU control to the newly
“loaded” bits (executable).

● Bootloader / Bootstrap:

○ Program that loads the “first program” (the kernel).
● Boot PROM / PROM Monitor / BIOS:

○ Persistent code that is “already loaded” on power-up.
● Boot Manager:

○ Program that lets you choose the “first program” to load.

LILO: LInux LOader

● A versatile boot manager that supports:
○ Choice of Linux kernels.
○ Boot time kernel parameters.
○ Booting non-Linux kernels.
○ A variety of configurations.

● Characteristics:
○ Lives in MBR or partition boot sector.
○ Has no knowledge of filesystem structure so…
○ Builds a sector “map file” (block map) to find kernel.

● /sbin/lilo – “map installer”.
○ /etc/lilo.conf is lilo configuration file.

Example lilo.conf File

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
default=linux

image=/boot/vmlinuz-2.2.12-20
label=linux
initrd=/boot/initrd-2.2.12-20.img
read-only
root=/dev/hda1

/sbin/init
● Ancestor of all processes (except idle/swapper process).
● Controls transitions between “runlevels”:

○ 0: shutdown

○ 1: single-user

○ 2: multi-user (no NFS)

○ 3: full multi-user

○ 5: X11

○ 6: reboot

● Executes startup/shutdown scripts for each runlevel.

Shutdown
● Use /bin/shutdown to avoid data loss and filesystem corruption.
● Shutdown inhibits login, asks init to send SIGTERM to all processes,

then SIGKILL.
● Low-level commands: halt, reboot, poweroff.

○ Use -h, -r or -p options to shutdown instead.

● Ctrl-Alt-Delete “Vulcan neck pinch”:
○ defined by a line in /etc/inittab.

○ ca::ctrlaltdel:/sbin/shutdown -t3 -r now.

Advanced Boot Concepts

● Initial ramdisk (initrd) – two-stage boot for flexibility:
○ First mount “initial” ramdisk as root.
○ Execute linuxrc to perform additional setup, configuration.
○ Finally mount “real” root and continue.
○ See Documentation/initrd.txt for details.
○ Also see “man initrd”.

● Net booting:
○ Remote root (Diskless-root-HOWTO).
○ Diskless boot (Diskless-HOWTO).

Summary
● Bootstrapping a system is a complex, device-dependent process

that involves transition from hardware, to firmware, to software.
● Booting within the constraints of the Intel architecture is

especially complex and usually involves firmware support (BIOS)
and a boot manager (LILO).

● /sbin/lilo is a “map installer” that reads configuration
information and writes a boot sector and block map files used
during boot.

● start_kernel is Linux “main” and sets up process context before
spawning process 0 (idle) and process 1 (init).

● The init() function performs high-level initialization before
exec’ing the user-level init process.

System Calls

System Calls
● Interface between user-level processes and hardware devices.

○ CPU, memory, disks etc.

● Make programming easier:
○ Let kernel take care of hardware-specific issues.

● Increase system security:
○ Let kernel check requested service via syscall.

● Provide portability:
○ Maintain interface but change functional implementation.

POSIX APIs

● API = Application Programmer Interface.
○ Function defn specifying how to obtain service.
○ By contrast, a system call is an explicit request to kernel

made via a software interrupt.
● Standard C library (libc) contains wrapper routines that make

system calls.
○ e.g., malloc, free are libc routines that use the brk system

call.
● POSIX-compliant = having a standard set of APIs.
● Non-UNIX systems can be POSIX-compliant if they offer the

required set of APIs.

Linux System Calls (1)
Invoked by executing int $0x80.

○ Programmed exception vector number 128.

○ CPU switches to kernel mode & executes a kernel function.

● Calling process passes syscall number identifying system call in
eax register (on Intel processors).

● Syscall handler responsible for:
○ Saving registers on kernel mode stack.

○ Invoking syscall service routine.

○ Exiting by calling ret_from_sys_call().

Linux System Calls (2)
● System call dispatch table:

○ Associates syscall number with corresponding service routine.

○ Stored in sys_call_table array having up to NR_syscall entries (usually 256
maximum).

○ nth entry contains service routine address of syscall n.

Initializing System Calls
● trap_init() called during kernel initialization sets up the IDT

(interrupt descriptor table) entry corresponding to vector 128:
○ set_system_gate(0x80, &system_call);

● A system gate descriptor is placed in the IDT, identifying address of
system_call routine.
○ Does not disable maskable interrupts.

○ Sets the descriptor privilege level (DPL) to 3:

■ Allows User Mode processes to invoke exception handlers (i.e. syscall routines).

The system_call() Function
● Saves syscall number & CPU registers used by exception handler on the

stack, except those automatically saved by control unit.
● Checks for valid system call.
● Invokes specific service routine associated with syscall number

(contained in eax):
○ call *sys_call_table(0, %eax, 4)

● Return code of system call is stored in eax.

Parameter Passing
● On the 32-bit Intel 80x86:

○ 6 registers are used to store syscall parameters.

■ eax (syscall number).

■ ebx, ecx, edx, esi, edi store parameters to syscall service routine, identified by
syscall number.

Wrapper Routines
● Kernel code (e.g., kernel threads) cannot use library routines.
● _syscall0 … _syscall5 macros define wrapper routines for

system calls with up to 5 parameters.
● e.g., _syscall3(int,write,int,fd,

const char *,buf,unsigned int,count)

Example: “Hello, world!”

Linux Files Relating to Syscalls
● Main files:

○ arch/i386/kernel/entry.S

■ System call and low-level fault handling routines.

○ include/asm-i386/unistd.h

■ System call numbers and macros.

○ kernel/sys.c

■ System call service routines.

arch/i386/kernel/entry.S

■ Add system calls by appending entry to
sys_call_table:

.long SYMBOL_NAME(sys_my_system_call)

include/asm-i386/unistd.h
● Each system call needs a number in the system call table:

○ e.g., #define __NR_write 4

○ #define __NR_my_system_call nnn, where nnn is next free entry in system call
table.

kernel/sys.c
● Service routine bodies are defined here:
● e.g., asmlinkage retval

sys_my_system_call (parameters) {

body of service routine;

return retval;

}

Kernel Modules

Kernel Modules
● See A. Rubini, “Device Drivers”, Chapter 2.
● Modules can be compiled and dynamically linked into kernel address

space.
○ Useful for device drivers that need not always be resident until needed.

■ Keeps core kernel “footprint” small.

○ Can be used to “extend” functionality of kernel too!

Example: “Hello, world!”
#define MODULE

#include <linux/module.h>

int init_module(void) {

printk(“<1>Hello, world!\n”);

return 0;

}

void cleanup_module(void) {

printk(“<1>Goodbye cruel world ☹\n”);

}

Using Modules
● Module object file is installed in running kernel using insmod

module_name.
○ Loads module into kernel address space and links unresolved symbols in module to

symbol table of running kernel.

The Kernel Symbol Table
● Symbols accessible to kernel-loadable modules appear in

/proc/ksyms.
○ register_symtab registers a symbol table in the kernel’s main table.

○ Real hackers export symbols from the kernel by modifying kernel/ksyms.c ☺

Project Suggestions (1)
● Real-Time thread library.
● Scheduler activations in Linux.
● A Linux “upcall” mechanism.
● Real-Time memory allocator / garbage collector.
● A distributed shared memory system.
● A QoS-based socket library.
● An event-based mechanism for implementing adaptive systems.
● DWCS packet scheduling.
● A heap-based priority scheduler for Linux.

Project Suggestions (2)
● μS resolution timers for Linux.
● Porting the Bandwidth-Broker to Linux.
● A QoS Management framework like QuO or Dionisys.
● A Real-Time communications protocol.
● A feedback-control system for flow/error/rate/congestion control.
● “Active Messages” for Linux.
● A thread continuation mechanism.
● A thread migration / load-balancing system.

“Linux at the Command Line”
Don Johnson of BU IS&T

Dr. M. Durairaj
Associate Professor
School of Computer Science,
Engineering and Applications
Bharathidasan University

 We’ll start with a sign in sheet that include
questions about your Linux experience and
goals.

 We’ll end with a class evaluation.
 We’ll cover as much as we can in the time

allowed, starting with the easiest and most
important material. Don’t feel rushed; if we don’t
cover everything, you’ll pick it up as you continue
working with Linux.

 This is a hands-on, lab class; ask questions at
any time.

 Commands for you to type are in BOLD
 We’ll take a break at the half-way point.

What is
Linux?

It’s an
Operating

System

The Most
Common O/S

Used By BU
Researchers When

Working on a
Server or

Computer Cluster

 Linux is a Unix clone written from scratch by
Linus Torvalds with assistance from a
loosely-knit team of hackers across the Net.

 Unix is a multitasking, multi-user computer
operating system originally developed in
1969 by a group of AT&T employees at Bell
Labs.

 Linux and Unix strive to be POSIX compliant.
 64% of the world’s servers run some variant

of Unix or Linux. The Android phone and the
Kindle run Linux.

(i) Make each program do one thing well. To do a new
job, build afresh rather than complicate old programs
by adding new features.
(ii) Expect the output of every program to become the
input to another, as yet unknown, program. Don't
clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don't
insist on interactive input.

(iii) Use tools in preference to unskilled help to lighten
a programming task, even if you have to detour to
build the tools and expect to throw some of them out
after you've finished using them.

The *Nix Philosophy of Doug McIlroy

BU uses CentOS in its Linux
cluster which is a free version

of RedHat Enterprise Linux with
the trademarks removed

 Linux is an O/S core
written by Linus
Torvalds and others
AND

 a set of small
programs written by
Richard Stallman and
others. They are the
GNU utilities.

http://www.gnu.org/

 Network: ssh, scp, ping, telnet, nslookup, wget
 Shells: BASH, TCSH, alias, watch, clear, history, chsh, echo,

set, setenv, xargs
 System Information: w, whoami, man, info, which, free,

echo, date, cal, df, free, man, info
 Command Information: man, info
 Symbols: |, >, >>, <, &, >&, 2>&1, ;, ~, ., .., $!, !:<n>,

!<n>
 Filters: grep, egrep, more, less, head, tail
 Hotkeys: <ctrl><c>, <ctrl><d>
 File System: ls, mkdir, cd, pwd, mv, ln, touch, cat, file,

find, diff, cmp, /net/<hostname>/<path>, mount, du, df,
chmod, find

 Line Editors: awk, sed
 File Editors: vim, gvim, emacs –nw, emacs

We will not cover the commands below in this class,
but you need to know them. See the man pages for
the process commands and the “sge” folder inside of
the “cheat sheets and tutorials” folder for the SGE
(Sun Grid Engine) command tutorials: qsh-
interactive.pdf, qsh-interactive-matlab.pdf, qsub-
batch.pdf, qsub-batch-matlab.pdf, and qstat-
qhost.pdf.

 Process Management: ps, top, kill, killall, fg, bg
 SGE Cluster: qsh, qstat, qsub, qhost

 You need a “xterm” emulator: software that
emulates an “X” terminal and connects using the
“SSH” secure shell protocol.

 You are sitting at the “client,” either a Windows,
Macintosh or even possibly a Linux machine.

 You are connecting to a “server,” typically the
“head” or “gateway” node of a cluster of
computers. You will be working on the head
node or submitting jobs to execution nodes, all
of them, Linux machines.

 You can also connect to a Linux machine by
using VNC to get a whole desktop if it’s
supported by the server.

 You need a “xterm” emulation –
software that emulates an “X”
terminal and that connects using the
“SSH” Secure Shell protocol.
◦ Windows

 If you don’t need windowing, “putty” is
good:
http://www.chiark.greenend.org.uk/~sgtat
ham/putty/download.html

 If you need windowing, use StarNet “X-
Win32:”
http://www.bu.edu/tech/desktop/site-
licensed-software/xwindows/xwin32/

◦ Mac OS X
 “Terminal” is already installed
 Why? Darwin, the system on which Apple's Mac OS X

is built, is a derivative of 4.4BSD-Lite2 and FreeBSD.
In other words, the Mac is a Unix system!

The Ideal Lab Facility

Your Instructor Today

 X-Win32/X-Config
◦ Wizard

 Name: katana
 Type: ssh
 Host: katana.bu.edu (Off-campus, must include

domain “bu.edu”)
 Login: <userID>
 Password: <password>
 Command: Linux

◦ Click “katana” then “Launch”
 Accept the host server public key (first time only)

 Terminal
◦ Type ssh –X katana.bu.edu or ssh –Y katana.bu.edu (less

secure)

When there are problems connecting to a login
host, try:
 ping katana.bu.edu
 telnet katana.bu.edu 22

 Windows
◦ Using File Explorer, copy the directory “\\scv-

files.bu.edu\SCV\Training\Introduction to Linux”
to “My Documents” on your lab machine

 Linux
◦ Connect to katana.bu.edu using X-Win32 and run

this command:
 cp -Rv /project/ssrcsupp/linux_class ~/

 Note: <CR> is short for “carriage return” and
equals the ASCII press the “Enter” or “Return”
key. It tells the shell that you finished sending
one line (see ascii-table.pdf).

 Try
◦ telnet www.bu.edu

 GET / HTTP/1.1
 Host:www.bu.edu<CR>
 <CR>

 What happened?

Emulate a Browser

Connecting to a Linux Host

 Try
◦ telnet locahost 25

 ehlo me
 mail from:<your email address>
 rcpt to:<destination email address>
 data
 Subject:<subject of email>
 <Body of email>
 .
 <CR>

 What Happened?

Send and Email

Connecting to an Linux Host

 A shell is a computer program that interprets the
commands you type and sends them to the operating
system. Secondly, it provide a programming environment
consisting of environment variables.

 Most BU systems, including the BU Linux Cluster, support
at least two shells: TCSH and BASH. The default shell for
your account is TCSH. The most popular and powerful
Linux shell today is BASH.

