
Advanced Operating System

Unit – II

Dr.M.Lalli

Dept of CS, Trichy

Unit - II

Distributed Operating Systems: System Architectures
– Design Issues- Communication Models- Clock
Synchronization – Mutual Exclusion – Election
Algorithms- distributed Deadlock Detection

What is Distributed Systems?

❑Distributed System is used to describe a
system with the following characteristics:

❑Consists of several computers that do not
share a memory or a clock;

❑The computers communicate with each other
by exchanging messages over a
communication network; and

❑Each computer has its own memory and runs
its own operating system.

Architecture of Distributed OS

What is Distributed Operating Systems?

❑It extends the concepts of resource management and
user friendly interface for shared memorycomputers a
step further, encompassing

computing
computers

a distributed system consisting of several
autonomous connected by a communicating
network.

❑A distributed OS is one that looks to its users like an
centralized OS but runs on multiple, independent CPUs.
The key concept is transparency. In other words, the use
of multiple processors should be invisible to the user

Issues in Distributed OS

❑Global Knowledge

❑Naming

❑ Scalability

❑ Compatibility

❑ Process Synchronization

❑Resource Management

❑ Security

❑ Structuring

Global Knowledge

❑No Global Memory

❑No Global Clock

❑Unpredictable Message Delays

Naming

❑Name refers to objects [Files, Computers etc]

❑Name Service Maps logical name to physical
address

❑Techniques

❑LookUp Tables [Directories]

❑Algorithmic

❑Combination of above two

Scalability

❑Grow with time

❑Scaling Dimensions – Size, Geographically &
Administratively

❑Techniques – Hiding Communication
Latencies, Distribution & Caching

Scaling Techniques (1) Hide
Communication Latencies

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled Scalability cont….

Scaling Techniques (2)
Distribution

1.5

An example of dividing the DNS name space into zones.

Scalability cont….

Scaling Techniques (3)
Replication

❑Replicate components across the distributed

system

❑Replication increases availability , balancing

load distribution

❑Consistency problem has to be handled

Compatibility

❑Interoperability among resources in system

❑Levels of Compatibility – Binary Level,
Execution Level & Protocol Level

Process Synchronization

❑Difficult because of unavailability of shared
memory

❑Mutual Exclusion Problem

Resource Management

❑Make both local and remote resources
available

❑Specific Location of resource should be hidden
from user

❑Techniques

❑Data Migration [DFS, DSM]

❑Computation Migration [RPC]

❑Distributed Scheduling [Load Balancing]

Security

❑Authentication – a entity is what it claims to
be

❑Authorization – what privileges an entity has
and making only those privileges available

Structuring

❑Techniques

❑Monolithic Kernel

❑Collective Kernel [Microkernel based , Mach, V-
Kernel, Chorus and Galaxy]

❑Object Oriented OS [Services are implemented as
objects, Eden, Choices, x-kernel, Medusa, Clouds,
Amoeba & Muse]

❑Client-Server Computing Model [Processes are
categorized as servers and clients]

Communication Primitives

❑High level constructs [Helps the program in
using underlying communication network]

❑Two Types of Communication Models

❑Message passing

❑Remote Procedure Calls

Message Passing

❑Two basic communication primitives

❑SEND(a,b) , a→ Message , b→ Destination

❑RECEIVE(c,d), c→ Source , d→ Buffer for storing the
message

❑Client-Server Computation Model

❑Client sends Message to server and waits

❑Server replies after computation

Message Passing cont..

Design Issues

❑ Blocking vs Non blocking primitives

❑ Nonblocking

❑ SEND primitive return the control to the user process as soon as the
message is copied from user buffer to kernel buffer

❑ Advantage : Programs have maximum flexibility in performing
computation and communication in any order

❑ Drawback → Programming becomes tricky and difficult

❑ Blocking

❑ SEND primitive does not return the control to the user process until
message has been sent or acknowledgement has been received

❑ Advantage : Program’s behavior ispredictable

❑ Drawback → Lack of flexibility in programming

Message Passing cont..

Design Issues cont..

