MSC-CS

CRYPTOGRAPHY
&
NETWORK SECURITY

UNIT - 3

Unit-3: Advanced Encryption Standard:

Finite Field Arithmetic — AES Structure — AES
Transformation Functions — AES Key Expansion — An
AES Example — AES Implementation

Public Key Cryptography and RSA:

Principles of Public Key Cryptosystems — The RSA
Algorithm

Origins

~ clear a replacement for DES was needed
» have theoretical attacks that can break it
» have demonstrated exhaustive key search attacks

- can use Triple-DES — but slow, has small blocks
- US NIST issued call for ciphers in 1997

- 15 candidates accepted in Jun 98

-~ 5 were shortlisted in Aug-99

- Rijndael was selected as the AES inf Oct-2000

» Issued as FIPS PUB 197 standard in Nov-2001

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data

~ an iterative rather than feistel cipher

» processes data as block of 4 columns of 4 bytes
» Operates on entire data block in every round

~ designed to be:
» resistant against known attacks

» Speed and code compactness on many CPUSs
» design simplicity

Plaintext - 16 bytes (128 bits) Key - M bytes

Input state |
(16 bytes) || Round 0 key (M bytes) [
(16 bytes)

State after
initial
transformation
(16 bytes)

Round 1 key
(16 bytes)
n

AES
Encryption
Process

output state ||
(16 bytes)

output state
(16 bytes)

Final state
(16 bytes)

LLLL I L L L]
Cipehertext - 16 bytes (128 bits)

AES Structure

~ data block of 4 columns of 4 bytes is state
~ key Is expanded to array of words

> has 9/11/13 rounds in which state undergoes:
» byte substitution (1 S-box used on every byte)

» Shift rows (permute bytes between groups/columns)
» MIX columns (subs using matrix multiply of groups)
» add round key (XOR state with key material)

» View as alternating XOR key & scramble data bytes

-~ Initial XOR key material' & incomplete last round
-~ With fast XOR & table lookup implementation

AES Structure

Plaintext Plaintext

26,39

Add round key Add round key

Ciphertext Ciphertext

(a) Encryption (b) Decryption

Some Comments on AES

1. an iterative rather than feistel cipher

key expanded into array of 32-bit words
. four words form round key in each round

3. 4 different stages are used as shown

has a simple structure
only AddRoundKey uses key

5. AddRoundKey a form of Vernam cipher.

~each stage Is easlily reversible
5. decryption USES Keys In reverse order

9, decryption does recover plaintext
10, final roundihas only 3'stages

AES Transformation
Functions

Substitute Bytes

- a simple substitution of each byte

- uses one table of 16x16 bytes containing a
permutation of all 256 8-bit values

- each byte of state Is replaced by byte indexed by
row. (left 4-bits) & column (right 4-bits)

» €0. byte {95} Is replaced by byte in row 9 column 5

» Which has value {2A}

- S-box constructed using defined transformation
of values in GE(2°)

- designed to be resistant to all known attacks

Substitute Bytes

Substitute Bytes Example

87 | F2 4D 97
EC | 6E 4(. 90
4A

Shift Rows

- a circular byte shift in each each

» 1°trow is unchanged

» 2" row does 1 byte circular shift to left
» Jrd row does 2 byte circular shift to left
» 4th row does 3 byte circular shift to left

- decrypt inverts using shifts to right

-~ since state Is processed by columns, this step
permutes bytes between the columns

Shift Rows

e[[— [
e[[— LT T [l
e[o[l

EC | 6E | 4C
4A C3 | 46 | E7

8C D8 | 95

Mix Columns

each column s processed separately.