 To determine your shell type:
◦ echo $SHELL (shell prints contents of env
◦ echo “$SHELL” (shell still processes env. variable)
◦ echo ‘$SHELL’ (shell treats env. variable as simple literal)

 The complete environment can be printed with set, setenv
(TCSH) and set (BASH).

 To determine the path to the shell program, type:
◦ which bash
◦ which tcsh

 Change the shell with “chsh /bin/bash” (provide path to
new shell as a “parameter,” meaning to be explained soon)

Output of the echo, which and chsh commands

The Shell

 After you connect, type
◦ shazam
◦ whoami
◦ hostname
◦ date
◦ cal
◦ free

 Commands have three parts; command, options and
parameters. Example: cal –j 3 1999. “cal” is the command,
“-j” is an option (or switch), “3” and “1999” are parameters.

 Options have long and short forms. Example:
◦ date –u
◦ data --universal

What is the nature of the prompt?
What was the system’s response to the command?

Output of the whoami, hostname, date, cal and free

System Information

 Try the history command
 Try <Ctrl><r> (only works in BASH shell)
 Choose from the command history by using

the up ↑ and down ↓ arrows
 What do the left ← and right → arrow do on

the command line?
 Try the and <Backspace> keys

 Type
◦ hostname –-help
◦ man hostname
◦ info hostname (gives the same or most information,

but must be paged)
 And “Yes,” you can always Google it

 The pipe “|” feeds the OUTPUT of one
command into the INPUT of another command.
Our first example will use the pipe symbol to
filter the output of a command. Try:
◦ w
◦ w | grep ‘root’
◦ ps -e -o ruser,comm | grep 'tut‘

 The ps command is using both “options (dash)”
and parameters

 Try both “man grep” and “info grep”. See the
difference?

 <Ctrl-a> go to beginning
 <Ctrl-e> go to end
 <Alt-f> forward one word
 <Alt-b> back one word
 <Ctrl-f> forward one character
 <Ctrl-b> back one character
 <Ctrl-d> delete character
 <Alt-d> delete word
 <Ctrl-u> delete from cursor to beginning of line
 <Ctrl-k> delete from cursor to end of line

See emacs-editing-mode.pdf and emacs-editing-mode-short.pdf

Go to through command history in shell and practice editing.

 The *Nix (Unix or Linux) file system is a hierarchical
directory structure

 The structure resembles an upside down tree
 Directories are collections of files and other

directories. The structure is recursive with many
levels.

 Every directory has a parent except for the root
directory.

 Many directories have children directories.
 Unlike Windows, with multiple drives and multiple file

systems, a *Nix system only has ONE file system.
 The Linux Standard Base (LSB) specifies the structure

of a Linux file system.

A Typical Linux File System

The Linux File System

 Try
◦ nautilus –-browser –-no-desktop
◦ tree –L 3 –d / | less
◦ tree –L 3 / | less
◦ file /bin/alsac then press <tab>
◦ cd ~; pwd (This is your home directory where application

settings are kept and where you have write privileges)
◦ ls
◦ mkdir myPics;mkdir myPics/work;mkdir

myPics/friends;mkdir myPics/friends/BU; mkdir
myPics/friends/MIT

◦ tree myPics

Output from the tree, file, pwd and ls commands
Demonstration of using the mkdir command

Examining the File System

 There are two types of pathnames
◦ Absolute (Abs) – the full path to a directory or file;

begins with the root symbol /
◦ Relative (Rel) – a partial path that is relative to the

current working directory
 Examples

◦ Abs cd /usr/local/lib
◦ echo $HOME (one of may environment variables

maintained by the shell)
◦ Abs cd `echo $HOME`
◦ pwd
◦ Rel cd ..
◦ Rel cd ..
◦ Abs cd /lib (location OS shared libraries)
◦ ls –d */ (a listing of only the directories in /lib)

Moving around the file system using the cd command

Navigating the File System

 More useful commands
◦ cd (also takes you to your home directory like cd ~)
◦ mkdir test
◦ echo ‘Hello everyone’ > test/myfile.txt
◦ echo ‘Goodbye all’ >> test/myfile.txt
◦ less test/myfile.txt
◦ mkdir test/subdir1/subdir2 (FAILS)
◦ mkdir -p test/subdir1/subdir2 (Succeeds)
◦ mv test/myfile.txt test/subdir1/subdir2
◦ rmdir test (FAILS)
◦ rm –Rv test (Succeeds)

Demonstration of the mkdir, less, mv, rmdir and rm commands

Modifying the Linux File System

 Useful options for the “ls” command:
◦ ls -a List all file including hidden file beginning with

a period “.”
◦ ls -ld * List details about a directory and not its

contents
◦ ls -F Put an indicator character at the end of each

name
◦ ls –l Simple long listing
◦ ls –lh Give human readable file sizes
◦ ls –lS Sort files by file size
◦ ls –lt Sort files by modification time

 All files and directories have a individual and
a group ownership.

 All files and directories have read (r), write
(w), and execute (x) permissions assigned as
octets to the individual owner (u), the group
(g) owner and all others (o) that are logged
into the system.

 You can change permissions if you are the
individual owner or a member of the group.

 Only root can change ownership.

The root user is the master
root

 Try
◦ cd
◦ touch myfile (create file)
◦ mkdir mydir (create directory)
◦ ls –l myfile (examine file)
◦ ls –ld mydir (examine directory)
◦ chmod g+w myfile (add group write permission)
◦ ls –l myfile
◦ chmod ugo+x myfile (add user, group and other execute

permission)
◦ ls –l myfile
◦ chmod ugo+w mydir (add user, group and other write

permission)
◦ ls –ld mydir
◦ chmod a-w (a=ALL, remove user, group and other write

permission)

Examining and changing file and directory permissions

File and Directory Ownership and Permissions

 Syntax:
BEGIN { Actions}
{ACTION} # Action for every line in a file
END { Actions }
 Try

◦ ls –l /usr
◦ ls –l /usr | awk ‘{print $9 “\t” $5}’
◦ ls –l /usr > usr.txt
◦ awk ‘print $9 “\t” $5}’ usr.txt (gives same results as 2nd

command line, but awk is acting on a file instead of saved
output)

◦ ls –lh /lib | awk ‘{printf “%20s\t%s\n”,$9,$5}’
◦ ls –l /lib | awk ‘BEGIN {sum=0} {printf “%20s\t%s\n”,$9,$5;

sum+=$5} END{sum/=1000000; printf “\nTotal: %d
GB\n”,sum}’

Output from awk commands

Editing Output Lines With awk

 sed replaces one substring with another
 sed operates on every line in a file or processes

every line piped into it
 sed matches patterns using regular expressions

(See regular-expressions.pdf cheat sheet)
 Common regular expression metacharacters:

◦ . – any character
◦ ? – quantified zero or one
◦ * - quantifier none or more
◦ + - quantifier one or more
◦ ^ - beginning of line
◦ $ - end of line
◦ [XxYy] – character class matching upper or lower case “X”

or “”Y”

 Try
◦ echo “The rain in Spain stays mainly in the plain.” >

easy_sed.txt; cat easy_sed.txt
◦ sed –i.bak

‘s/rain/snow/;s/Spain/Sweden/;s/plain/mountains
/’ easy_sed.txt; cat easy_sed.txt

◦ ls -l /lib | awk 'BEGIN {sum=0} {printf
"%s\t%s\n",$9,$5; sum+=$5} END{printf "\nTotal:
%d\n",sum}' | sed -e 's/\.so\(\.[0-9]*\)*//' | less
(challenge: get rid of soname extension)

◦ ls -l /lib | awk 'BEGIN {sum=0} {printf
"%s\t%s\n",$9,$5; sum+=$5} END{printf "\nTotal:
%d GB\n",sum}' | sed -e 's/\.so\(\.[0-9]*\)*//' | awk
'{printf "%20s\t%s\n",$1,$2}‘ | less (pretty print)

Output from sed commands

Editing Output Lines With sed

You don’t have to take sides and there is always “nedit”

Editing Files with Emacs and Vim

Emacs – Control Keys
C=Ctrl and M=Meta (Alt)

Vim – Modal
Cmd, Insert, and Visual

 Cheat sheet: emacs.pdf
 Movement: <C-b>,<C-n>,

<C-p>,<C-f>,<M-b>,<M-
e>,<C-a>,<C-e>,<M-’<‘
>,<M-’>’ >,

 Change/Delete/Replace:
<C-d>,<M-d-esc>,<M-
d>,<C-kk>,<C-
d’char’>,<Insert>

 Copy/Paste: <C-space>,<C-
y>,<C-_>,<M-w>,<C-aky>

 Search/Replace: <C-s
enter>,<C-s>,<C-r>,<M-x,
‘replace-
string’<CR>’srchstr’<CR>’repl
acement’<CR>

 Save/Quit: <C-xs>,<C-
xw>,<C-xc,’n’,’yes’<CR>>

 Cheat sheet: vim.pdf
 Movement: <h>,<j>,

<k>,<l>,,<e>,<0>,<$>
,<gg>,<G>

 Change/Delete/Replace:
<x>,<cw>,<dw>,<dd>,<r>,
<R>

 Copy/Paste:
<v>,<P>,<u>,<y>,<yy>

 Search/Replace:
</>,<n>,<N>,<:%s/’regex’/
’replacement’/g>

 Save/Quit:
<:q>,<:w>,<:q!>

• Someone has corrupted Edgar Allen Poe’s poem, “The Raven.” Your
mission, should you decide to accept it, is to repair the damage with
emacs or vim and then confirm with the “diff” command. Hint: Also use
diff to find corruption.

• emacs –nw bad-the-raven.txt
or
• vim bad-the-raven.txt

• After editing and saving your file, confirm you work with:
• diff bad-the-raven.txt good-the-raven.txt

Mission Possible: Editing Files with Emacs and Vim

Unit-II
Overview of Linux

Dr. M. Durairaj

Associate Professor

School of Computer Science, Engineering and Applications

Bharathidasan University

Credits

 Cleveland Linux Users’ Group
 Introduction to Linux (Jeff Gilton & Jim Weirich)

 IBM
 An Introduction to Linux (Al Henderson)
 Why Linux is storming the market (Jonathan Prial)

 Ivan Bowman
 Conceptual software architecture of the Linux kernel

Contents

 A quick guide to Linux
 Background
 Using Linux
 S/390 Specifics

 Linux in the Marketplace
 Commercial Linux Applications
 Additional Resources

What is Linux

 A fully-networked 32/64-Bit Unix-like Operating System
 Unix Tools Like sed, awk, and grep (explained later)

 Compilers Like C, C++, Fortran, Smalltalk, Ada

 Network Tools Like telnet, ftp, ping, traceroute

 Multi-user, Multitasking, Multiprocessor

 Has the X Windows GUI

 Coexists with other Operating Systems

 Runs on multiple platforms

 Includes the Source Code

Where did it come from?

 Linus Torvalds created it
with assistance from programmers around

the world
 first posted on Internet in 1991

 Linux 1.0 in 1994; 2.2 in 1999
 Today used on 7-10 million computers
with 1000’s of programmers working to

enhance it

Open Source Software

When programmers on the Internet can
read, redistribute, and modify the source
for a piece of software, it evolves

 People improve it, people adapt it, people
fix bugs. And this can happen at a speed
that, compared to conventional software
development, seems astonishing

How do you get it?

Download it from the Internet
 From a “Distribution” (e.g. RedHat)
 Linux kernel
X Windows system and GUI
Web, e-mail, FTP servers
 Installation & configuration support
3rd party apps
Hardware support

Why is it significant?

Growing popularity
 Powerful
Runs on multiple hardware platforms
Users like its speed and stability
No requirement for latest hardware

 It’s “free”
 Licensed under GPL
Vendors are distributors who package Linux

Linux/390

Using it

Logging In

 Connect to the Linux system using telnet:
 vt100, vt220, vt320
 ansi
 tty
X-windows

 Able to login more than once with same
user

No ‘MW’ problems!

Logging In

 Before you can use it you must login by
specifying your account and password:

Linux 2.2.13 (penguinvm.princeton.edu) (ttyp1)

penguinvm login: neale
Password:
Last login: Tue Jan 4 10:13:13 from
linuxtcp.princeton.edu
[neale@penguinvm neale]$

Rule Number 1

 Do not login as root unless you have to
 root is the system superuser (the “maint” of

Linux but more “dangerous”)
 Normal protection mechanisms can be overridden
 Careless use can cause damage
 Has access to everything by default

 root is the only user defined when you install
 First thing is to change root’s password
 The second job is to define “normal” users for

everyday use

Creating a new user

 Use the useradd command
 Use the passwd command to set password

 Try it… logon as root
[root@penguinvm]# useradd scully
[root@penguinvm]# passwd scully
Changing password for user scully
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated
successfully
[root@penguinvm]#

Adding a new user

 Limits on users can be controlled by
Quotas
ulimit command

 Authority levels for a user controlled by
group membership

Users and Groups

 Users are identified by user identifications (UIDs), each
of which is associated with an integer in the range of 0
to 4 294 967 295 (X’FFFFFFFF’). Users with UID=0 are
given superuser privileges.

 Users are placed in groups, identified by group
identifications (GIDs). Each GID is associated with an
integer in the range from 0 to 4 294 967 295

 Let the system assign UID to avoid duplicates
 Use id to display your user and group information

uid=500(neale) gid=500(neale) groups=500(neale),3(sys),4(adm)

Users and Groups

 Groups define functional areas/responsibilities
 They allow a collection of users to share files
 A user can belong to multiple groups
 You can see what groups you belong to using

the groups command:

neale sys adm

Typical Group Setup

sys
bin
adm
staff

Using the new user

Now logoff using the exit command

 login as the new user

Linux 2.2.13 (penguinvm.princeton.edu) (ttyp2)

penguinvm login: scully
Password:
[scully@penguinvm scully]$

You need help?