❑ Synchronous vs Asynchronous Primitives

❑ Synchronous

❑ SEND primitive is blocked until corresponding RECEIVE primitive
is executed at the target computer

❑ Asynchronous

❑Messages are buffered

❑ SEND primitive does not block even if there is no corresponding
execution of the RECEIVE primitive

❑ The corresponding RECEIVE primitive can be either blocking or
non-blocking

Details to be handled in Message Passing

❑Pairing of Response with Requests

❑Data Representation

❑Sender should know the address of Remote
machine

❑Communication and System failures

Remote Procedure Call (RPC)

❑RPC is an interaction between a client and a
server

❑Client invokes procedure on sever

❑Server executes the procedure and pass the
result back to client

❑Calling process is suspended and proceeds
only after getting the result from server

RPC Design issues

❑Structure

❑Binding

❑Parameter and Result Passing

❑Error handling, semantics and Correctness

Structure
❑RPC mechanism is based upon stub procedures.

Client Machine

Unpack
Execute

Procedure

Stub

Procedure
Remote

Procedure

Return

Pack

result

Local

Procedure

Call

User

Program
Stub

Procedure

Pack

parameters

& Transmit

wait

Unpack

Result

Local

Procedure

Call

Return

from local

call

Server Machine

Binding

❑Determines remote procedure and machine
on which it will be executed

❑Check compatibility of the parameters passed

❑Use Binding Server

Binding

Receive

Query

Return

Server

Address Unpack

Stub

Procedure
Remote

Procedure

Return

Pack

result

Local

Procedure

Call

User

Program
Stub

Procedure

Binding

Server

Pack

parameters

& Transmit

wait

Unpack

Result

Local

Procedure

Call

Return

from local

call

Client Machine

Binding Server Registering
Services

Server Machine

1

2

3

4
5

6
7

8

Parameter and Result Passing

❑ Stub Procedures Convert Parameters & Result to appropriate
form

❑ Pack parameters into a buffer

❑ Receiver Stub Unpacks the parameters

❑ Expensive if done on every call

❑ Send Parameters along with code that helps to identify format
so that receiver can do conversion

❑ Alternatively Each data type may have a standard format.
Sender will convert data to standard format and receiver will
convert from standard format to its local representation

❑ Passing Parameters by Reference

Error handling, Semantics and
Correctness

❑ RPC may fail either due to computer or communication failure

❑ If the remote server is slow the program invoking remote
procedure may call it twice.

❑ If client crashes after sending RPC message

❑ If client recovers quickly after crash and reissues RPC

❑ Orphan Execution of Remote procedures

❑ RPC Semantics

❑ At least once semantics

❑ Exactly Once

❑ At most once

Correctness Condition

❑Given by Panzieri & Srivastava

❑Let Ci denote call made by machine & Wi
represents corresponding computation

❑If C2 happened after C1 (C1 → C2) &
Computations W2 & W1 share the same data,
then to be correct in the presence of failures
RPC should satisfy

❑ C1 → C2 implies W1 →W2

31

DEADLOCKS

EXAMPLES:

• "It takes money to makemoney".

• You can't get a job without experience; you can't get experience without ajob.

BACKGROUND:

The cause of deadlocks: Each process needing what another process has. This results
from sharing resources such as memory, devices, links.

Under normal operation, a resource allocations proceed like this::

1. Request a resource (suspend until available if necessary).

2. Use the resource.

3. Release the resource.

• Traffic only in onedirection.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up (preempt

resources and rollback).

• Several cars may have to be backed up if a deadlockoccurs.

• Starvation is possible.

DEADLOCKS

32

Bridge Crossing

Example

33

DEADLOCKS

NECESSARY CONDITIONS

ALL of these four must happen simultaneously for a deadlock to occur:

DEADLOCK

CHARACTERISATION

Mutual exclusion

One or more than one resource must be held by a process in a non-sharable
(exclusive) mode.

Hold and Wait

A process holds a resource while waiting for another resource.

No Preemption

There is only voluntary release of a resource - nobody else can make a process
give up a resource.

Circular Wait

Process A waits for Process B waits for Process C waits for Process A.

DEADLOCKS

Avisual (mathematical) way to determine if adeadlock has, or mayoccur.

G = (V, E) The graph contains nodes and edges.

V Nodes consist of processes = { P1, P2, P3, ...} and resource types

{ R1, R2, ...}

E Edges are (Pi, Rj) or (Ri, Pj)

An arrow from the process to resource indicates the process is requesting the resource.
An arrow from resource to process shows an instance of the resource has been allocated
to the process.

Process is a circle, resource type is square; dots represent number of instances of resource
in type. Request points to square, assignment comes fromdot.