-each byte Is replaced by a value
dependent on all 4 bytes in the column

effectively a matrix multiplication in GE(2°)
using prime poly m(x) =xe+x*+x>+x+1

S
.-

-
9.,
[T S T R,

A - B
e . i
Laad

P

o
o
2
2

P

e
“ -

Mix Columns

Mix Columns Example

87 | F2 | 4D | 97
6E | 4C | 90 | EC

(102}« {87}) ©({03} *{6E }) & {46} @ {A6} = {47}
187} @ ({02}« {OE }) @ ({03} *{46}) & {A6} = {37}

187} @ {6E } @ ({02} » {46}) @ ({03} » { AG}) = {94}

({03}« {87}) ©{OE } & {46} © ({02} * { A6}) ={ED}

AES Arithmetic

-~ uses arithmetic in the finite field GE(2°)
- with irreducible polynomial

mix) = x° + xt + x5 + x + 1
whichis (100011011) or {11b}
- e.g.
{02} « {87} mod {11b} = (1 0000 1110) mod {11b}
= (1 0000 1110) xor. (1 0001 1011) = (0001 0101)

Mix Columns

- can express each col as 4 equations
» [0 derive each new byte in col

~ decryption reguires use of Inverse matrix
» With larger coefficients, hence a little harder.

- have an alternate characterisation

o €ach column a 4-term polynomial

» With coefficients in GE(2°)

» and polynomials multiplied modulo (x*+1)

~ coefficients based on linear code with
maximal distance between codewords

Add Round Key

- XOR state with 128-bits of the round key.

-~ again processed by column (though
effectively a series of byte operations)

- Inverse for decryption identical
» Since XOR own inverse, with reversed keys

> designed to be as simple as possible
» a form of \Vernam cipher on expanded key
» fequires other stages for complexity / security

Add Round Key

d
=
=
O

1

2,

L

<

ShiftRows

MixColumns

anpdddddddddtddddd

AES Key Expansion

- takes 128-bit (16-byte) key and expands
Into array of 44/52/60 32-bit words

- start by copying key into first 4 words
- then loop creating words that depend on
values in previous & 4 places back

o In 3 of 4 cases just XOR these together

» 1°tword in 4 has rotate + S-box + XOR round
constant on previous, before XOR 4™ back

AES Key Expansion

Key Expansion Rationale

~ designed to resist known attacks

-~ design criteria included
» KNnowing part key insufficient to find many more
o Invertible transformation
» fast on wide range of CPU'’s
» USe round constants to break symmetry
» diffuse key bits into round keys
» €nough non-linearity to hinder analysis
» SImplicity: ofidescription

AES
Example

Key
Expansion

Key Words

Auxiliary Function

0f 15 71 9
47 49 eB 59
ad

af 7f 67 98

0c b?

wi
W
w5
wé

zl
wl
w2
w3

= dc 90 37 bO
= 9b 49 df e9
= 97 fe 72 3f

38 81 15 a7

RotWord(w3)= 7f 67 98 af = xl
SubWord(xl)= d2 85 46 79 = yl
Rcon(l)= 01 00 00 00

yl ® Rcon(l)= d3 85 46 79 = zl
RotwWord(w7)= Bl 15 a7 38 = x2
SubWord(x4)= 0c 59 5¢c 07 = y2
Rcon(2)= 02 00 00 00

Y2 ® Rcon(2)= 0e 59 5¢c 07 = z2

wé
w8

wl2
wll
wléd

22
w5

o

=
= d2 c9 6b b7
= 49 80 b4 5e

w9 ® w6 = de 7e c6 61
wl0 @ w? = e6 ££f d3 cé
wB ® 23 = c0 af df 39

w9 = 89 2f 6b 67
wl0 = 57 51 ad 06
wll = bl ae 7e c0

RotWord(wll)= £ff d3 c6 eb6 = x3
SubWord({x2)= 16 66 b4 8e = y3
Rcon(3)= 04 00 00 00

y3 ® Rcon(3)= 12 66 b4 Be = z13

RotWord(wl5)= ae 7e c0 bl = x4
SubWord(x3)= e4 £3 ba c8 = y4
Rcon(4)= 08 00 00 00

y4 ® Rcon(4)= ec £3 ba c8 = 4

wl2
wlé
wl?
wl8

z4 = 2¢c 5¢ 65 f1l

wl3 = a5 73 Qe 96
wld = £2 22 a3 S0
wl5 = 43 8c dd 50

RotWord(wl9)= 8c dd 50 43 = x5
SubWord(x4)= 64 cl 53 la = y5
Rcon(5)= 10 00 00 00