 The Linux equivalent of HELP is man
(manual)
Use man -k <keyword> to find all

commands with that keyword
Use man <command> to display help for that

command
Output is presented a page at a time. Use b for to

scroll backward, f or a space to scroll forward and
q to quit

The Linux System

User commands

Shell

File SystemsKernel

Device Drivers

Hardware

User commands includes executable
programs and scripts

The shell interprets user commands. It is
responsible for finding the commands
and starting their execution. Several
different shells are available. Bash is

popular,

The kernel manages the hardware resources
for the rest of the system.

Linux File System Basics

 Linux files are stored
in a single rooted,
hierarchical file
system
 Data files are stored

in directories
(folders)

 Directories may be
nested as deep as
needed

Directories

User home
directories

Data files

root

Naming Files

 Files are named by
 naming each

containing directory
 starting at the root

 This is known as the
pathname /etc/passwd

/home/neale/b

The Current Directory

 One directory is
designated the
current working
directory
 if you omit the leading
/ then path name is
relative to the current
working directory

 Use pwd to find out
where you are

Current working
directory

doc/letter
./doc/letter
/home/neale/doc/letter

Some Special File Names

 Some file names are special:
 / The root directory (not to be confused with the root user)
 . The current directory
 .. The parent (previous) directory
 ~ My home directory

 Examples:
 ./a same as a
 ../jane/x go up one level then look in directory jane for x

Special Files

 /home - all users’ home directories are stored
here

 /bin, /usr/bin - system commands
 /sbin, /usr/sbin - commands used by

sysadmins
 /etc - all sorts of configuration files
 /var - logs, spool directories etc.
 /dev - device files
 /proc - special system files

Linux Command Basics

 To execute a command, type its name
and arguments at the command line

ls -l /etc

Command name
Options

(flags)

Arguments

Standard Files

 UNIX concept of “standard files”
 standard input (where a command gets its

input) - default is the terminal
 standard output (where a command writes it

output) - default is the terminal
 standard error (where a command writes

error messages) - default is the terminal

Redirecting Output

 The output of a command may be sent
(piped) to a file:

ls -l >output

“>” is used to specify
the output file

Redirecting Input

 The input of a command may come (be
piped) from a file:

wc <input

“<” is used to specify
the input file

Connecting commands
with Pipes

Not as powerful as CMS Pipes but the
same principle

 The output of one command can become
the input of another:

ps aux | grep netscape | wc -l

The output of the ps
command is sent to
grep

grep takes input and searches for
“netscape” passing these lines to wc

wc takes this input and
counts the lines its output
going to the console

Like CMS Pipes, “|” is
used to separate stages

Command Options

 Command options allow you to control a
command to a certain degree

 Conventions:
Usually being with a single dash and are a

single letter (“-l”)

Sometimes have double dashes followed by a
keyword (“--help”)

Sometimes follow no pattern at all

Common Commands

 pwd - print (display) the working directory
 cd <dir> - change the current working

directory to dir
 ls - list the files in the current working directory
 ls -l - list the files in the current working

directory in long format

File Commands
 cp <fromfile> <tofile>

 Copy from the <fromfile> to the <tofile>
 mv <fromfile> <tofile>

 Move/rename the <fromfile> to the <tofile>
 rm <file>

 Remove the file named <file>
 mkdir <newdir>

 Make a new directory called <newdir>
 rmdir <dir>

 Remove an (empty) directory

More Commands

 who
 List who is currently logged on to the system

 whoami
 Report what user you are logged on as

 ps
 List your processes on the system

 ps aux
 List all the processes on the system

 echo “A string to be echoed”
 Echo a string (or list of arguments) to the terminal

More Commands

 alias - used to tailor commands:
alias erase=rm
alias grep=”grep -i”

 ar - Maintain archive libraries: a
collection of files (usually object files
which may be linked to a program, like a
CMS TXTLIB)
ar -t libgdbm.a
__.SYMDEF
dbmopen.o

More Commands

 awk - a file processing language that is
well suited to data manipulation and
retrieval of information from text files

 chown - sets the user ID (UID) to owner
for the files and directories named by
pathname arguments. This command is
useful when from test to production
chown -R apache:httpd /usr/local/apache

More Commands

 diff - attempts to determine the
minimal set of changes needed to convert
a file specified by the first argument into
the file specified by the second argument

 find - Searches a given file hierarchy
specified by path, finding files that match
the criteria given by expression

More Commands

 grep - Searches files for one or more
pattern arguments. It does plain string,
basic regular expression, and extended
regular expression searching

find ./ -name "*.c" | xargs grep -i "fork"

In this example, we look for files with an extension “c” (that is, C source files). The filenames we
find are passed to the xargs command which takes these names and constructs a command line
of the form: grep -i fork <file.1>…<file.n>. This command will search the files for the
occurrence of the string “fork”. The “-i” flag makes the search case insensitve.

More Commands

 kill - sends a signal to a process or
process group

 You can only kill your own processes
unless you are root

UID PID PPID C STIME TTY TIME CMD
root 6715 6692 2 14:34 ttyp0 00:00:00 sleep 10h
root 6716 6692 0 14:34 ttyp0 00:00:00 ps -ef
[root@penguinvm log]# kill 6715
[1]+ Terminated sleep 10h

More Commands

 make - helps you manage projects
containing a set of interdependent files
(e.g. a program with many source and
object files; a document built from source
files; macro files)

 make keeps all such files up to date with
one another: If one file changes, make
updates all the other files that depend on
the changed file

 Roughly the equivalent of VMFBLD

More Commands

 sed - applies a set of editing subcommands
contained in a script to each argument
input file

find ./ -name "*.c,v" | sed ’s/,v//g’ | xargs grep "PATH"

This finds all files in the current and subsequent directories with an extension of c,v.
sed then strips the ,v off the results of the find command. xargs then uses the results
of sed and builds a grep command which searches for occurrences of the word PATH in
the C source files.

More Commands

 tar - manipulates archives
An archive is a single file that contains the

complete contents of a set of other files; an
archive preserves the directory hierarchy
that contained the original files. Similary to a
VMARC file

tar -tzf imap-4.7.tar.gz
imap-4.7/
imap-4.7/src/
imap-4.7/src/c-client/
imap-4.7/src/c-client/env.h
imap-4.7/src/c-client/fs.h

Shells

 An interface between the Linux system
and the user

 Used to call commands and programs
 An interpreter
 Powerful programming language
 “Shell scripts” = .bat .cmd EXEC REXX

Many available (bsh; ksh; csh; bash; tcsh)

Another definition of a Shell

 A shell is any program that takes input
from the user, translates it into
instructions that the operating system can
understand, and conveys the operating
system's output back to the user.

 i.e. Any User Interface

 Character Based v Graphics Based

Why Do I Care About The
Shell?

 Shell is Not Integral Part of OS
 UNIX Among First to Separate

 Compare to MS-DOS, Mac, Win95, VM/CMS

 GUI is NOT Required

 Default Shell Can Be Configured
 chsh -s /bin/bash

 /etc/passwd

 Helps To Customize Environment

#!/bin/bash
while
true
do

cat somefile > /dev/null
echo .

done

Shell Scripts

/* */
do forever

‘PIPE < SOME FILE | hole’
say ‘.’

end

Switching Users

 su <accountname>
 switch user accounts. You will be prompted for a

password. When this command completes, you will
be logged into the new account. Type exit to return
to the previous account

 su
 Switch to the root user account. Do not do this lightly

 Note: The root user does not need to enter a password when
switching users. It may become any user desired. This is part of the
power of the root account.

Environment Variables

 Environment variables are global settings
that control the function of the shell and
other Linux programs. They are sometimes
referred to global shell variables.

 Setting:
VAR=/home/fred/doc
export TERM=ansi
SYSTEMNAME=`uname -n`

 Similar to GLOBALV SET … in CMS

Environment Variables

 Using Environment Variables:
 echo $VAR
 cd $VAR
 cd $HOME
 echo “You are running on $SYSTEMNAME”

Displaying - use the following commands:
set (displays local & env. Vars)
export

 Vars can be retrieved by a script or a program

Some Important
Environment Variables

 HOME
 Your home directory (often be abbreviated as “~”)

 TERM
 The type of terminal you are running (for example

vt100, xterm, and ansi)

 PWD
 Current working directory

 PATH
 List of directories to search for commands

PATH Environment Variable

 Controls where commands are found
PATH is a list of directory pathnames separated

by colons. For example:
PATH=/bin:/usr/bin:/usr/X11R6/bin:/u
sr/local/bin:/home/scully/bin

 If a command does not contain a slash, the shell
tries finding the command in each directory in
PATH. The first match is the command that will
run

PATH Environment Variable

 Similar to setting the CMS search order
 Usually set in /etc/profile (like the

SYSPROF EXEC)
Often modified in ~/.profile (like the

PROFILE EXEC)

File Permissions

 Every file
 Is owned by someone
Belongs to a group
Has certain access permissions for owner,

group, and others
Default permissions determined by umask

File Permissions

 Every user:
Has a uid (login name), gid (login group) and

membership of a "groups" list:
The uid is who you are (name and number)

The gid is your initial “login group” you normally
belong to

The groups list is the file groups you can access
via group permissions

File Permissions

 Linux provides three kinds of permissions:
Read - users with read permission may read

the file or list the directory
Write - users with write permission may write

to the file or new files to the directory
Execute - users with execute permission may

execute the file or lookup a specific file within
a directory

File Permissions

 The long version of a file listing (ls -l)
will display the file permissions:

-rwxrwxr-x 1 rvdheij rvdheij 5224 Dec 30 03:22 hello
-rw-rw-r-- 1 rvdheij rvdheij 221 Dec 30 03:59 hello.c
-rw-rw-r-- 1 rvdheij rvdheij 1514 Dec 30 03:59 hello.s
drwxrwxr-x 7 rvdheij rvdheij 1024 Dec 31 14:52 posixuft

Permissions

Owner

Group

Interpreting File Permissions

-rwxrwxrwx
Other permissions

Group permissions

Owner permissions

Directory flag (d=directory; l=link)

Changing File Permissions

 Use the chmod command to change file
permissions
The permissions are encoded as an octal

number

chmod 755 file # Owner=rwx Group=r-x Other=r-x
chmod 500 file2 # Owner=r-x Group=--- Other=---
chmod 644 file3 # Owner=rw- Group=r-- Other=r--

chmod +x file # Add execute permission to file for all
chmod o-r file # Remove read permission for others
chmod a+w file # Add write permission for everyone

Links?

 Links are references to files (aliases)
 Two forms:
Hard
Symbolic

Can point to files on different physical devices
Delete of original leaves link
Delete of link leaves original
Can be created for directories

 Create using ln command

Editors

 People are fanatical about their editor
 Several choices available:
vi Standard UNIX editor
the XEDIT-like editor
xedit X windows text editor
emacs Extensible, Customizable Self-

Documenting Display Editor
pico Simple display-oriented text editor
nedit X windows Motif text editor

Linux Device Handling

Devices are the way linux talks to the world
Devices are special files in the /dev

directory (try ls /dev)
/dev/ttyx TTY devices
/dev/hdb IDE hard drive
/dev/hdb1 Partition 1 on the IDE hard drive
/dev/mnda VM Minidisk
/dev/dda Channel Attached DASD
/dev/dda1 Partition 1 on DASD
/dev/null The null device (“hole”)
/dev/zero An endless stream of zeroes
/dev/mouse Link to mouse (not /390)

Devices and Drivers

 Each /dev file has a major and minor
number
Major defines the device type
Minor defines device within that type
Drivers register a device type

brw-r--r-- 1 root root 64, 0 Jun 1 1999 /dev/mnda
crw-r--r-- 1 root root 5, 0 Jan 5 09:18 /dev/tty

Major no. Minor no.
Device Type:
b - block
c - character

Special Files - /proc

 Information about internal Linux
processes are accessible to users via the
/proc file system (in memory)

/proc/cpuinfo CPU Information
/proc/interrupts Interrupt usage
/proc/version Kernel version
/proc/modules Active modules

cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 1
bogomips per cpu: 86.83
processor 0: version = FF, identification = 045226, machine = 9672

File Systems

 Linux supports many different types
Most commonly, ext2fs
 Filenames of 255 characters
 File sizes up to 2GB
Theoretical limit 4TB

Derived from extfs
Highly reliable and high performer

File Systems

 Other file systems:
 sysv - SCO/Xenix
 ufs - SunOS/BSD
 vfat - Win9x
 msdos - MS-DOS/Win
 umsdos - Linux/DOS
 ntfs - WinNT (r/o)
 hpfs - OS/2 (r/o)

 Other File systems:
 iso9660 (CD-ROM)
 nfs - NFS
 coda - NFS-like
 ncp - Novell
 smb - LANManager

etc

File Systems

 mount
Mounts a file system that lives on a device to

the main file tree
Start at Root file system

Mount to root
Mount to points currently mounted to root

/etc/fstab used to establish boot time
mounting

Virtual File System

 VFS is designed to present a consistent
view of data as stored on hardware

 Almost all hardware devices are
represented using a generic interface

 VFS goes further, allowing the sysadmin
to mount any of a set of logical file
systems on any physical device

Virtual File System

 Logical file systems promote compatibility
with other operating system standards
permitting developers to implement file
systems with different policies

 VFS abstracts details of physical device
and logical file system allowing processes
to access files using a common interface,
without knowing what physical or logical
system the file resides on

Virtual File System

 Analogous to CMS:
SFS
Minidisks

 Two different designs
 Common/transparent access

Processes

 Processes are created in a hierarchical structure whose
depth is limited only by the virtual memory available to
the virtual machine

 A process may control the execution of any of its
descendants by suspending or resuming it, altering its
relative priority, or even terminating it

 Termination of a process by default causes termination
of all its descendants; termination of the root process
causes termination of the session

 Linux assigns a process ID (PID) to the process

Processes

 Foreground
 When a command is executed from the prompt and

runs to completion at which time the prompt returns
is said to run in the foreground

 Background
 When a command is executed from the prompt with

the token “&” at the end of the command line, the
prompt immediately returns while the command
continues is said to run in the background

Processes

Daemons
Background processes for system

administration are referred to as “daemons”
These processes are usually started during

the boot process
The processes are not assigned any terminals
UID PID PPID C STIME TTY TIME CMD

root 5 1 0 1999 ? 00:00:14 [kswapd]
bin 254 1 0 1999 ? 00:00:00 [portmap]
root 307 1 0 1999 ? 00:00:23 syslogd -m 0
root 350 1 0 1999 ? 00:00:34 httpd

Processes

[root@penguinvm log]# sleep 10h &
[1] 6718
[root@penguinvm log]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 6718 6692 0 14:49 ttyp0 00:00:00 sleep 10h

& causes process to be run
in “background”

Job Number Process ID (ID) Parent Process ID

Processes - UID & GID

 Real UID
At process creation, the real UID identifies

the user who has created the process

 Real GID
At process creation, the real GID identifies

the current connect group of the user for
which the process was created

Processes - UID & GID

 Effective UID
 The effective UID is used to determine owner access

privileges of a process.
 Normally the same as the real UID. It is possible for a

program to have a special flag set that, when this
program is executed, changes the effective UID of
the process to the UID of the owner of the program.