RESOURCE

ALLOCATION GRAPH

Pi

Rj

Pi

Rj

P
34

i

DEADLOCKS RESOURCE

ALLOCATION GRAPH

• If the graph contains no cycles, then no process isdeadlocked.

• If there is a cycle, then:

a) If resource types have multiple instances, then deadlock MAYexist.

b) If each resource type has 1 instance, then deadlock hasoccurred.

R3 Assigned to P

Resource allocation graph

P2 Requests P3

35

DEADLOCKS RESOURCE

ALLOCATION GRAPH

Resource allocation graph

with a deadlock.

Resource allocation graph

with a cycle but no deadlock.

36

HOW TO HANDLE DEADLOCKS – GENERAL STRATEGIES

There are three methods:

Ignore Deadlocks:

Ensure deadlock never occurs using either

Prevention Prevent any one of the 4 conditions fromhappening.

Avoidance Allow all deadlock conditions, but calculate cycles about to happen
and stop dangerous operations..

Allow deadlock to happen. This requires usingboth:

Detection Know a deadlock has occurred.

Recovery Regain the resources.

DEADLOCKS Strategy

Most Operating systems do this!!

37

38

Do not allow one of the four conditions to occur.

Mutual exclusion:

a) Automatically holds for printers and othernon-sharables.

b) Shared entities (read only files) don't need mutual exclusion (and aren’t
susceptible to deadlock.)

c) Prevention not possible, since some devices are intrinsically non-sharable.

Hold and wait:

a) Collect all resources before execution.

b) A particular resource can only be requested when no others are being held. A
sequence of resources is always collected beginning with the sameone.

c) Utilization is low, starvation possible.

DEADLOCKS Deadlock

Prevention

No preemption:

a) Release any resource already being held if the process can't get an additional
resource.

b) Allow preemption - if a needed resource is held by another process, which is also
waiting on some resource, steal it. Otherwisewait.

Circular wait:

a) Number resources and only request in ascendingorder.

EACH of these prevention techniques may cause a decrease in utilization
and/or resources. For this reason, prevention isn't necessarily the best
technique.

Prevention is generally the easiest to implement.

7: Deadlocks 110

DEADLOCKS

Do not allow one of the four conditions to occur.

Deadlock

Prevention

40

If we have prior knowledge of how resources will be requested, it's possible to determine if
we are entering an "unsafe" state.

Possible states are:

Deadlock No forward progress can be made.

Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist such that there are
enough resources for the first to finish, and as each finishes and
releases its resources there are enough for the next tofinish.

The rule is simple: If a request allocation would cause an unsafe state, do not honor that
request.

NOTE: All deadlocks are unsafe, but all unsafes are NOT deadlocks.

DEADLOCKS Deadlock

Avoidance

NOTE: All deadlocks are unsafe, but all unsafes are NOT deadlocks.

SAFE

41

DEADLOCK

UNSAFE

Only with luck will
processes avoid

deadlock.

O.S. can avoid

deadlock.

DEADLOCKS Deadlock

Avoidance

42

Let's assume a very simple model: each process declares its maximum needs. In
this case, algorithms exist that will ensure that no unsafe state is reached.
Maximum needs does NOTmean it must use that many resources – simply that it
might do sounder somecircumstances.

EXAMPLE:

There exists a total of 12 resources. Each resouercxeamispluesse.d exclusively by a
process. The current state looks like this:

In this example, < p1, p0, p2 >

is a workable sequence.

Suppose p2 requests and is

given one more resource.

What happens then?

Process Max Needs Allocated Current

Needs

P0 10 5 5

P1 4 2 2

P2 9 3 7

DEADLOCKS Deadlock Avoidance

There are multiple instances

of the resource in these

43

Safety Algorithm

A method used to determine if a particular state is safe. It's safe if there exists asequence
of processes such that for all the processes, there’s a way toavoid deadlock:

The algorithm uses these variables:

Need[I] – the remaining resource needs of eachprocess.

Work - Temporary variable – how many of the resource are currentlyavailable.

Finish[I] – flag for each process showing we’ve analyzed that process or not.

need <= available + allocated[0] + .. + allocated[I-1]  Sign of success

Let work and finish be vectors of length m and n respectively.

DEADLOCKS Deadlock

Avoidance

44

1. Initialize work

Initialize finish[i]

Safety Algorithm

= available

= false, for i = 1,2,3,..n

2. Find an i such that:

finish[i] == false and need[i] <= work

If no such i exists, go to step 4.