y5 @ Rcon(5)= 74 cl1 53 la = 25

wlé
w20
w2l
w22
w20
w24
w25
w26

CRCROHORORORCHORORCRCICRL

® 4

z5 = 58 9d 36 eb

wl7 = £fd ee 38 7d
wl8 = 0f cc 9b ed
wl9 = 4c 40 46 bd
26 = 71 ¢7 4c c2

w2l = 8c 29 74 bf
w22 = 83 e5 ef 52
w23 = cf a5 a9 ef

RotWord(w23)= 40 46 bd 4c = x6
SubWord(x5)= 09 5a 7a 29 = yé6
Rcon(6)= 20 00 00 00

y6 @ Rcon(6)= 29 5a 7a 29 = z6
RotWord(w27)= a5 a9 ef cf = x7
SubWord(x6)= 06 d3 df 8a = y7
Rcon(7)= 40 00 00 00

y7 ® Rcon(7)= 46 d3 df Ba = z7

w24
w28
w29
w30

z7 = 37 14 93 48

w25 = bb 3d e7 £7
w26 = 38 d8 08 a5
w27 = £7 7d al 4a

RotWord(w3l)= 7d al 4a £f7 = x8
SubWord(x7)= f£f 32 d6 68 = y8
Rcon(8)= 80 00 00 00

y8 ® Rcon(B)= 7f 32 d6 68 = z8

w28
w32
w33
w34
w32
w36
w37
w38

z8 = 48 26 45 20
w29 = £3 1b a2 47
w30 = cb ¢3 aa 72

w32 = 3c be Ob 38

z9 = £d 0d 42 cb
w33 Ce 16 el lc
w34 c5 d5 4a 6e
w35 £9 6b 41 56

RotWord(w35)= be 0b 38 3c = x9
SubWord(x8)= ae 2b 07 eb = y9
Rcon(9)= 1B 00 00 00

Y9 ® Rcon(9)= b5 2b 07 eb = 29
RotWord(w39)= 6b 41 56 £9 = x10
SubWord(x9)= 7£f 83 bl 99 = yl0
Rcon(10)= 36 00 0C 00

yl0 @ Recon(l1l0)= 49 83 bl 99 = z10

w36
w4ao
wal
wa2

(CRCECRCHCRORORCHORCRORCHORCR ORI

z10 b4 8e £3 52
w37 ba 98 13 4e
w38 7f 4d 59 20
w39 86 26 18 76

AES
Example
Encryption

Start of round

01 89 fe 76
23 ab dc 54
45 cd ba 32

67 ef 98 10

Oe ce £2 d9
36 72 6b 2b
34 25 17 55

ae b6 4e 88

65 0f c0 4d
74 ¢7 eB d0
70 £f£f eB 2a
75 3f ca 9¢
5¢ 6b 05 f4
7b 72 a2 6d
bé 34 31 12
Sa 9b 7f 94
71 48 5¢ 7d
15 dc da a%
26 74 c7 bd
24 7e 22 9c
£8 bé Oc éc
67 37 24 f£f
ae a5 cl ea
e8 21 97 bc
72 ba cb 04
le 06 d4 fa
b2 20 bc 65
00 6d e7 4e

"Oa 89 cl 85

d9 £9 c5 e5
ds £7 £7 £fb
| 56 7b 11 14
db al f8 77
18 éd 8b ba
a8 30 08B 4e

 £f d5 d7 aa

e9 8f 2b
34 2f 08
85 49

bf 81 89

ff 3b
59 af
02 aa

£f 08 69 64
Ob 53 34 14
84 bf ab 8f
4a 7c 43 b9

After

SubBytes ShiftRows

‘ab 8b 89 35

05 40 7f £1
18 3f f0 fc

e4 4de 2f c4

4d 76 ba el
92 c6 9b 70
51 16 9b e5

ic 19d 75 74 de |

v

é4a 7f 6b bf
21 40 3a 3c
8d 18 ¢7 c¢9
b8 14 d2 22
a3 52 4a £f
59 B6 57 d3
£7 92 c6 Ta
36 £3 93 de
41 8d fe 29
85 9a 36 16
e4 06 78 87

