

FACULTY NAME : DR.K.GEETHA

DESIGNATION : GUEST LECTURER

DEPARTMENT : SCHOOL OF COMPUTER SCIENCE,ENGINEERING AND

 APPLICATIONS

CLASS : M.S.C (CS)

SEMESTER : I

SUBJECT : DESIGN AND ANALYSIS ALGORITHM

SUBJECT CODE : MCS24012

Design and Analysis of
Algorithms

L1.2

Design and Analysis of Algorithms

• Analysis: predict the cost of an algorithm in terms of resources and performance

• Design: design algorithms which minimize the cost

INTRODUCTION TO ALGORITHM
History of Algorithm
• The word algorithm comes from the name of a Persian author, Abu

Ja’far Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who wrote
a textbook on mathematics.

• He is credited with providing the step-by-step rules for adding,
subtracting, multiplying, and dividing ordinary decimal numbers.

• When written in Latin, the name became Algorismus, from which
algorithm is but a small step

• This word has taken on a special significance in computer science,
where “algorithm” has come to refer to a method that can be used
by a computer for the solution of a problem

• Between 400 and 300 B.C., the great Greek mathematician Euclid
invented an algorithm

• Finding the greatest common divisor (gcd) of two positive integers.
The gcd of X and Y is the largest integer that exactly divides both X
and Y . Eg.,the gcd of 80 and 32 is 16.

What is an Algorithm?
• Algorithm is a set of steps to complete a task.

For example, Task: to make a cup of tea.
Algorithm: · add water and milk to the kettle, ·
boil it, add tea leaves, · Add sugar, and then
serve it in cup.

• ‘’a set of steps to accomplish or complete a
task that is described precisely enough that a
computer can run it’’.

• Described precisely: very difficult for a
machine to know how much water, milk to be
added etc. in the above tea making algorithm.

Algorithm Definition:
• An algorithm is a finite set of instructions that, if

followed, accomplishes a particular task. In
addition, all algorithms must satisfy the following
criteria:

1. Input. Zero or more quantities are
externally supplied.

2. Output. At least one quantity is produced.
3. Definiteness. Each instruction is clear and

unambiguous.
4. Finiteness. The algorithm terminates after a

finite number of steps.
5. Effectiveness. Every instruction must be

very basic enough and must be feasible.

Algorithms for Problem Solving

• The main steps for
Problem Solving are:

1. Problem definition
2. Algorithm design /

Algorithm specification
3. Algorithm analysis
4. Implementation
5. Testing
6. Maintenance

• Step1. Problem Definition What is the task to be accomplished?
Ex: Calculate the average of the grades for a given student

• Step2.Algorithm Design / Specifications: Describe: in natural
language / pseudo-code / diagrams / etc

• Step3. Algorithm analysis Space complexity - How much space is
required
Time complexity - How much time does it take to run the algorithm
Computer Algorithm An algorithm is a procedure (a finite set of
well-defined instructions) for accomplishing some tasks which,
given an initial state terminate in a defined end-state The
computational complexity and efficient implementation of the
algorithm are important in computing, and this depends on suitable
data structures.

• Steps 4,5,6: Implementation, Testing, Maintainance
• Implementation: Decide on the programming language to use C,

C++, Lisp, Java, Perl, Prolog, assembly, etc. , etc. Write clean, well
documented code

• Test, test, test Integrate feedback from users, fix bugs, ensure
compatibility across different versions

• Maintenance. Release Updates,fix bugs

PSEUDOCODE
• Algorithm can be represented in Text mode and

Graphic mode
• Graphical representation is called Flowchart
• Text mode most often represented in close to

any High level language such as C, Pascal
Pseudocode.

• Pseudocode:
High-level description of an algorithm.
More structured than plain English.
Less detailed than a program.
Preferred notation for describing algorithms.
Hides program design issues.

Example of Pseudocode: To find the max element of an array

return currentMax

PERFORMANCE ANALYSIS:
• What are the Criteria for judging algorithms that have a

more direct relationship to performance?
• computing time and storage requirements.
• Performance evaluation can be loosely divided into

two major phases:
• a priori estimates(performance analysis)
• a posteriori testing(performance measurement).

• refer as performance analysis and performance
measurement respectively

• The space complexity of an algorithm is the amount of
memory it needs to run to completion.

• The time complexity of an algorithm is the amount of
computer time it needs to run to completion.

Space Complexity:
• Algorithm sum(a,n)
• {
• s=0.0;
• for I=1 to n do
• s= s+a[I];
• return s;
• }

1. The problem instances for this
algorithm are characterized by
n,the number of elements to
be summed. The space needed
d by ‘n’ is one word, since it is
of type integer.

2. The space needed by ‘a’a is the
space needed by variables of
tyepe array of floating point
numbers.

3. This is atleast ‘n’ words, since
‘a’ must be large enough to
hold the ‘n’ elements to be
summed.

4. So,we obtain Ssum(n)>=(n+s)
5. [n for a[],one each for n,I a& s]

Time Complexity
1. Algorithm:
2. Algorithm sum(a,n)
3. {
4. s= 0.0;
5. count = count+1;
6. for I=1 to n do
7. {
8. count =count+1;
9. s=s+a[I];
10. count=count+1;
11. }
12. count=count+1;
13. count=count+1;
14. return s;
15. }

• This is done so that each
time a statement in the
original program is executes
count is incremented by the
step count of that
statement.