 A program with this special flag set is said to be a
set-user-ID program (SUID). This feature provides
additional permissions to users while the SUID
program is being executed.

Processes - UID & GID

 Effective GID
 Each process also has an effective group
 The effective GID is used to determine group access

privileges of a process
 Normally the same as the real GID. A program can

have a special flag set that, when this program is
executed, changes the effective GID of the process to
the GID of the owner of this program

 A program with this special flag set is said to be a
set-group-ID program (SGID). Like the SUID feature,
this provides additional permission to users while the
set-group-ID program is being executed

Processes - Process Groups

 Each process belongs to a process group
 A process group is a collection of one or more processes
 Each process group has a unique process group ID
 It is possible to send a signal to every process in the

group just by sending the signal to the process group
leader

 Each time the shell creates a process to run an
application, the process is placed into a new process
group

 When an application spawns new processes, these are
members of the same process group as the parent

Processes - PID

 PID
A process ID is a unique identifier assigned to

a process while it runs
Each time you run a process, it has a

different PID (it takes a long time for a PID to
be reused by the system)

You can use the PID to track the status of a
process with the ps command or the jobs
command, or to end a process with the kill
command

Processes - PGID

 PGID
Each process in a process group shares a

process group ID (PGID), which is the same
as the PID of the first process in the process
group

This ID is used for signaling-related processes
 If a command starts just one process, its PID

and PGID are the same

Processes - PPID

 PPID
A process that creates a new process is called

a parent process; the new process is called a
child process

The parent process (PPID) becomes
associated with the new child process when it
is created

The PPID is not used for job control

Security Guidelines

 Take Care With Passwords
Use good ones (motherhood statement)

Don't Use Real Words

Make Sure They Are Not Easily Guessed

Use Combinations Of Upper and Lower Case,
Numbers, Punctuation

One Method: Take first letter of a sentence or
book title, insert numbers and punctuation.

Security Guidelines

 Take care of passwords (continued)
Use Shadow Passwords

Allows encrypted passwords to be in a file that is
not world readable

Use Password Aging
Requires shadow passwords

Security Guidelines

 Restrict Superuser Access
Restrict where root can log in from

/etc/securetty restricts root access to devices
listed

Use wheel group to restrict who can su to
root
Put users who can su to root in wheel group in
/etc/group file.

Security Guidelines

 Use groups to allow access to files that
must be shared
Otherwise users will set world permission

 Be careful with SUID and SGID
Avoid setting executables to SUID root
Wrap SUID root wrapper around programs if

they must be run SUID root
Create special accounts for programs that

must run with higher permissions

Security - Important Files

/etc/passwd - password file
/etc/shpasswd - shadow password file
/etc/group -lists groups and users contained in groups
/etc/services - lists network services and their ports
/etc/ftpusers - contains list of accounts that cannot use ftp
/etc/hosts.equiv - generic list of remote users
~/.rhosts - list of remote users for a specific account
/etc/hosts - host definition list
/etc/hosts.lpd - hosts who can use remote printing
/etc/hosts.allow - lists services that remote users are allowed to use
/etc/hosts.deny - lists services tthat remote users are not allowed to use
/etc/nologin - no login message that also disables logins
/etc/securetty - lists legal terminals for root to login from
/etc/exports - lists locations that can be remotely accessed via NFS
/etc/syslog.conf - configures the syslog facility
/etc/inetd.conf - configures inetd

Linux/390 Specifics

An ASCII implementation
Adds a layer of abstraction to I/O
Channel based v IRQ based

Support for ECKD using SSCH
Support for VM minidisks (ECKD, CKD,

FBA, VDISK)

Linux/390 Specifics

 Runs natively, in LPAR, or under VM/ESA
 Uses relative instructions: G2, P/390,

R/390 or better
Will use hardware IEEE FP or will emulate
Network drivers for CTCA/ESCON, OSA-2,

and IUCV (VM only)
 3215 emulation for virtual console
Hardware console driver (HMC)

Linux/390 Specifics

GNU tools ported
C/C++ compiler (gcc-2.95.1)
Assembler and linker (binutils-2.9.1)

 Packages “ported”:
Regina; THE; UFT; X11; OpenLDAP; IMAP;

Sendmail; Bind; RPM; Samba 2.0.6; Apache;
Perl

Linux in the Business
World

Issues and observations

Linux’s place in the market

 The business world is interested in:
Efficiency and effectiveness
Networked economy
Network-based businesses

Linux’s place in the market

 The world is heterogeneous
90% of Fortune 1000 companies use 3 or more

Operating Systems

 The demands of e-business
 Integrates with existing investments
Supports any client
Applications built/deployed independent of client
24 x 7

Linux’s place in the market

 Importance of the application model
Server-centric and based on standards that

span multiple platforms
 Leverage core business systems and scale to

meet unpredictable demands
Quick to deploy, easy to use and manage

Linux’s place in the market

 ISVs which have made Linux
announcements:
BEA; Novell; SAP; Informix; Oracle, IBM; HP;

CA; ApplixWare; Star; Corel; Cygnus;
MetroWerks; ObjectShare; Inprise

Media spotlight:
CNN; PCWorld; PCWeek; InternetWeek

Linux’s place in the market

 Early commercial users
Cendant Corporation - 4000 hotels
Burlington Coat Factory - back office functions
Northwest Airlines - 23 flight simulators

 Intel announcement January 5 2000
New web appliances to run Linux
At the insistence of customers (e.g. NEC)

Linux’s place in the market

 Impacts:
 Applications:

 Webservers (65%)
 WebInfrastructure (mail, DNS) (15%)
 File/Print (15%)
 DB & DB Applications (2%)

 Observations
 Linux/Apache share of Web serving high
 Autonomous departments
 Many SMB and small ISP
 CIOs discovering they have Linux running somewhere
 Strong mindshare among developers

Linux’s place in the market

 Linux’s appeal
Embraces new generation of web-based apps
Player in the heterogeneous e-business world
Provides flexibility and choice of environment
Open Source focuses on open standards

Linux’s place in the market

 Challenges for growth
Products/Technologies/Offerings

Support services
ISV applications
Service providers

Trends
Movement to mainstream
Standards
Ease of use

IBM’s focus on Linux

Services Support offering; Curriculum

Software Porting all key products to Linux

Hardware Intel; RS/6000; S/390

Alliances Partner with Caldera; Redhat;
SuSe

Open Source Support standards & contribute to
bodies

IBM Software Announcements

DB2 Universal Database
 Transarc AFS (distributed file system)
On Demand Server
 Lotus Domino R5
WebSphere
 Tivoli

Linux’s place in the market

 Summary
 Linux is viable in many key application areas
 Linux has moved from small technical

projects to significant deployment
 IBM claims to be fully supportive of Linux

Part of their heterogeneous strategy
Open source supporter
Hardware, software, and service offerings

Linux

Available Commercial
Software

Website Development

 ASWedit, HTML editor
 Empress DataWEB
 EZ-EDIT
 LinkScan
 TalentSoft Web+

(WebPlus)

 VirtuFlex 1.1
 Visual prolog
 Web Crossing
 ThreadTrack

WebTailor from
Webthreads.

Databases

 c-tree Plus
 Empress
 Essentia
 FairCom Server
 INFORMIX-SE
 Just Logic/SQL
 KE Texpress

 Qddb
 Raima Database

Manager++
 Empress Embedded

RDBMS
 SOLID Server
 Velocis Database Server
 Yard SQL

Data Visualization and CAD

 IDL (Interactive Data Language)
Megahedron
 Tecplot 7.0
 VariCAD
 VARKON
 XVScan

Development Tools

 ACUCOBOL-GT
 Amzi! Prolog & Logic

Server
 Basmark QuickBASIC
 Critical Mass CM3
 Dynace
 Absoft Fortran 77

 Finesse
 ISE Eiffel
 EiffelBench
 C-Forge IDE
 IdeaFix
 j-tree
 KAI C++
 Khoros Pro 2.1

Development Tools

 MetaCard
 ObjectManual Rel 3.0
 Critical Mass Reactor
 Resource Standard

Metrics
 r-tree
 sdoc (Source

Documenter)

 SEDIT, S/REXX
 SNiFF+
 ST/X (Smalltalk/X)
 tdb (Tcl Debugger)
 tprof (Tcl Profiler)
 View Designer/X (VDX)
 XBasic
 XMove 4.0 for Linux

Emulation Tools

 Emulus
 Executor 2
Wabi 2.2 for OpenLinux

Financial Software

 BB Stock Pro and BB Stock Tool
 TimeClock

Libraries

 FontScope
 INTERACTER
Matrix<LIB> - C++ Math Matrix Library
 PKWARE Data Compression Library for

Linux
 readyBase
 SIMLIB IG

Mathematics

Maple V Release 4 - The Power Edition
MATCOM and MATCOM MATH LIBRARY
Mathematica 3.0
MATLAB and Simulink

Multimedia

 Peter Lipa and his Journeys
 Lucka Vondrackova and her Journeys
MpegTV Player 1.0
 Peter Nagy and his Journeys
 Xaudio

Network Servers

 Critical Angle X.500 Enabler
DNEWS News Server
 Aventail Internet Policy Manager
 Aventail VPN
WANPIPE
 Zeus Web Server

Office Tools

 Corel WordPerfect 8
 The American Heritage

Dictionary Deluxe
 Applixware Office Suite
 D.M.S. Document

Management System
 HotWire EasyFAX
 NExS, the Network

Extensible Spreadsheet

 Axene Office
 Projector and

Projector/Net
 The Virtual Office

System
 Axene XAllWrite
 Axene Xclamation
 Axene XQuad

Text Processing

 Edith Pro for X11
 TeraSpell 97 for Emacs

System Administration

Host Factory
 PerfectBACKUP+
 Venus

X Windows Related

 Accelerated-X Display
Server

 BXwidgets
 BXwidgets/DB
 Laptop, Accelerated-X

Display Server

 MaXimum cde
Developer's Edition
v1.0

 Multi-headed,
Accelerated-X Display
Server

 OpenGL, Accelerated-X
Display Server

 OSF-Certified Motif

Other Software

 ABACUS 4
 BBBS
 Clustor
 FootPrints
 Aladdin Ghostscript

 Magician
 journyx WebTime
 LanSafe
 LjetMgr
 Synchronize/CyberSch

eduler

Additional Resources

 UNIX Systems Administrator Resources
 http://www.ugu.com/

 Linux/390 Observations and Notes
 http://penguinvm.princeton.edu

 Introduction to Linux
 Introduction to UNIX
 Linux/390 Installation
 Linux Administration Made Easy

 http://www.linuxninja.com/linux-admin/book1.html

 Conceptual software architecture of the Linux kernel

Additional Resources

 http://www.linux.org
 http://www.tux.org
 http://www.li.org

11/9/2024 3:57 PM

Linux introduction

Dinesh Gupta
 ICGEB, India

11/9/2024 3:57 PM

The Linux operating system (OS) was first
coded by a Finnish computer programmer
called Linus Benedict Torvalds in 1991,
when he was just 21! He had got a new
386, and he found the existing DOS and
UNIX too expensive and inadequate.

In those days, a UNIX-like tiny, free OS called Minix was
extensively used for academic purposes. Since its source code
was available, Linus decided to take Minix as a model.

Linux

11/9/2024 3:57 PM

11/9/2024 3:57 PM

11/9/2024 3:57 PM

Linux directories
• /bin System binaries, including the command shell

• /boot Boot-up routines

• /dev Device files for all your peripherals

• /etc System configuration files

• /home User directories

• /lib Shared libraries and modules

• /lost+found Lost-cluster files, recovered from a disk-check

• /mnt Mounted file-systems

• /opt Optional software

•/proc Kernel-processes pseudo file-system

• /root Administrator’s home directory

• /sbin System administration binaries

•/usr User-oriented software

/

bin

boot

dev

etc

home

lib

lost+found

misc

mnt

opt

proc

root

sbin

tmp

usr

11/9/2024 3:57 PM

Why use Linux
• A Linux distribution has software worth thousands of dollars, for
virtually no cost

• Linux operating system is reliable, stable, and very powerful

• Linux comes with a complete development environment, including
compilers, toolkits, and scripting languages

• Linux comes with networking facilities, allowing you to share hardware

• Linux utilizes your memory, CPU, and other hardware to the fullest

• A wide variety of commercial software is also available

• Linux is very easily upgradeable

• Supports multiple processors as standard

• True multitasking. So many apps, all at once

• The GUIs are more powerful than Mac!

11/9/2024 3:57 PM

Why Linux in
Bioinformatics ?
 One definition of bioinformatics is "the use of computers to

analyze biological problems.”

 As biological data sets have grown larger and biological
problems have become more complex, the requirements

for computing power have also grown.