9b fd 88 65

| 40 £4 1f £2

72 6£ 48 2d
37 b7 65 4d
63 3c 94 2f
67 a7 78 97
35 99 a6 d9
61 68 68 Of
bl 21 B2 fa

7 | b9 32 41 £5

ad 3c 3d £4
c2 04 30 2f

16 03 Oe ac |

99 le 73 £1

af 18 15 30
84 dd 97 3b

08 08 0c a7

4b b2 16 e2
32 85 cb 79
£2 97 77 ac
32 63 cf 18

After

‘ab &b
40 7f £l
£0 fc 18 3f

. c4 e4 4e 2f

4d 76 ba el
c6 9b 70 92
9b e5 51 16

de 9d 75 74

4a 7f

40 3a 21
c?7 c9 18
22 b8 d2

‘a3 52 £

86 57 59
cé 7Ta 92

' de 36 £3 93

41 8d 29
9a 36 85
78 87 06

65 9b fd 88

40 £4 1f £2
6f 48 2d 72
65 4d 37 b7
| 2f 63 3c 94
67 a7 78 97
39 a6 d9 35
68 Of 61 68
» | fa bl 21 82
b9 32 41 f£5
3c 3d £4 ad

30 2f c2 04

ac 16 03 Oe

99 le 73 f1
18 15 30 af
97 3b 84 dd
a7 08 08 Oc
4b b2 16 e2
85 cb 79 32

77 ac £2 97

18 32 63 cf

| MixColumns

-
b9 94 57 75

e4 Be 16 51
47 20 %a 3f

|c5 d6 £5 3b |

8e 22 db 12
bz £2 dc 92
df 80 £7 cl

2d ¢5 le 52
bl 0b cc

ba 8b 07
£9 6a c3
1d 24 5¢
d4 fe Of
3b 06 73
cb 62 37
19 b7 07 ec
2a c4 48
83 18 ba
84 27 23
eb 10 0a £3
7b 42 4a
le 20 40
94 18 52
S4 43 £fb

lec la c0 80

Oc 50 53 c7
3b d7 00 ef
b7 22 72 eC

5 | bl la 44 17 |

3d 2f ec bé
Ca 6b 2f 42

9f 68 £3 bl

31 30 3a c2
ac 71 Bc c4
46 65 48 eb
6a lc 31 62 ¢
4b 86 Ba 36
bl ¢cb 27 5a
fb £2 £2 af
cc 5a 5b cf

Round Key W

0f 47 Oc af
15 d9 b7 7f
71 e8 ad 67

1 €9 59 d6 98

dc 9b 97 38
90 49 fe 81
37 df 72 15
b0 e9 3f a7
d2 49 de eb
c9 B0 7e £f
6b b4 c6 d3

| b7 Se 61 c6

cC 89 57 bl
af 2f 51 ae
df €6b ad 7e

| 39 67 06 c0

2c a5 £2 43
5¢ 73 22 8¢
65 Oe a3 dd

| £1 96 90 50

58 £d4d Cf 4c
9d cc 40
36 9b 46

.eb 7d ed bd

71 83 cf
c? e5 ab
4c ef ad%
. c2 bf 52 ef
37 38 £
14 ds8 7d
93 08 al
| 48 £7 a5 4a
48 £3 cb 3c
26 1b c3 be
45 a2 aa 0Ob
20 d7 72 38
fd Oe c5 £9
0d 16 d5 6b
42 e0 4a 41
cb lc 6e 56
b4 Be £3 52
ba 98 13 4e
7f 44 59 20
86 26 18 76

