
Advanced Operating System

Unit – IV

Dr.M.Lalli

Dept of CS, Trichy

Unit - 4

Database operating systems:
• Requirements of Database OS
•Transaction Process model
•Synchronization primitives
•Concurrency control algorithms

Database Operating Systems

❑ Database system have been
implemented as an
application on top of
general purpose OS

❑ Requrements of DBOS

❑ Transaction
Management

❑ Support for complex,
persistent data

❑ Buffer Management

Distributed Database System

❑ A distributed database is a database in which storage devices
are not all attached to a common processing unit such as the
CPU.

❑ It may be stored in multiple computers, located in the same
physical location; or may be dispersed over a network of
interconnected computers.

❑ Unlike parallel systems, in which the processors are tightly
coupled and constitute a single database system, a distributed
database system consists of loosely coupled sites that share
no physical components.

Distributed Database System

❑ Motivations: DDBS offers several advantages over a centralized
database system such as

❑ Sharing

❑ Higher system availability (reliability)

❑ Improved performance

❑ Easy expandability

❑ Large databases

❑ Transaction Processing Model

❑ Serializability condition in DDBS

❑ Data replication

❑ Complications due to Data replication

❑ Fully Replicated Database Systems

1. Enhanced reliability 2. Improved responsiveness 3. No directory
management 4. Easier load balancing

Model of Distributed Database System

A concurrency control model of DBS

❑3 software modules

❑Transaction manager (TM)

Supervises the execution of a transaction

❑Data manager (DM)

Responsible for enforcing concurrency control

❑Scheduler

Concurrency Control

❑ CC is the process of controlling concurrent access to a database to ensure that
the correctness of the database is maintained.

❑ Database systems

Set of shared data objects that can be accessed by users.

❑ Transactions

A transaction consists of a sequence of R, compute & W s/m
that refer to the data objects of a database.

❑ Conflicts

Transactions conflicts if they access the same data objects.

❑ Transaction processing

A transaction is executed by executing its actions one by one from the
beginning to the end.

Concurrency Control Algorithms

❑It controls the interleaving of conflicting actions of
transactions so that the integrity of a database is
maintained, i.e., their net effect is a serial execution.

❑Basic synchronization primitives

❑Locks
❑A transaction can request, hold or release the lock on a data

object.

❑ lock a data object in 2 modes: exclusive and shared

❑Timestamps
❑Unique number is assigned to a transaction or a data object and is

chosen from a monotonically increasing sequence.

❑Commonly generated using Lamport’s scheme

Lock based algorithms

❑ Static locking

❑ Two Phase Locking (2PL)

❑ Problems with 2PL: Price for Higher concurrency

❑ 2PL in DDBS

❑ Timestamp Based locking

❑ Conflict Resolution

✓Wait Restart Die Wound

❑Non-two-phase locking

Timestamp Based Algorithms

❑Basic timestamp ordering algorithm

❑Thomas Write Rule (TWR)

❑Multiversion timestamp ordering algorithm

❑Conservative timestamp ordering algorithm

Optimistic Algorithms &
Concurrency Control Algorithms

1
2

1
3

• Optimistic Algorithms

– Kung Robinson Algorithm

• Concurrency Control Algorithms

– Completely Centralized Algorithm

– Centralized Locking Algorithm

– INGRES’ Primary-Site Locking Algorithm

– Two-Phase Locking Algorithm

1
4

Optimistic Algorithms

• Based on the assumption

“conflicts do not occur during executiontime”

Optimistic Algorithms

• Thus,

No synchronization is performed when a
transaction is executed.

1
5

Optimistic Algorithms

• However,

A check is performed at the end of the
transaction (to ensure no conflicts have occurred)

1
6

Optimistic Algorithms

• If conflict == true

– Transaction aborted

• Else

– Commit Transaction

1
7

1
8

Optimistic Algorithms

• Since conflicts do not occur very often, this
algorithm is very efficient compared to other
locking algorithms.

1
9

Kung-Robinson Algorithm

• H. T. KUNG and JOHN T. ROBINSON were the first to
propose an optimistic method for concurrency control.

• The optimistic situation for this algorithm happens
when conflicts are unlikely to happen; the system
consists mainly read-only transactions (such as a query
dominant (powerful) system)

• Basic Idea: No synchronization check is performed
during transaction processing time, however, a
validation is performed to make sure that no conflicts
occurred. If a conflict is found, the tentative write is
discarded and the transaction is restarted.

2
0

The Algorithm (Kung-Robinson)

• Divided into three phases :

Read Phase Validation Phase Write Phase

The Algorithm (Kung-Robinson)

• Divided into three phases :

Read Phase Validation Phase Write Phase

data objects are read, the intended computation of the
transaction is done, and writes are made on a temporary
storage.