 Computers that can provide this power generally use the
Unix operating system - so you must learn Unix

 Linux/UNIX has powerful text processing tools which are
highly suited to working with sequence data

 While many bioinformatics tools have Web interfaces,
many more are available via the UNIX command line

11/9/2024 3:57 PM

 Linux/Unix is very stable - computers running
Linux/Unix almost never crash

 Linux/Unix is very efficient
 it gets maximum number crunching power out of your

processor (and multiple processors)

 it can smoothly manage extremely huge amounts of data

 it can give a new life to otherwise obsolete Macs and PCs

 Most new bioinformatics software is created
for Unix - its easy for the programmers

11/9/2024 3:57 PM

Few free Bioinformatics
SW for Linux

 Linux operating system, mySYQL database

 Perl - programming language

 Blast and Fasta - similarity search

 Clustal - multiple alignment

 Phylip - phylogenetics

 Phred/Phrap/Consed - sequence assembly
and SNP detection

 EMBOSS - a complete sequence analysis
package created by the EMBL

11/9/2024 3:57 PM

Linux Basics

 Freely Downloadable from websites
 Available as sets of CDs
 Installation is very simple
 After installation you can create logins for

different users
 Each user may login by his/her own login

and passwd – own login area
 Upon login, default directory is home

directory of the user

11/9/2024 3:57 PM

Linux basics..

 Linux/Unix is case sensitive i.e. WHO is
not same as who

 Unix shell is a command program to
communicate with a computer

 Shell interprets the command that you
enter on keyboards

 Shell commands can be used to automate
various programming tasks

11/9/2024 3:57 PM

Linux commands

 Usually short and cryptic like
 vi or rm

 Commands may also have modifiers for
advance options like:
 “ls –l” and “mv –R” are different that “ls” or

“mv” respectively

11/9/2024 3:57 PM

Wildcards
 You can substitute the * as a wildcard symbol

for any number of characters in any filename.

 If you type just * after a command, it stands for
all files in the current directory:

lpr * will print all files

 You can mix the * with other characters to form
a search pattern:

ls a*.txt will list all files that start with “a”
and end in “.txt”

 The “?” wildcard stands for any single character:
cp draft?.doc will copy draft1.doc, draft2.doc,

draftb.doc, etc.

11/9/2024 3:58 PM

Control characters
 You type Control characters by holding down

the ‘control’ key while also pressing the
specified character.

 While you are typing a command:
 ctrl-W erases the previous word

 ctrl-U erases the whole command line

 Control commands that work (almost) any time
 ctrl-S suspends (halts) output scrolling up on your terminal

screen

 ctrl-Q resumes the display of output on your screen

 ctrl-C will abort any program

11/9/2024 3:58 PM

Help on command line

man : Type man and the name of a
command to read the manual page for
that command. e.g. “man ls”

 apropos: gives a list of commands that
contain a given keyword in their man
page header: e.g. “apropos ls”

11/9/2024 3:58 PM

Some important
commands in Linux

• ls, Give a listing of the current directory. Try also ls -l

• cp, Copy file from source to destination

• mv, Move file from source to destination. If both are the same directory,
the file is renamed

• vi, Edit a file. vi is one of the most powerful text editors

•chmod, Change file permissions

•mkdir, rmdir Make/Remove a directory

•cd, Change directory

•rm, Remove a file. Can also remove directory tree

• man ls, Get help for ls. All commands have help

11/9/2024 3:58 PM

Networking
 telnet

 Log into a remote host machine.
 rlogin

 Almost the same as telnet, but uses a different protocol.
 ping

 See if a remote host is up.
 ftp

 Transfer files using the File Transfer Protocol.
 netscape

 Run the Netscape web browser.
 trn

 Read Internet News.
 pine

 Read your mail using a full-screen display.
 mail

 Read your mail using an ancient command-line program.
 who

 See who else is logged in.
 talk

 Talk to someone else who is current logged in.
 lp

 Send a file or set of files to a printer.

11/9/2024 3:58 PM

Manipulating Files
 cat

 Concatenate program. Can be used to concatenate multiple files together into a single file, or, much more frequently, to send the contents of a file to the
terminal for viewing.

 more
 Scroll through a file page by page. Very useful when viewing large files. Works even with files that are too big to be opened by a text editor.

 less
 A version of more with more features.

 head
 View the head (top) of a file. You can control how many lines to view.

 tail
 View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to view a growing file.

 wc
 Count words, lines and/or characters in one or more files.

 tr
 Substitute one character for another. Also useful for deleting characters.

 sort
 Sort the lines in a file alphabetically or numerically.

 uniq
 Remove duplicated lines in a file.

 cut
 Remove sections from each line of a file or files.

 fold
 Wrap each input line to fit in a specified width.

 grep
 Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that don't match the specified pattern.

 gzip (gunzip)
 Compress (uncompress) a file.

 tar
 Archive or unarchive an entire directory into a single file.

 pico
 Run the pico text editor (good for beginners).

 emacs
 Run the Emacs text editor (good for experts).

11/9/2024 3:58 PM

Text Editors Available on
Linux Systems

 vi
 Non-graphical (terminal-based) editor. Guaranteed to be available on any

system. Requires knowledge of arcane keystroke commands. Distinctly
unfriendly to novices.

 emacs
 Window-based editor. Primitive menus make it slightly more friendly to novices.

Still need to know keystroke commands to use. Installed on all Linux
distributions and on most other Unix systems.

 xemacs
 More sophisticated version of emacs, but usually not installed by default. All

common commands are available from menus; however the user interface is still
confusing at first. Very powerful editor, with built-in syntax checking, Web-
browsing, news-reading, manual-page browsing, etc.

 pico
 Simple terminal-based editor available on most versions of Unix. Uses keystroke

commands, but they are listed in logical fashion at bottom of screen.

11/9/2024 3:58 PM

Computers in the facility

Dual boot PCs
Windows and Linux both
 Logins
 Login: workshop
Passwd: whotdr05

 You may change your passwd using the
command called “passwd”

 Start practicing !

Click to add Text

Apache : Installation,
Configuration, Basic Security

Dr. M. Durairaj
Bharathidasan University

Outline

 Introduction
 Why Apache ?
 Installation
 Configuration
 Running Apache
 Basic Security

Introduction

 A basic web server works as follows :
 It is a program that runs on a host computer .
 It waits for a request from web browser/client

for objects it has in its possession
 Upon receiving the request (GET command from

client), it retrieves the requested information
and sends it to the client. The objects it can
serve include HTML documents, plain text,
images, sounds, video and other data.

Introduction

 Apache is the most popular web server
on the internet, running approximately
60% of all web servers.

 This is the default web server on Red
Hat, SuSE, and Debian systems and is
well known in industry for its flexibility
and performance.

Introduction

 Installing and maintaining is easy and
ranks far below email and DNS in
complexity & difficulty of administration.

 Its free and open source and full source
code is available from Apache group
site at www.apache.org .

Why Apache ?

 Apache’s popularity is due to :
 Apache is highly configurable .
 It is extensible (for e.g. mod_perl and

mod_php3 can be added) .
 Supports virtual hosts or multi homed

servers .
 It is free and open source .

Installation

 Apache is included with most Linux
distributions. On a machine installed with
recent version of Linux, chances are Apache
is already installed and running.

 Processor status can be checked to see if its
running by using the command

machine1$ ps –ef | grep httpd

Installation

 If one wishes to download the source
code and compile it then,
 Execute the configure script included

with the distribution to detect type of
system used and set up appropriate
makefiles.

 use --prefix option to specify where in
ones directory tree the Apache server
should live.

Installation

 For example :
% ./configure --prefix=/etc/httpd

 Default modules can be used or some
features may be included or removed
by invoking -enable-module= and
-disable-module= options to
configure .

Installation

 Some modules like asis, autoindex, env may
be disabled for security reasons. A complete
list of modules can be viewed at
src/configuration file or

http://www.apache.org/docs/mod/index.html

 After executing configure run make and
make install to actually compile and install
the appropriate files .

Configuration

 All configuration files are in conf directory (
/etc/httpd/conf). The files that are to be
examined and customized are httpd.conf,
srm.conf and access.conf .

 httpd.conf is used to set the TCP port
(usually port 80), location of log files, and
various network and performance parameters

Configuration

 srm.conf file defines the root of the
directory tree in which servable
documents are located .

 access.conf file manages security
concerns. This file contains directives
that control access on a per-file or per-
directory basis .

Running Apache

 Apache can be started from machine’s
rc scripts or initiated by hand with

% /usr/sbin/httpd –f /etc/httpd/conf/httpd.conf

 It can be started automatically at boot
time by making a link in rc directory
that points to /etc/init.d/httpd .

Security

 Modifying the Default Header :
 A hacker can exploit a web server by the

information it sends in its header (version,
machine type, its built-up etc) .

 Its always better to modify the default
header by changing the lines that reveals
this information in src/include/httpd.h
file .

Security

 Upgrading old software when necessary.
 Protecting Web Data with IP Restrictions :

 Apache can be configured to allow restricted IP
addresses only.

 This can be done by adding following lines in
.htaccess :

Order Deny, Allow

Deny from All
Allow from 192.168.1.100
Allow from 192.168.1.101

Security

 Using HTTP Authentication :
 HTTP user authentication restricts access

to a particular directory and subdirectories
of the web server .

 A browser implements authentication by
prompting a dialog box for the user to type
his username/password.

Security

 Using Secure HTTP Connections :
 The Secure Socket Layer (SSL) should be

used to minimize the likelihood that a
hacker can snoop a username/password.

 SSL not only encrypts the data before it is
transferred to the web site, but also it
decrypts the data received from the web
site, thus securing the data transfers.

Questions ???

D R . M . D U R A I R A J

B H A R A T H I D A S A N U N I V E R S I T Y

Unit 4: Manipulating MY
SQL Database

Introduction

 Many of the applications that a Web developer wants to use can be made
easier by the use of a standardized database to store, organize, and access
information.

 MySQL is an Open Source (GPL) Standard Query Language (SQL) database
that is fast, reliable, easy to use, and suitable for applications of any size.

 SQL is the ANSI-standard database query language used by most databases
(though all have their nonstandard extensions).

 MySQL can easily be integrated into Perl programs by using the Perl DBI
(DataBase Independent interface) module.

 DBI is an Application Program Interface (API) that allows Perl to connect
to and query a number of SQL databases (among them MySQL, mSQL,
PostgreSQL, Oracle, Sybase, and Informix).

Tutorial

 Following the Swiss Army knife theory (20 percent of the functions give you 80 percent of the utility),
a few SQL commands go a long way to facilitate learning MySQL/Perl/DBI.

 To illustrate these, we create a simple database containing information about some (fictional) people.
Eventually, we'll show how to enter this information from a form on the Web, but for now we interface
with SQL directly.

 First, try to make a connection to our MySQL server as the root MySQL user:

 $ mysql -u root

 The MySQL root user is different from the Linux root user.

 The MySQL root user is used to administer the MySQL server only.

 If you see the following output:

ERROR 2002: Can't connect to local MySQL server through socket ´/var/lib/mysql/mysql.sock´(2)

 it likely means the MySQL server is not running.

 If your system is set up securely, it shouldn't be running, because you had no reason,
before now, for it to be running.

 Use chkconfig as root to make sure it starts the next time the machine boots, and then
start it by hand as follows:

chkconfig mysqld on

/etc/init.d/mysqld start

 Now you should be able to connect (not logged in as the Linux root user):

$ mysql -u root

 If not, see the MySQL log file at /var/log/mysqld.log.

 If so, you'll see a welcome message and the MySQL prompt:

Welcome to the MySQL monitor.

Commands end with ; or \g.

 Your MySQL connection id is 3 to server version: 3.23.36

Type ´help;´ or ´\h´ for help. Type ´\c´ to clear the buffer

mysql>

 As suggested, enter help; at the prompt.

 A list of MySQL commands (not to be confused with SQL
commands) will be displayed.

 These allow you to work with the MySQL server.

 For grins, enter status; to see the status of the server.

 To illustrate these commands, we will create a database called
people that contains information about people and their ages.

 First, we need to create the new database.

 Check the current databases to make sure a database of that name doesn't already exist; then create
the new one, and verify the existence of the new database:

mysql> SHOW DATABASES;

+----------+

| Database |

+----------+

| mysql |

| test |

+----------+

2 rows in set (0.00 sec)

mysql> CREATE DATABASE people;

Query OK, 1 row affected (0.00 sec)

mysql> SHOW DATABASES;

+----------+

| Database |

+----------+

| mysql |

| people |

| test |

+----------+

3 rows in set (0.00 sec)

 SQL commands and subcommands (in the previous example, CREATE is a command; DATABASE is
its subcommand) are case-insensitive.

 The name of the database (and table and field) are case sensitive.

 It's a matter of style whether one uses uppercase or lowercase, but traditionally the SQL commands
are distinguished by uppercase.

 One way to think of a database is as a container for related tables.

 A table is a collection of rows, each row holding data for one record, each record containing chunks of
information called fields.

The USE Command

 Before anything can be done with the newly created
database, MySQL has to connect to it.

 That's done with the USE command:

 mysql> USE people;

The CREATE TABLE and SHOW TABLES Commands

 Each table within the database must be defined and created.

 This is done with the CREATE TABLE command.

 Create a table named age_information to contain an individual's first name, last name, and age.

 MySQL needs to know what kind of data can be stored in these fields.

 In this case, the first name and the last name are character strings of up to 20 characters each, and the age is
an integer:

mysql> CREATE TABLE age_information (

-> lastname CHAR(20),

-> firstname CHAR(20),

-> age INT

->);

Query OK, 0 rows affected (0.00 sec)

 It appears that the table was created properly (it says OK after all), but this can be checked by executing the
SHOW TABLES command.

 If an error is made, the table can be removed with DROP TABLE.