• If the count is zero to start
with, then it will be 2n+3 on
termination. So each
invocation of sum execute a
total of 2n+3 steps.

Complexity of Algorithms
• The complexity of an algorithm M is the function f(n) which

gives the running time and/or storage space requirement of
the algorithm in terms of the size ‘n’ of the input data.
Mostly, the storage space required by an algorithm is
simply a multiple of the data size ‘n’.

• Complexity shall refer to the running time of the algorithm.
• The function f(n), gives the running time of an algorithm,

depends not only on the size ‘n’ of the input data but also
on the particular data. The complexity function f(n) for
certain cases are:
1. Best Case : The minimum possible value of f(n) is called

the best case.
2. Average Case : The expected value of f(n).
3. Worst Case : The maximum value of f(n) for any key

possible input.

How to analyse an Algorithm?
Let us form an algorithm for Insertion sort (which sort a sequence of

numbers). The pseudo code for the algorithm is give below.
Pseudo code for insertion Algorithm:

Identify each line of the pseudo code with symbols such as C1, C2 ..

Best case:
It occurs when Array is sorted. All tj values are 1.

Worst case:
It occurs when Array is reverse sorted, and tj =j.

Order of growth:
It is described by the highest degree term of the formula for

running time. (Drop lower-order terms. Ignore the constant coefficient
in the leading term.)
Example: We found out that for insertion sort the worst-case running

time is of the form an2+ bn + c.

ASYMPTOTIC NOTATION
• Formal way notation to speak about functions

and classify them
• The following notations are commonly use

notations in performance analysis and used to
characterize the complexity of an algorithm:

1. Big–OH (O) ,
2. Big–OMEGA (Ω),
3. Big–THETA (Θ) and
4. Little–OH (o)

Asymptotic Analysis of Algorithms:
• Our approach is based on the asymptotic complexity

measure. This means that we don’t try to count the
exact number of steps of a program, but how that
number grows with the size of the input to the
program.

• That gives us a measure that will work for different
operating systems, compilers and CPUs. The
asymptotic complexity is written using big-O notation.

1. It is a way to describe the characteristics of a
function in the limit.

2. It describes the rate of growth of functions.
3. Focus on what’s important by abstracting away low

order terms and constant factors.
4. It is a way to compare “sizes” of functions:

O≈ ≤ , Ω≈ ≥ , Θ ≈ =, o ≈ <, ω ≈ >

• Big ‘oh’: the function f(n)=O(g(n)) iff there
exist positive constants c and no such that

f(n)<=c*g(n) for all n, n>= no.
• Omega: the function f(n)=(g(n)) iff there exist

positive constants c and no such that
f(n) >= c*g(n) for all n, n >= no.

• Theta: the function f(n)=(g(n)) iff there exist
positive constants c1,c2 and no such that c1

g(n) <= f(n) <= c2 g(n) for all n, n >= no

Big-O Notation
• This notation gives the tight upper bound of the given

function. Generally we represent it as f(n) = O(g (11)).
That means, at larger values of n, the upper bound
off(n) is g(n).

For example,
if f(n) = n4 + 100n2 + 10n + 50 is the given algorithm,
then n4 is g(n). That means g(n) gives the maximum
rate of growth for f(n) at larger values of n.

O —notation defined as O(g(n)) = {f(n): there exist
positive constants c and no such that 0 <= f(n) <= cg(n)
for all n >= no}. g(n) is an asymptotic tight upper bound
for f(n). Our objective is to give some rate of growth
g(n) which is greater than given algorithms rate of
growth f(n).

Note Analyze the algorithms at larger values of n only What this means is, below
no we do not care for rates of growth.

Omega— Ω notation
• Similar to above discussion, this notation gives the tighter lower bound

of the given algorithm and we represent it as f(n) = Ω (g(n)). That
means, at larger values of n, the tighter lower bound of f(n) is g.

For example, if f(n) = 100n2+ 10n + 50, g(n) is Ω(n2).
• The . Ω. notation as be defined as Ω (g (n)) = {f(n): there exist positive

constants c andno such that 0 <= cg (n) <= f(n) for all n >= no}. g(n) is
an asymptotic lower bound for f(n). Ω (g (n)) is the set of functions
with smaller or same order of growth as f(n).

Theta- Θ notation
• This notation decides whether the upper and lower bounds of a given

function are same or not. The average running time of algorithm is always
between lower bound and upper bound.

• If the upper bound (O) and lower bound (Ω) gives the same result then Θ
notation will also have the same rate of growth. As an example, let us
assume that f(n) = 10n + n is the expression. Then, its tight upper bound
g(n) is O(n). The rate of growth in best case is g (n) = 0(n).

Little Oh Notation
• The little Oh is denoted as o. It is defined as :

Let, f(n} and g(n} be the non negative
functions then