3. work

finish[i]

goto step 2

= work + allocation[i]

= true

4. if finish[i] == true for all i, then the system is in a safe state.

DEADLOCKS Deadlock

Avoidance

Is the system

in a safe state?

DEADLOCKS Deadlock

Avoidance

 Alloc →  Re →  Avail →

A B C A qB C A B C

P0 0 1 0 7 4 3 3 3 2

P1 2 0 0 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Safety Algorithm

Do these examples:

Consider a system with: five processes, P0 → P4, three resource types, A, B,C.

Type A has 10 instances, B has 5 instances, C has 7 instances.

At time T0 the following snapshot of the system istaken.

Max Needs = allocated + can-be-requested

45

7: Deadlocks 117

 Alloc →  Req →  Avail →

A B C A B C A B C

P0 0 1 0 7 4 3 1# 3 0#

P1 3# 0 2# 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1
granted.

DEADLOCKS Deadlock

Avoidance
Safety Algorithm

Do these examples:

Now try it again with only a slight change in the request by P1.

P1 requests one additional resource of type A, and two more of typeC.

Request1 = (1,0,2).

Is Request1 < available?

Produce the state
chart as if the

request is
Granted and see

if it’s safe.
(We’ve drawn the

chart as if it’s

Can the request

be granted?

DEADLOCKS
Need an algorithm that determines if

deadlock occurred.

Also need a means of recovering from
that deadlock.

Deadlock Detection

SINGLE INSTANCE OF A RESOURCE TYPE

• Wait-for graph == remove the resources

47

from the usual graph and collapse edges.

• An edge from p(j) to p(i) implies that p(j) is
waiting for p(i) to release.

48

SEVERAL INSTANCES OF A RESOURCE TYPE

Complexity is of order m * n * n.

We need to keep track of:

available

allocation

request

- records how many resources of each type are available.

- number of resources of type m allocated toprocess n.

- number of resources of type m requested by processn.

Let work and finish be vectors of length m and n respectively.

DEADLOCKS Deadlock Detection

49

1. Initialize work[] = available[]

For i = 1,2,...n, if allocation[i] != 0 then // For all n processes

finish[i] = false; otherwise, finish[i] = true;

2. Find an i process such that:

finish[i] == false and request[i] <= work

If no such i exists, go to step 4.

3. work = work + allocation[i]

finish[i] = true

goto step 2

4. if finish[i] == false for some i, then the system is in deadlock state. IF

finish[i] == false, then process p[i] is deadlocked.

DEADLOCKS Deadlock Detection

50

EXAMPLE

We have three resources, A, B, and C. A has 7 instances, B has 2 instances, and C has 6 instances. At
this time, the allocation, etc. looks likethis:

Is there a
sequence that
will allow
deadlock to be
avoided?

Is there more
than one
sequence that
will work?

 Alloc →  Re →  Avail →

A B C A qB C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

DEADLOCKS Deadlock Detection

51

EXAMPLE

Suppose the Request matrix is changed like this. In other words, the maximum amounts to be
allocated are initially declared so thatthis request matrix results.

Is there now a
sequence that will
allow deadlock to be
avoided?

USAGE OF THIS
DETECTION
ALGORITHM

Frequency of check
depends on how often a
deadlock occurs and
how many processes
will be affected.

 Alloc →  Re →  Avail →

A B C A qB C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1#

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

DEADLOCKS Deadlock Detection

52

So, the deadlock has occurred. Now, how do we get the resources back and gain forward progress?

PROCESS TERMINATION:

• Could delete all the processes in the deadlock -- this is expensive.

• Delete one at a time until deadlock is broken (timeconsuming).

• Select who to terminate based on priority, time executed, time to completion, needs for
completion, or depth of rollback

• In general, it's easier to preempt the resource, than to terminate the process.

RESOURCE PREEMPTION:

• Select a victim - which process and which resource to preempt.

• Rollback to previously defined "safe"state.

• Prevent one process from always being the one preempted (starvation).

DEADLOCKS Deadlock Recovery

53

COMBINED APPROACH TO DEADLOCK HANDLING:

• Type of resource may dictate best deadlock handling. Look at
ease of implementation, and effect
on performance.

• In other words, there is no one best technique.

• Cases include:

Preemption for

memory,

Preallocation for

swapspace,

DEADLOCKS Deadlock Recovery

ThankU