 When a database in MySQL is created, a directory is
created with the same name as the database (people, in
this example):

ls -l /var/lib/mysql
total 3
drwx------ 2 mysql mysql 1024 Dec 12 15:28 mysql
srwxrwxrwx 1 mysql mysql 0 Dec 13 07:19 mysql.sock
drwx------ 2 mysql mysql 1024 Dec 13 07:24 people
drwx------ 2 mysql mysql 1024 Dec 12 15:28 test

 Within that directory, each table is implemented with three files:

ls -l /var/lib/mysql/people

total 10

-rw-rw---- 1 mysql mysql 8618 Dec 13 07:24 age_information.frm

-rw-rw---- 1 mysql mysql 0 Dec 13 07:24 age_information.MYD

-rw-rw---- 1 mysql mysql 1024 Dec 13 07:24 age_information.MYI

mysql> SHOW TABLES;

+------------------+

| Tables_in_people |

+------------------+

| age_information |

+------------------+

1 row in set (0.00 sec)

 This example shows two MySQL datatypes: character strings and integers. Other MySQL data types
include several types of integers

MySQL's data types
 TINYINT -128 to 127 (signed) or 0 to 255 (unsigned)

 SMALLINT -32768 to 32767 (signed) or 0 to 65535 (unsigned)

 MEDIUMINT -8388608 to 8388607 (signed) or 0 to 16777215 (unsigned)

 INTEGER (same as INT) -2147483648 to 2147483647 (signed) or 0 to 4294967295 (unsigned)

 BIGINT -9223372036854775808 to 9223372036854775807 (signed) or 0 to 18446744073709551615 (unsigned)

 Floating points:

 FLOAT

 DOUBLE

 REAL (same as DOUBLE)

 DECIMAL

 NUMERIC (same as DECIMAL)

 There are several data types to represent a date:

 DATE YYYY-MM-DD

 DATETIME YYYY-MM-DD HH:MM:SS

 TIMESTAMP YYYYMMDDHHMMSS or YYMMDDHHMMSS or YYYYMMDD or YYMMDD

 TIME HH:MM:SS

 YEAR YYYY or YY

 The table age_information used the CHAR character data type.

 The following are the other character data types.

 Several havBe LOB in their name— a BLOB is a Binary Large OBject that can hold a variable amount of data.

 The types withT EXT in their name are just like their corresponding BLOBs except when matching is involved:

 The BLOBs are case-sensitive, and the TEXTs are case-insensitive.

 VARCHAR variable-length string up to 255 characters

 TINYBLOB maximum length 255 characters

 BLOB maximum length 65535 characters

 TINYTEXT

 TEXT

 MEDIUMBLOB maximum length 16777215 characters

 MEDIUMTEXT

 LONGBLOB maximum length 4294967295 characters

 LONGTEXT

The SELECT Command

 SELECT selects records from the database.

 When this command is executed from the command line, MySQL prints all the records that match the query.

 The simplest use of SELECT is shown in this example:

mysql> SELECT * FROM age_information

mysql> INSERT INTO age_information

-> (lastname, firstname, age)

-> VALUES (´Torvalds´, ´Linus´, 31);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO age_information

-> (lastname, firstname, age)

-> VALUES (´Raymond´, ´Eric´, 40);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM age_information;

 mysql> SELECT * FROM age_information

-> ORDER BY lastname;

 mysql> SELECT lastname FROM age_information

-> ORDER BY lastname;

 mysql> SELECT age FROM age_information ORDER BY age DESC;

 mysql> SELECT lastname FROM age_information WHERE age > 35;

 mysql> SELECT lastname FROM age_information

-> WHERE age > 35 ORDER BY lastname;

The UPDATE Command
 mysql> SELECT * FROM age_information;

+----------+-----------+------+

| lastname | firstname | age |

+----------+-----------+------+

| Wall | Larry | 46 |

| Torvalds | Linus | 31 |

| Raymond | Eric | 40 |

+----------+-----------+------+

3 rows in set (0.00 sec)

 mysql> UPDATE age_information SET age = 47

 -> WHERE lastname = ´Wall´;

 Query OK, 1 row affected (0.00 sec)

 Rows matched: 1 Changed: 1 Warnings: 0

 mysql> SELECT * FROM age_information;

+----------+-----------+------+

| lastname | firstname | age |

+----------+-----------+------+

| Wall | Larry | 47 |

| Torvalds | Linus | 31 |

| Raymond | Eric | 40 |

+----------+-----------+------+

3 rows in set (0.00 sec)

The DELETE Command
 mysql> DELETE FROM age_information WHERE lastname = ´Raymond´;
Query OK, 1 row affected (0.00 sec)
 mysql> SELECT * FROM age_information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
| Wall | Larry | 48 |
| Torvalds | Linus | 31 |
+----------+-----------+------+
2 rows in set (0.00 sec)
 Eric is in good company here, so put him back:
 mysql> INSERT INTO age_information
 -> (lastname, firstname, age)
 -> VALUES (´Raymond´, ́ Eric´, 40);
Query OK, 1 row affected (0.00 sec)
 mysql> SELECT * FROM age_information;
+----------+-----------+------+
| lastname | firstname | age |
+----------+-----------+------+
Wall	Larry	48
Torvalds	Linus	31
Raymond	Eric	40
+----------+-----------+------+
3 rows in set (0.00 sec)

Managing data

Dr. M. Durairaj
Associate Professor
School of Computer Science, Engineering and
Applications
Bharathidasan University

Building Data Dynamic Web Sites

 Truly dynamic web sites
 Content changes over time

 Content customised for individual user

 Content automatically generated

 Content Programmatically generated
 Can be File system based

 HTML and Images stored on File System
 Gets hard to manage over time

 Database based
 HTML, Images etc all generated from database

 Easier to manage

 If data is too large, can overload the database

Database

• Structured collection of data.

• Tables

• Fields

• Query

• Reports

• Essentially a much more sophisticated
implementation of the flat files.

Relational Database

• Stores data in separate tables instead of a
single store.

• Relationships between tables are set

• In theory, this provides a faster, more flexible
database system.

Example

• We wish to maintain a database of student names, IDs, addresses,

and any other information.

• Will be updated frequently with new names and information.

• Will want to retrieve data based on some predicate.

• e.g, ‘give me the names of all Massey students who live in

Albany’.

• Will want to update database with new information about students,

not previously recorded.

• e.g., may decide we want to include IRD nos.

• Very difficult to manage using ‘flat file’ systems

Databases

 Fast, Efficient back end storage

 Easier to manage than file system based approach

 Relational Database structure

 Well developed theory and practise

 Multi-user capable

 Multithreaded, multiprocessor, sometimes cluster
based systems

 Standards based queries

 Structured Query Language (SQL)

MySQL Database

 world's most popular open source database

because of its consistent fast performance, high

reliability and ease of use

 Open Source License:- free

 GNU General Public License

 Free to modify and distribute but all modification must

be available in source code format

 Commercial:- not free

 Fully paid up professional support

• used by Google, Facebook Nokia, YouTube,

Yahoo!, Alcatel-Lucent, Zappos.com, etc.

Basic Database Server Concepts

 Database runs as a server

 Attaches to either a default port or an administrator
specified port

 Clients connect to database

 For secure systems

 authenticated connections

 usernames and passwords

 Clients make queries on the database

 Retrieve content

 Insert content

 SQL (Structured Query Language) is the language used
to insert and retrieve content

Database Management System

• Manages the storage and retrieval of data to
and from the database and hides the
complexity of what is actually going on from
the user.

Database User
Database

Management
Ssytem

• MySQL is a relational database management
system

Client: makes a request

Client (browser)

Web
browser

os
Web server

os

Server

Internet

requests an Internet resource
by
specifying a URL and
providing input via HTTP
encoded strings

Network Core

GET hello.php HTTP/1.1
Host: www.massey.ac.nz:80

Client

Web
browser

Web server

HTML

Server

MySQL

Operating System

PHP
interpreter

Internet

My codes

HTTP

TCP/IP

• Webserver supports HTTP.

Server: responds

Client

Web
browser

Web server

HTML

Server

MySQL

Operating System

PHP
interpreter

Internet

My codes

HTTP

TCP/IP

Server: responds

Internet

Operating System

MySQL server could be
anywhere in the world

• MySQL can be controlled through a simple
command-line interface; however, we can use
phpMyAdmin as an interface to MySQL.

• phpMyAdmin is a very powerful tool; it
provides a large number of facilities for
customising a database management system.

Client

Web
browser

Web server

HTML

Server

MySQL

Operating System

PHP
interpreter

Internet

My codes

HTTP

TCP/IP

• Webserver supports HTTP.

Server: responds

phpMyA
dmin

• A Quick Tour

Table: Customers (data)

Table: Products (data)

Table: Purchases (data)

Table: PurchaseProducts (data)

Database Design

In MySQL there are three main types :
• text
• number
• Date/Time.

CHAR(size) Holds a fixed length string (can contain letters, numbers, and special
characters). The fixed size is specified in parenthesis. Can store up to
255 characters

VARCHAR(size) Holds a variable length string (can contain letters, numbers, and special
characters). The maximum size is specified in parenthesis. Can store up
to 255 characters. Note: If you put a greater value than 255 it will be
converted to a TEXT type

TINYTEXT Holds a string with a maximum length of 255 characters
TEXT Holds a string with a maximum length of 65,535 characters
MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters
LONGTEXT Holds a string with a maximum length of 4,294,967,295 characters
ENUM(x,y,z,etc.) Let you enter a list of possible values. You can list up to 65535 values in

an ENUM list. If a value is inserted that is not in the list, a blank value will
be inserted.Note: The values are sorted in the order you enter them.
You enter the possible values in this format: ENUM('X','Y','Z')

http://www.w3schools.com/sql/sql_datatypes.asp

TINYINT(size) -128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits
may be specified in parenthesis

SMALLINT(size) -32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number
of digits may be specified in parenthesis

MEDIUMINT(size) -8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum
number of digits may be specified in parenthesis

INT(size) -2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The
maximum number of digits may be specified in parenthesis

BIGINT(size) -9223372036854775808 to 9223372036854775807 normal. 0 to
18446744073709551615 UNSIGNED*. The maximum number of digits may
be specified in parenthesis

FLOAT(size,d) A small number with a floating decimal point. The maximum number of
digits may be specified in the size parameter. The maximum number of
digits to the right of the decimal point is specified in the d parameter

DOUBLE(size,d) A large number with a floating decimal point. The maximum number of
digits may be specified in the size parameter. The maximum number of
digits to the right of the decimal point is specified in the d parameter

DECIMAL(size,d) A DOUBLE stored as a string , allowing for a fixed decimal point. The
maximum number of digits may be specified in the size parameter. The
maximum number of digits to the right of the decimal point is specified in
the d parameter

http://www.w3schools.com/sql/sql_datatypes.asp

DATE() A date. Format: YYYY-MM-DDNote: The supported range is from '1000-01-
01' to '9999-12-31'

DATETIME() *A date and time combination. Format: YYYY-MM-DD HH:MM:SSNote: The
supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'

TIMESTAMP() *A timestamp. TIMESTAMP values are stored as the number of seconds since
the Unix epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD
HH:MM:SSNote: The supported range is from '1970-01-01 00:00:01' UTC to
'2038-01-09 03:14:07' UTC

TIME() A time. Format: HH:MM:SSNote: The supported range is from '-838:59:59' to
'838:59:59'

YEAR() A year in two-digit or four-digit format.Note: Values allowed in four-digit
format: 1901 to 2155. Values allowed in two-digit format: 70 to 69,
representing years from 1970 to 2069

http://www.w3schools.com/sql/sql_datatypes.asp

• A Quick Tour

Create Database

Create Table: Customers

Specify the Table’s Fields & Attributes:
Customers

Table Edit Screen: Customers

Table: Products

Table: Products

Insert Record: Customers

Table: Customers (data)

Insert Record: Products

Table: Products (data)

Edit Record

Export

Deleting a Table

Restoring a database from an SQL file

Database Design

Summary

• Concept of databases
• Tables and Fields
• Field Types
• phpMyAdmin Tool for manipulating databases
• Creation of a database
• How to add and edit records
• How to back-up a database
• Database Design

Connecting to a MySQL DBMS

• In order for our PHP script to access a database
we need to form a connection from the script
to the database management system.

resourceId = mysql_connect(server, username, password);

• Server is the DBMS server
• username is your username
• password is your password

Connecting to a MySQL DBMS

• In order for our PHP script to access a database
we need to form a connection from the script
to the database management system.

resourceId = mysql_connect(server, username, password);

• The function returns a resource-identifier type.
• a PHP script can connect to a DBMS anywhere in the world,
so long as it is connected to the internet.
• we can also connect to multiple DBMS at the same time.

Selecting a database

• Once connected to a DBMS, we can select a
database.

mysql_select_db(databasename, resourceId);

• the resourceId is the one returned by mysql_connect()
• the function returns true if the selection succeeded; false,
otherwise.

Example: Connect to a DBMS and
access database

<?php

$dbLocalhost = mysql_connect("localhost", "root", "")

or die("Could not connect: " . mysql_error());

mysql_select_db("glassesrus", $dbLocalhost)

or die("Could not find database: " . mysql_error());

echo "<h1>Connected To Database</h1>";

?>

• die() stops execution of script if the database connection
attempt failed.
• mysql_error() returns an error message from the previous
MYSQL operation.

Reading from a database

• We can now send an SQL query to the
database to retrieve some data records.

resourceRecords = mysql_query(query, resourceId);

• the resourceId is the one returned by mysql_connect()
• the function returns a resource identifier to the returned data.

Example: Connect to a DBMS, access
database, send query

<?php

$dbLocalhost = mysql_connect("localhost", "root", "")

or die("Could not connect: " . mysql_error());

mysql_select_db("glassesrus", $dbLocalhost)

or die("Could not find database: " . mysql_error());

$dbRecords = mysql_query("SELECT * FROM customers", $dbLocalhost)

or die("Problem reading table: " . mysql_error());

echo "<h1>Connected To Database</h1>";

?>

• the function will return a resource pointer (not the actual
data) to all the records that match the query.
• If all goes well, this script will output nothing on screen.

