
Advanced Operating System

Unit – I

Dr.M.Lalli

Dept of CS, Trichy

Motivation for Multiprocessors

❑Enhanced Performance -

❑Concurrent execution of tasks for increased
throughput (between processes)

❑Exploit Concurrency in Tasks (Parallelism
within process)

❑Fault Tolerance -

❑graceful degradation in face of failures

Basic MP Architectures
❑Single Instruction Single Data (SISD) -

conventional uniprocessor designs.

❑Single Instruction Multiple Data (SIMD) -
Vector and Array Processors

❑Multiple Instruction Single Data (MISD) -
Not Implemented.

❑Multiple Instruction Multiple Data (MIMD)
- conventional MP designs

MIMD Classifications

❑Tightly Coupled System - all processors
share the same global memory and have
the same address spaces (Typical SMP
system).

❑Main memory for IPC and Synchronization.

❑Loosely Coupled System - memory is
partitioned and attached to each processor.
Hypercube, Clusters (Multi-Computer).

❑Message passing for IPC and synchronization.

MP Block Diagram

cache MMU

CPU CPU

cache MMU cache MMU

CPU

cache MMU

CPU

MM MM MM MM

Interconnection Network

Memory Access Schemes

• Uniform Memory Access (UMA)

– Centrally located

– All processors are equidistant (access times)

• NonUniform Access (NUMA)

– physically partitioned but accessible by all

– processors have the same address space

• NO Remote Memory Access (NORMA)

– physically partitioned, not accessible by all

– processors have own address space

Other Details of MP

❑Interconnection technology

❑Bus

❑Cross-Bar switch

❑Multistage Interconnect Network

❑Caching - Cache Coherence Problem!

❑Write-update

❑Write-invalidate

❑bus snooping

MP OS Structure - 1

❑Separate Supervisor -

❑all processors have their own copy of the kernel.

❑Some share data for interaction

❑dedicated I/O devices and file systems

❑good fault tolerance

❑bad for concurrency

• Master/Slave Configuration

– master monitors the status and assigns work to
other processors (slaves)

– Slaves are a schedulable pool of resources for
the master

– master can be bottleneck

– poor fault tolerance

MP OS Structure - 2

❑Symmetric Configuration - Most Flexible.

❑all processors are autonomous, treated equal

❑one copy of the kernel executed concurrently
across all processors

❑Synchronize access to shared data structures:

❑Lock entire OS - Floating Master

❑Mitigated by dividing OS into segments that normally
have little interaction

❑multithread kernel and control access to resources
(continuum)

MP OS Structure - 3

MP Overview

MultiProcessor

SIMD MIMD

Shared Memory

(tightly coupled)
Distributed Memory

(loosely coupled)

Master/Slave Symmetric

(SMP)

Clusters

SMP OS Design Issues

❑Threads - effectiveness of parallelism depends
on performance of primitives used to express
and control concurrency.

❑Process Synchronization - disabling interrupts
is not sufficient.

❑Process Scheduling - efficient, policy controlled,
task scheduling (process/threads)
❑global versus per CPU scheduling

❑Task affinity for a particular CPU

❑resource accounting and intra-task thread
dependencies

❑Memory Management - complicated since
main memory is shared by possibly many
processors. Each processor must maintain its
own map tables for each process

❑cache coherence

❑memory access synchronization

❑balancing overhead with increased concurrency

❑Reliability and fault Tolerance - degrade
gracefully in the event of failures

SMP OS design issues - 2

Typical SMP System

cache MMU

CPU

cache MMU

CPU

cache MMU

CPU

cache MMU

CPU

I/O

subsystem

Issues:

• Memory contention

• Limited bus BW

• I/O contention

• Cache coherence

Main

Memory

50ns

Typical I/O Bus:

• 33MHz/32bit (132MB/s)

• 66MHz/64bit (528MB/s)

500MHz

System/Memory Bus

ether

scsi

video

Bridge

System Functions

(timer, BIOS, reset)

INT

Some Definitions

❑Parallelism: degree to which a multiprocessor
application achieves parallel execution

❑Concurrency: Maximum parallelism an
application can achieve with unlimited
processors

❑System Concurrency: kernel recognizes multiple
threads of control in a program

❑User Concurrency: User space threads
(coroutines) provide a natural programming
model for concurrent applications. Concurrency
not supported by system.