10

The Algorithm (Kung-Robinson)

• Divided into three phases :

Read Phase Validation Phase Write Phase

check to see if writes made by the transaction violate the
consistency of the database.

22

The Algorithm (Kung-Robinson)

• Divided into three phases :

Read Phase Validation Phase Write Phase

If the check finds out any conflicts, the data in the temporary
storage will be discarded. Otherwise, the write phase will write
the data into the database.

23

The Algorithm (Kung-Robinson)

• Divided into three phases :

Read Phase Validation Phase Write Phase

If the validation phase passes ok, write will be performed to the
database. If the validation phase fails to pass, all temporary
written data will be aborted.

24

25

The Algorithm (Kung-Robinson)

• Validation Phase (can be described as)

– T: a transaction

– ts: the highest sequence number at the start ofT

– tf: the highest sequence number at the beginning of its validationphase

valid:=true;

for t:=ts+1 to tf do

if (writeset(t) & readset[T] != {}) then

valid :=false;

if valid then {write phase; increment counter, assign T a

sequence number}

26

Concurrency Control Algorithms

• Fully replicated database systems i.e.

“data objects are replicated at allsites”

Completely Centralized Algorithm

Central Site

27

Site A Site B

A site is designated as the central site.

Site C Site D Site E

Completely Centralized Algorithm

Central Site

Transaction at site A occurs.

28

Site A Site B Site C Site D Site E

Transaction:
Update
Account Balance
#B=78000

Completely Centralized Algorithm

Central Site

Transaction is forward to the central site for execution.

29

Site A Site B Site C Site D Site E

Transaction:
Update
Account Balance
#B=78000

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

Serial execution effect.

30

Site A Site B Site C Site D Site E

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

Site A Site B Site C Site D Site E

Serial execution effect.

31

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

Site A Site B Site C Site D Site E

Serial execution effect.

32

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

Site A Site B Site C Site D Site E

Serial execution effect.

33

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

Site A Site B Site C Site D Site E

Serial execution effect.

34

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

24

Site A Site B Site C Site D

Perform update message broadcast to all other sites with sequence number.

Site E

Perform Update

Perform Update

Perform Update

Perform Update

Perform Update

Completely Centralized Algorithm

T1 T2 T3 T4 T5

Central Site

36

Site A Site B Site C

Messages processed then updates applied to local databases.

Site D Site E

Perform Update

Perform Update

Perform Update

Perform Update

Perform Update

37

Centralized Locking Algorithm

• Transactions processed in distributed manner

• Central site is requested with a lock request message

for data objects to be accessed

• Site responds with a lock grant message with a

sequence number

• Queue for each data object

• Site executes its transaction after receiving lock grant
and broadcasts perform update after which the
central site releases all locks

Centralized Locking Algorithm

Many Sites with centralized lock management

Central
Site

38

Centralized Locking Algorithm

Transactions processed at their home site (distributed manner).

39

Centralized Locking Algorithm

lock request
message

O1
O2
O7 (objects)

Site requests locks via lock request message for the data objects when it needs to update database
40

Centralized Locking Algorithm

lock grant
message

O1
O2
O7 (objects)

O3
O4
O5
O6

O8
O9

Central site responds with a lock grant message (if all locks can be granted)

41

Centralized Locking Algorithm

O1
O2
O7 (objects)

O3
O4
O5
O6

O8
O9

Site executes its transaction after receiving lock grant

42

Centralized Locking Algorithm

PerformUpdate
O1
O2
O7 (objects)

Site broadcasts perform update message

Perform Update

Perform Update

Perform Update

Perform Update

O3
O4
O5
O6

O8
O9

32

Centralized Locking Algorithm

Perform Update
O1
O2
O7 (objects)

Central site releases all locks when it receives perform update message

Perform Update

Perform Update

Perform Update

Perform Update

O3
O4
O5
O6

O8
O9

44

45

INGRES’ Primary-Site Locking
Algorithm

• Based on primary site method

• Lock management distributed among all the
sites

• Each object of database designated with a
single primary site

Two Phase Locking (2PL) Algorithm

• Two-phase locking protocol

– Each transaction is executed in two phases

∗Growing phase: the transaction obtains locks

∗Shrinking phase: the transaction releases locks

The

46

lock point is the moment

when transitioning from the
growing phase to the shrinking
phase

47

Two Phase Locking (2PL) Algorithm

• Properties of the 2PL protocol
– Generates conflict-serializable schedules

– But schedules may cause cascading aborts

• If a transaction aborts after it releases a lock, it may cause
other transactions that have accessed the unlocked data
item to abort as well

• Strict 2PL locking protocol
Holds the locks till the end of the transaction

Cascading aborts are avoided