Extract contents of one record

• We can now extract the actual data from the
resource pointer returned by mysql_query().

fieldData= mysql_result(resourceRecords, row, field);

• the resourceRecords is the one returned by mysql_query()
• field – database field to return
• the function returns the data stored in the field.

Example: Connect to a DBMS, access
database, send query

<?php

$dbLocalhost = mysql_connect("localhost", "root", "")

or die("Could not connect: " . mysql_error());

mysql_select_db("glassesrus", $dbLocalhost)

or die("Could not find database: " . mysql_error());

$dbRecords = mysql_query("SELECT * FROM customers", $dbLocalhost)

or die("Problem reading table: " . mysql_error());

$strSurname = mysql_result($dbRecords, 0, "Surname");

echo "<p>$strSurname</p>";

?>

• the function will return a resource pointer (not the actual
data) to all the records that match the query.
• If all goes well, this script will output a surname on screen.

SQL statement

SELECT * FROM customers

• Go and obtain from the database
• every field
• FROM the
• customers table

Separating the database connection

It is worth separating the database connectivity
from our scripts and placing it in a separate
file.

•It provides a convenient means of moving your scripts from
one database platform to another.

Example: Separating the database
connection

<?php
// File: database2.php
$strLocation = "Home";
//$strLocation = "Work";
if ($strLocation == "Home") {

$dbLocalhost = mysql_connect("localhost", "root", "")
or die("Could not connect: " . mysql_error());

mysql_select_db("glassesrus", $dbLocalhost)
or die("Could not find database: " . mysql_error());

} else {
$dbLocalhost = mysql_connect("localhost", "username", "password")

or die("Could not connect: " . mysql_error());

mysql_select_db("anotherdatabase", $dbLocalhost)
or die("Could not find database: " . mysql_error());

}
?>

• $strLocation could be easily switched between ‘Home’ or ‘Work’

Viewing a whole record

To view the whole record returned from
mysql_query(), we need another function...

• resourceRecords – resource identifier returned from
mysql_query().
• it returns an array containing the database record.

array = mysql_fetch_row(resourceRecords)

Example: Displaying all customer
records

<?php

require_once("database2.php");

$dbRecords = mysql_query("SELECT * FROM customers", $dbLocalhost)
or die("Problem reading table: " . mysql_error());

while ($arrRecord = mysql_fetch_row($dbRecords)) {
echo "<p>" . $arrRecord[0] . " ";
echo $arrRecord[1] . " ";
echo $arrRecord[2] . " ";
echo $arrRecord[3] . "</p>";

}
?>

• The function returns false when the last record is returned; thus, stopping
the loop.

• Note, however, that the fields are referred to by using numbers – not very
easy to read and mistakes can be introduced.

Limiting the records returned

SELECT Surname FROM customers

•Retrieves only the Surname field from the table customers

Limiting the records returned

SELECT * FROM customers LIMIT 3,4

• Select a certain number of records form a table
• 3 is the starting row
• 4 is the number of records to be selected after the starting
row

Searching for matching records

SELECT * FROM customers WHERE Title=‘Mr’

•The WHERE attribute specifies what to search for within the
database records.
• in this example, only records which have a title of ‘Mr’ will be
returned.

Searching for matching records

SELECT * FROM customers WHERE Title=‘Mr’ OR
Title=‘Mrs’

•The WHERE attribute specifies what to search for within the
database records.
• in this example, only records which have a title of ‘Mr’ or
‘Mrs’ will be returned.
• we can also use AND and OR to formulate more
sophisticated conditions.
•

Searching for matching records

SELECT * FROM customers WHERE Title=‘Mr’ AND
Surname=‘Smith’ OR Title=‘Mrs’

•The WHERE attribute specifies what to search for within the
database records.
• in this example, only records which have a surname of ‘Smith
and title of ‘Mr’ or the title of ‘Mrs’ will be returned.
• we can also use AND and OR to formulate more
sophisticated conditions.
•

Sorting records

The ORDER BY attribute can be used to sort the order
in which records are obtained.

• the ORDER BY attribute is followed by the data field on
which to sort the record

• DESC or ASC – from high to low, or from low to high

SELECT * FROM cutomers ORDER BY Surname DESC

Example15-12.php

Accessing Multiple Tables

Example15-13.php

<?php
// File: example15-13.php

require_once("database2.php");

$dbRecords = mysql_query("SELECT * FROM customers WHERE Title = 'Mrs'", $dbLocalhost)
or die("Problem reading table: " . mysql_error());

echo "<p>Customers:</p>";
while ($arrRecords = mysql_fetch_array($dbRecords)) {

echo "<p>" . $arrRecords["Id"] . " ";
echo $arrRecords["Title"] . " ";
echo $arrRecords["Surname"] . " ";
echo $arrRecords["Firstname"] . "</p>";

}

//...continued...

Accessing Multiple Tables

Example15-13.php

//continuation...

$dbRecords = mysql_query("SELECT * FROM products WHERE Name = 'Wine Glass'",
$dbLocalhost)

or die("Problem reading table: " . mysql_error());

echo "<p>Products:</p>";
while ($arrRecords = mysql_fetch_array($dbRecords)) {

echo "<p>" . $arrRecords["Id"] . " ";
echo $arrRecords["Name"] . " ";
echo $arrRecords["Description"] . " ";
echo $arrRecords["Quantity"] . " ";
echo $arrRecords["Cost"] . "</p>";

}
?>

Using records to read another table

Read a customer record, and then show the products
purchased by that customer.

Tables

• Customers

• Products

• Purchases

• PurchaseProducts

Example15-14.php

Using records to read another table

Example15-14.php

...
$strSurname = "Jones";
$dbCustRecords = mysql_query("SELECT * FROM customers WHERE Surname = '$strSurname' ",...)
while ($arrCustRecords = mysql_fetch_array($dbCustRecords)) { //#1

$intId = $arrCustRecords["Id"];
//display customer’s details
$dbPurRecords = mysql_query("SELECT * FROM purchases WHERE customers_Id = '$intId'", ...)

while ($arrPurRecords = mysql_fetch_array($dbPurRecords)) {//#2
$intPurId = $arrPurRecords["Id"];
//display purchase date

$dbProRecords=mysql_query("SELECT * FROM purchaseProducts WHERE purchases_Id='$intPurId' ",..)
while ($arrProRecords = mysql_fetch_array($dbProRecords)) { //#3

$intProductId = $arrProRecords["products_Id"];
//display Quantity
$dbProductRecords = mysql_query("SELECT * FROM products WHERE Id = '$intProductId'",..)
$arrProductRecord = mysql_fetch_array($dbProductRecords);
//display product details

} #3
} #2

} //#1

BIRD’S EYEVIEW

Using records to read another table

Example15-14.php

<?php
require_once("database2.php");

$strSurname = "Jones";

$dbCustRecords = mysql_query("SELECT * FROM customers WHERE Surname = '$strSurname'
", $dbLocalhost)

or die("Problem reading table: " . mysql_error());

while ($arrCustRecords = mysql_fetch_array($dbCustRecords)) {
$intId = $arrCustRecords["Id"];
echo "<p>Customer: ";
echo $arrCustRecords["Title"] . " ";
echo $arrCustRecords["Surname"] . " ";
echo $arrCustRecords["Firstname"] . "</p>";

$dbPurRecords = mysql_query("SELECT * FROM purchases WHERE customers_Id = '$intId'",
$dbLocalhost)

or die("Problem reading table: " . mysql_error());

Complete version

Using records to read another table

Example15-14.php

while ($arrPurRecords = mysql_fetch_array($dbPurRecords)) {
$intPurId = $arrPurRecords["Id"];
echo "<p>Purchased On: ";
echo $arrPurRecords["Day"] . "/";
echo $arrPurRecords["Month"] . "/";
echo $arrPurRecords["Year"] . "</p>";

$dbProRecords= mysql_query("SELECT * FROM purchaseProducts WHERE purchases_Id='$intPurId' ",
$dbLocalhost)

or die("Problem reading table: " . mysql_error());

while ($arrProRecords = mysql_fetch_array($dbProRecords)) {
$intProductId = $arrProRecords["products_Id"];
echo "<p>" . $arrProRecords["Quantity"] . " ";

$dbProductRecords = mysql_query("SELECT * FROM products WHERE Id = '$intProductId'",
$dbLocalhost)

or die("Problem reading table: " . mysql_error());

$arrProductRecord = mysql_fetch_array($dbProductRecords);
echo $arrProductRecord["Name"] . " (" . $arrProductRecord["Description"] . ") at £";
echo $arrProRecords["Cost"] . " each.</p>";
}

}
}
?>

Example15-14.php

Complete version

Inserting records
How to create new database records and insert them

into a table?

INSERT INTO table (field1, field2,...) VALUES (‘value1’, ‘value2’,...)

Example15-15.php

INSERT INTO table VALUES (‘value1’, ‘value2’,...)

•Alternatively, we have a simplified syntax:

$dbProdRecords = mysql_query("INSERT INTO products
VALUES (' ', 'Beer Mug', '600 ml Beer Mug', '100', '5.99')",
$dbLocalhost)

Inserting records

Example15-14.php

<?php
// File: example15-15.php

require_once("database2.php");

$dbProdRecords = mysql_query("INSERT INTO products VALUES ('', 'Beer Mug', '600
ml Beer Mug', '100', '5.99')", $dbLocalhost)

or die("Problem writing to table: " . mysql_error());

$dbProdRecords = mysql_query("SELECT * FROM products", $dbLocalhost)
or die("Problem reading table: " . mysql_error());

while ($arrProdRecords = mysql_fetch_array($dbProdRecords)) {
echo "<p>" . $arrProdRecords["Id"] . " ";
echo $arrProdRecords["Name"] . " ";
echo $arrProdRecords["Description"] . " ";
echo $arrProdRecords["Quantity"] . " ";
echo $arrProdRecords["Cost"] . "</p>";

}
?> Example15-15.php

Deleting records
How to delete database records from tables?

DELETE FROM table WHERE field=‘value’

Example15-16.php

e.g.

$dbCustRecords = mysql_query("DELETE FROM customers
WHERE Id='3'", $dbLocalhost)

Note: If you have a relational database, you should tidy-up the other tables, based on
their connection with the record you’ve deleted.

Deleting records
How to delete database records from tables?

DELETE FROM table

Example15-17.php

This will delete all records from a table!

Note: back-up your database first!

Amending records
How to modify the contents of an existing database

record?

UPDATE table SET field=‘value1’, field=‘value2’...WHERE
field=‘value’

Example15-18.php

• requires you to specify the table, the list of fields with their
updated values, and a condition for selection (WHERE).

Amending records

Example15-14.php

<?php
// File: example15-18.php

require_once("database2.php");

$dbCustRecords = mysql_query("UPDATE products SET Description='250 ml Tall
Glass' WHERE Id='6'", $dbLocalhost)

or die("Problem updating table: " . mysql_error());

$dbProdRecords = mysql_query("SELECT * FROM products", $dbLocalhost)
or die("Problem reading table: " . mysql_error());

while ($arrProdRecords = mysql_fetch_array($dbProdRecords)) {
echo "<p>" . $arrProdRecords["Id"] . " ";
echo $arrProdRecords["Name"] . " ";
echo $arrProdRecords["Description"] . " ";
echo $arrProdRecords["Quantity"] . " ";
echo $arrProdRecords["Cost"] . "</p>";

}
?> Example15-18.php

Amending records
How to modify the contents of an existing database

record?

$dbCustRecords = mysql_query("UPDATE products SET Name='Beer
and Lager Glass' WHERE Name='Beer Glass'", $dbLocalhost)

Example15-19.php

•A number of records will be updated in this example.

Another Example:

UPDATE table SET field=‘value1’, field=‘value2’...WHERE
field=‘value’

Counting the number of records
How to count the number of records after running a

query?

$dbProdRecords = mysql_query("SELECT * FROM products",
$dbLocalhost)

or die("Problem reading table: " . mysql_error());

$intProductCount = mysql_num_rows($dbProdRecords);

Example15-20.php

• you can also use the same function to determine if a record
exists.

Example15-21.php

Select a substring
How to count the number of records after running a

query?

SELECT * FROM products WHERE substring(Name,1,4)=‘Wine’

•This will return all records from the products table where the
first four characters in the name field equals ‘Wine’

Example15-22.php

End of Lecture

Unit V:
Working with PHP

Dr. M. Durairaj

Bharathidasan University

P
H
P

1-1

PHP

 PHP overview
 PHP General Syntactic Characteristics
 PHP output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-2

P
H
P

ORIGINS AND USE OF PHP

 Origins
 Rasmus Lerdorf – 1994

 Developed to allow him to track visitors to his Web site

 An open-source product
 An acronym for Personal Home Page, or PHP: Hypertext

Preprocessor

 PHP is a server-side scripting language whose scripts
are embedded in HTML documents
 Similar to JavaScript, but on the server side

 Used for form handling, file processing, and database
access

1-3

P
H
P

ORIGINS AND USE OF PHP

 PHP is “A” server-side scripting language
 One of an alternative to CGI, ASP.NET (Active server

pages), and JSP (Java Server Pages)
 The PHP processor has two modes:

 copy (XHTML) and interpret (PHP)
 PHP syntax is similar to that of JavaScript
 PHP is dynamically typed
 PHP is a interpreted language

 Programs may be executed from source form
 Each instruction is immediately translated and acted

upon by the computer

1-4

P
H
P

GENERAL SYNTACTIC CHARACTERISTICS
 PHP code can be specified in an XHTML document

internally or externally:myphp.php
 Internally: <?php ...