Process and Threads
❑Process: encompasses

❑set of threads (computational entities)

❑collection of resources

❑Thread: Dynamic object representing an
execution path and computational state.

❑threads have their own computational state: PC,
stack, user registers and private data

❑Remaining resources are shared amongst threads
in a process

Process Synchronization:Motivation

❑Sequential execution runs correctly but
concurrent execution (of the same program)
runs incorrectly.

❑Concurrent access to shared data may result in
data inconsistency

❑Maintaining data consistency requires
mechanisms to ensure the orderly execution of
cooperating processes

❑Let’s look at an example:consumer-producer
problem.

Producer-Consumer Problem

Producer

while (true) {
/* produce an item and put in

nextProduced */

while (count == BUFFER_SIZE); // do
nothing

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

count: the number of items in the
buffer (initialized to 0)

Consumer

while (true) {
while (count == 0); // do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

// consume the item in nextConsumed

}

What can go wrong in concurrent
execution?

Race Condition

❑ count++ could be implemented as
register1 = count

register1 = register1 + 1
count = register1

❑ count-- could be implemented as
register2 = count

register2 = register2 - 1
count = register2

❑ Consider this execution interleaving with “count = 5” initially:

❑ S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

What are all possible values from concurrent execution?

How to prevent race condition?
❑ Define a critical section in do {

each process

❑ Reading and writing
common variables.

❑ Make sure that only one
process can execute in the
critical section at a time.

❑ What sync code to put into
the entry & exit sections to
prevent race condition?

entry section
critical section

exit section
remainder section

} while (TRUE);

Solution to Critical-Section
Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next cannot
be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that request is
granted

What is the difference between

Progress and Bounded Waiting?

Peterson’sSolution
❑Simple 2-process solution

❑Assume that the LOAD and STORE instructions are
atomic; that is, cannot be interrupted.

❑The two processes share two variables:

❑int turn;

❑Boolean flag[2]

❑The variable turn indicates whose turn it is to enter
the critical section.

❑The flag array is used to indicate if a process is ready
to enter the critical section. flag[i] = true implies that
process Pi is ready!

Processor Scheduling

❑PS: ready tasks are assigned to the processors so
that performance is maximized.

❑Cooperate and communicate through shared
variables or message passing, PS in multiprocessor
system is difficult problem.

❑PS is very critical to the performance of
multiprocessor systems because a naïve scheduler
can degrade performance substantially.

Issues in Processor Scheduling

❑3 major causes of performance degradation are
❑ Preemption inside spinlock-controlled critical sections.

❑This situation occurs when a task is preempted inside CS when there are
other tasks spinning the lock to enter the same CS.

❑ cache corruption
❑Big chunk of data needed by the previous tasks must be purged from the

cache and new data must be brought into the cache.

❑Very high miss ratio a processor switched to another task – Cache corrp.

❑ context switching overheads
❑Execution of a large no. of instructions to save and store the registers, to

initialize the registers, to switch address space, etc.

Distributed Shared Memory in Mach

❑The idea is to have a single, linear, virtual
address space that is shared among processes
running on computers that do not have any
physical shared memory. When a thread
references a page that it does not have, it
causes a page fault. Eventually, the page is
located and shipped to the faulting machine,
where it is installed so that the thread can
continue executing.

Communication in Mach

❑ The basis of all communication in Mach is a kernel data
structure called a port.

❑ When a thread in one process wants to communicate with a
thread in another process, the sending thread writes the
message to the port and the receiving thread takes it out.

❑ Each port is protected to ensure that only authorized
processes can send it and receive from it.

❑ Ports support unidirectional communication. A port that can
be used to send a request from a client to a server cannot also
be used to send the reply back from the server to the client. A
second port is needed for the reply.

Thank U