?>
 Can appear almost everywhere
 Externally: include ("myScript.inc")

 The included file can have both PHP and XHTML, if the file has
PHP, the PHP must be in <?php .. ?>, even if the include is already in
<?php .. ?>
 Variable conflict

 PHP mode of operation
 Copy mode
 Interpret mode

 Every variable name begin with a $
 Case sensitive
 A letter or an underscore followed by any number of letters,

digits, or underscores. 1-5

P
H
P

GENERAL SYNTACTIC

CHARACTERISTICS

 Comments - three different kinds (Java and Perl)
// ...
...
/* ... */

 Statements are terminated with semicolons
 Compound statements are formed with braces

 Unless used as the body of a function definition,
compound statements cannot be blocks (cannot define
locally scoped variables)

1-6

P
H
P

OUTPUT

 Output from a PHP script is HTML that is sent to the
browser

 HTML is sent to the browser through standard output
 There are three ways to produce output: echo, print, and

printf
 echo and print take a string, but will coerce other values to

strings
$name=“John”; $age=20;
 echo “$name“, “$age”; (any number of parameters)
 echo(“my name: $name, my age: $age”); (only one)
 print “$name and $age";
 print (“my name: $name, my age: $age”);
 printf(“my name: %s, my age: %s”, $name, $age);

 Echo does not return a value; print return 1 or 0; printf
returns the length of the outputted string

Output.php
1-7

P
H
P

VAR_DUMP

 Dumps information about a variable
 $var1=3.1;

 Var_dump($var1);
 Float(3.1);

 $var2=“3.1”;
 Var_dump($var2);
 String(“3.2”);

1-8

P
H
P

PHP

 PHP overview
 PHP General Syntactic Characteristics
 PHP Output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-9

P
H
P

PRIMITIVES, OPERATIONS, AND EXPRESSIONS

 Variables primitive.php
 No type declarations
 An unassigned (unbound) variable has the value: NULL
 The unset function sets a variable to NULL
 The IsSet function is used to determine whether a variable is

NULL
 error_reporting(15); - prevents PHP from using unbound

variables

 PHP has many predefined variables, including the
environment variables of the host operating system
 You can get a list of the predefined variables by calling

phpinfo() in a script

1-10

P
H
P

PRIMITIVES, OPERATIONS, AND EXPRESSIONS

 There are eight primitive types:
 Four scalar types: Boolean, integer, double, and string
 Two compound types: array and object
 Two special types: resource and NULL

PHP 1-11

PRIMITIVES, OPERATIONS, AND EXPRESSIONS
 Strings string.php

 Characters are single bytes
 The length of a string is limited only by the available memory
 String literals use single or double quotes

 Single-quoted string literals
 Embedded variables are NOT interpolated
 Embedded escape sequences are NOT recognized

 Double-quoted string literals
 Embedded variables ARE interpolated
 If there is a variable name in a double quoted string but you

don’t want it interpolated, it must be backslashed
 Embedded escape sequences ARE recognized

 For both single- and double-quoted literal strings, embedded
delimiters must be backslashed

 String character access
 $str=“Apple”
 $str{2}=“p” 1-12

P
H
P

PRIMITIVES, OPERATIONS, AND EXPRESSIONS

 Boolean boolean.php
 values are true and false (case insensitive)
 0 and "" and "0" are false; others are true

 But “0.0” is true

 Arithmetic Operators and Expressions
 Usual operators
 If the result of integer division is not an integer, a double is

returned
 Any integer operation that results in overflow produces a

double
 The modulus operator coerces its operands to integer, if

necessary

 Arithmetic functions
 floor, ceil, round, abs, min, max, rand, etc.

 Round($val, x);
1-13

P
H
P

PRIMITIVES, OPERATIONS, AND EXPRESSIONS

 Scalar Type Conversions conversion.php
 String to numeric

 If the string contains an e or an E, it is converted to double;
otherwise to integer

 If the string does not begin with a sign or a digit, zero is used

 Explicit conversions – casts
 e.g., (int)$total or intval($total) or settype($total, "integer")

 Intval($total), doubleval($total), strval($total);

 The type of a variable can be determined with gettype
or is_type
 gettype($total) - it may return "unknown"
 is_integer($total) – a predicate function

 is_double(), is_bool(), is_string()
1-14

P
H
P

PHP

 PHP overview
 PHP General Syntactic Characteristics
 PHP Output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-15

P
H
P

CONTROL STATEMENT

 Control Expressions
 Relational operators - same as JavaScript

 >, <, >=, <=, !=, ==
 Boolean operators

 And, or, xor, !, &&, and ||

 Selection statements
 if, elseif, else
 switch - as in C

 The switch expression type must be integer, double, or
string

 Loop statements
 while - just like C
 do-while - just like C
 for - just like C
 foreach - discussed later 1-16

P
H
P

CONTROL STATEMENT
 break

 in any for, foreach, while, do-while, or switch

 continue
 in any loop

 Alternative compound delimiters – more readability
if(...):

...
endif;

Powers.php

1-17

P
H
P

INTERMINGLE

 XHTML can be intermingled with PHP
<?php Intermingle.php

$a = 7;
$b = 7;
if ($a == $b)

{
$a = 3 * $a;

?>

 At this point, $a and $b are equal

So, we change $a to three times $a
<?php

}
?> 1-18

P
H
P

PHP

 PHP overview
 PHP General Syntactic Characteristics
 PHP Output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-19

P
H
P

ARRAY

 A PHP array is really a mapping of keys to values, where
the keys can be numbers or strings

 Array creation
 Use the array() construct, which takes one or more key => value

pairs as parameters and returns an array of them
 The keys are non-negative integer literals or string literals
 The values can be anything
e.g., $list = array(0 => "apples", 1 => "oranges", 2 => "grapes")
 This is a “regular” array of strings

 If a key is omitted and there have been integer keys, the default
key will be the largest current key + 1

 If a key is omitted and there have been no integer keys, 0 is the
default key

 If a key appears that has already appeared, the new value will
overwrite the old one 1-20

P
H
P

ARRAY

 Arrays can have mixed kinds of elements
 e.g.,
$list = array("make" => "Cessna", "model" => "C210", "year"

=> 1960, 3 => "sold");
$list = array(1, 3, 5, 7, 9);
$list = array(5, 3 => 7, 5 => 10, "month" => "May");
$colors = array('red', 'blue', 'green', 'yellow');

Array.php

1-21

P
H
P

ACCESS ARRAY

 Accessing array elements – use brackets
 $list[4] = 7;
 $list["day"] = "Tuesday";
 $list[] = 17;

 If an element with the specified key does not
exist, it is created
 Where??

 If the array does not exist, the array is created
 The keys or values can be extracted from an

array
 $highs = array("Mon" => 74, "Tue" => 70, "Wed" => 67,

"Thu" => 62, "Fri" => 65);
 $days = array_keys($highs);
 $temps = array_values($highs); arraykey.php

1-22

P
H
P

DEALING WITH ARRAYS

 An array can be deleted with unset
 unset($list);
 unset($list[4]); # No index 4 element now

 is_array($list)
 returns true if $list is an array

 in_array(17, $list)
 returns true if 17 is an element of $list

 explode(" ", $str) creates an array with the values
of the words from $str, split on a space

 implode(" ", $list) creates a string of the elements
from $list, separated by a space

Explode.php
1-23

P
H
P

SEQUENTIAL ACCESS TO ARRAY ELEMENTS

 current and next accessarray.php
 $colors = array("Blue", "red", "green", "yellow");
 $color = current($colors);
 print("$color
");
 while ($color = next($colors))
 print ("$color
");

 foreach (array_name as scalar_name) { ... }
 foreach ($colors as $color)

{ print "Is $color your favorite color?
";
}

Is red your favorite color?
Is blue your favorite color?
Is green your favorite color?
Is yellow your favorite color?

1-24

P
H
P

SEQUENTIAL ACCESS TO ARRAY ELEMENTS

 foreach can iterate through both keys and values:
 foreach ($colors as $key => $color) { … }

 Inside the compound statement, both $key and
$color are defined
 $ages = array("Bob" => 42, "Mary" => 43);
 foreach ($ages as $name => $age)

print("$name is $age years old
");

Keyarray.php

1-25

P
H
P

VIEWING CLIENT/SERVER ENVIRONMENT

VARIABLES

 Environment variables phpinfo.php
 Provide information about execution environment

 Type of web browser
 Type of server
 Details of HTTP connection

 Stored as array in PHP
 $_ENV

PHP 1-26

PHP
 PHP overview
 PHP General Syntactic Characteristics
 PHP Output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-27

P
H
P

USER-DEFINED FUNCTIONS

 Syntactic form:
function function_name(formal_parameters)
{

…
}

 General Characteristics
 Functions need not be defined before they are called (in

PHP 3, they must)
 Functions can have a variable number of parameters
 Function names are NOT case sensitive
 Overloading is not permitted
 The return function is used to return a value

 If there is no return, there is no returned value
1-28

P
H
P

USER-DEFINED FUNCTIONS

 Parameters
 If the caller sends too many actual parameters, the

subprogram ignores the extra ones
 If the caller does not send enough parameters, the unmatched

formal parameters are unbound
 The default parameter passing method is pass by value (one-

way communication) parameters.php
 To specify pass-by-reference, precede an ampersand to the

formal parameter
function addOne(&$param) {

$param++;
}

$it = 16;
addOne($it); // $it is now 17 1-29

P
H
P

USER-DEFINED FUNCTIONS

 Parameters
 If the function does not specify its parameter to be pass

by reference, you can precede an ampersand to the
actual parameter and still get pass-by-reference
semantics
function subOne($param) { $param--; }
$it = 16;
subOne(&$it); // $it is now 15

 Return Values
 Any type may be returned, including objects and arrays,

using the return
 If a function returns a reference, the name of the function

must have a prepended ampersand
 function &newArray($x) { … }

1-30

P
H
P

USER-DEFINED FUNCTION
 The Scope of Variables scope.php

 An undeclared variable in a function has the scope of the
function

 If you do want to access a nonlocal variable, it must be declared
to be global, as in
global $sum;

 The Lifetime of Variables static.php
 Normally, the lifetime of a variable in a function is from its first

appearance to the end of the function’s execution
static $sum = 0; # $sum is static

Its lifetime begins when the variable is first used in the first
execution of the function, ends when the script execution ends.
(browser leaves the document in which the php script is embedded)

1-31

P
H
P

PHP
 PHP overview
 PHP General Syntactic Characteristics
 PHP Output to browser
 Primitives, Operations, and Expressions
 Control Statement
 Array
 Function
 File access
 Cookie
 Session
 Form process

1-32

P
H
P

DATABASE ACCESS WITH

PHP AND MYSQL

PHP FOR DATABASE ACCESS

 Connect to the MySQL server
 $connection = mysql_connect("localhost",

$username, $password);
 Access the database

 mysql_select_db("winestore", $connection);
 Perform SQL operations
 Disconnect from the server

 mysql_close($connection);

ERROR HANDLING

 All mysql_ functions return NULL (or false) if
they fail.

 Several functions are helpful in graceful failure
 die(string) - halts and displays the string
 mysql_errno() - returns number of error
 mysql_error() - returns text of error

ERROR HANDLING EXAMPLES

if (!($connection = mysql_connect("localhost",$name,$passwd)))
die("Could not connect");

function showerror()
{

die("Error " . mysql_errno() . " : " . mysql_error());
}

if (!(mysql_select_db("winestor", $connection)))
showerror();

BUILDING A QUERY

 Directly
 $query = 'select * from wines';

 Using input information
 $winery = $_POST['winery'];
 $query = “select * from wines where

winery=$winery”;

RUNNING A QUERY

 mysql_query returns a result handle
$result = mysql_query($query, $connection)

 mysql_num_rows indicates the number of rows
returned
$num_rows = mysql_num_rows($result)

 mysql_fetch_array creates array/hash of result
For ($n=0; $n<$num_rows;$n++)

$row = mysql_fetch_array($result)

RESULT OF FETCH_ARRAY

 Contains both numeric and index tags
 Values are duplicated
 Example:

 Query: select surname, city from customers;
 Row: (0=>'Walker', ‘surname’=>'Walker', 1=>'Kent',

'city'=>'Kent');

PRINTING THE COMPLETE ROW

 By number
for ($i=0; $i<mysql_num_fields($result); $i++)

echo $row[$i] . " ";
 By field

echo $row['surname'] . ' ' . $row['city'];

AVOIDING SPECIAL CHARACTERS

 When building HTML, characters such as '&' in
the data can cause problems

 Function htmlspecialchars() replaces all such
characters with HTML escapes such as &
print(htmlspecialchars($row['surname'] . ' ' .

$row['city']);

SPECIAL CHARACTERS IN INPUT

The same problem exists with special
characters in input (e.g. ')

PHP switch magic_quotes_gpc (default on)
inserts backslashes before single & double
quotes, backslashes and NULL characters
in input data (from GET, PUT and cookie
data)

Use stripslashes() to remove the slashes
Use addslashes() to add the slashes if

magic_quotes_gpc is off

AVOID DANGEROUS USER INPUT

Passing user input to other programs
opens the door to exploits
 Eg. exec("/usr/bin/cal $input")
 Generates a calendar (/usr/bin/cal 2004)
 But a malevolent user might send '2004 ; cat

/etc/passwd' or '2004 ; rm *'
Overlong inputs can also cause problems
Always clean input

 $input = escapeshellcmd($input);
 $input = substr($input,$maxlength);

PHP / FORM IN ONE DOCUMENT

Combine the original form with the PHP
document that processes data

if empty($regionName)) { //parameter provided?
//produce the <form>

}
else {

//run the query using data from $_GET or
$_POST

}

INSERTING INTO A DATABASE

 Collect data from a form
 Validate data (JavaScript, PHP or both)
 Create a query

$query = "insert into customer set cust_id = NULL, " .
"surname =\"" . $surname ."\"" …

 Run the query
mysql_query($query, $db);

UPDATING A DATABASE

 Query to find item to update
 Present old information
 Collect new information
 Validate
 Construct and run the update query