‘ Number of bits
that differ

Round

] 0123456789abcdeffedcba9876543210
0023456789%9abcdeffedcba$876543210
0e3634aece77225b6£26b174ed92b5588

0£3634aece7225b6£26b174ed92b5588

657470750£c7f£3fc0e8eB8cadddl2a%¢c

c4a%ad090£fc7££3£fc0eBeBcadddl2ad9¢c

5¢c7bb4%abb72349b05a2317££46d1294

AES ; ‘ fe2ae569£f7ee8bbB8clf5a2bb37e£53d5

‘ 7115262448dc747e5¢cdac?7227dadbd9¢

E I P | ec093dfb7c45343d689017507d485062
xamp e 4 ‘ f867aeeBb437a5210c24c1974cffeabe

| 43e£db697244d£808e8d9364celaebfs

Ava I adNC h - : ‘ 721eb200ba06206dcbddbee704 £a654e

7b28a5d5ed643287e006c099bb375302
| 0ad9d85689£9£77bclc5£71185e5£b14
‘ dbl8aB8ffal6d30d5£88b08d77 7badeaa
| 9£b8b5452023¢70280e5c4bb9e555a4b
’ £91b4fbfe934cIbfBE2£85812b084989
| 20264e1126b219aef7feb3f9Ib2d6des0
| ccal04al3e678500££59025£3bafaald
‘ b56a0341b2290ba7dfdfbddcd8578205

ff0b844a0853b£f7¢c6934ab4364148£DbS
612b89398d0600cdell6227ce72433£0

1

AES Decryption

~ AES decryption Is not identical to
encryption since steps done in reverse

> but can define an equivalent inverse
cipher with steps as for encryption

o DUt USINg INnverses of each step

» With a different key schedule

~ WOrks since result is unchanged when
» SWap byte substitution & shift rows
» SWap mix columns & add (tweaked) round Key,

AES Decryption

Ciphertext
Add round key
Inverse sub bytes

Inverse mix cols

Plaintext

Implementation Aspects

-~ can efficiently implement on 8-bit CPU

» Dyte substitution works on bytes using a table
of 256 entries

o Shift rows Is simple byte shift
o add round key works on byte XOR's

o Mix columns requires matrix multiply in GFE(28)
which works on byte values, can be simplified
to use table lookups & byte XOR's

Implementation Aspects

~ can efficiently implement on 32-bit CPU
» redefine steps to use 32-bit words
» Can precompute 4 tables of 256-words

o then each column Iin each round can be
computed using 4 table lookups + 4 XORs

o at a cost of 4Kb to store tables
- designers believe this very efficient

Implementation was a key factor in its
selection as the AES cipher

Private-Key Cryptography

» traditional private/secret/single key
cryptography uses one key

» shared by both sender and receiver

» if this key is disclosed communications are
compromised

» also is symmetric, parties are equal

» hence does not protect sender from receiver
forging a message & claiming is sent by sender

Public-Key Cryptography

probably most significant advance in the 3000
year history of cryptography

uses two keys — a public & a private key
asymmetric since parties are not equal

uses clever application of number theoretic
concepts to function

complements rather than replaces private key
crypto

Why Public-Key Cryptography?

* developed to address two key issues:

— key distribution — how to have secure
communications in general without having to trust
a KDC with your key

— digital signatures — how to verify a message
comes intact from the claimed sender

* public invention due to Whitfield Diffie &
Martin Hellman at Stanford Uni in 1976

— known earlier in classified community

Public-Key Cryptography

* public-key/two-key/asymmetric cryptography involves
the use of two keys:

— a public-key, which may be known by anybody, and can be
used to encrypt messages, and verify signatures

— a related private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

* infeasible to determine private key from public

* is asymmetric because

— those who encrypt messages or verify sighatures cannot
decrypt messages or create signatures

Public-Key Cryptography

Bobs's
public key

Joy Ted 53
Mike Alice
PU, | Alice's public PR, Alice 's private
key key
Transmitted X= :
ciphertext DIPR,, Y]] -
> —> =
Y =E[PU, X]
. ca
o Encryption algorithm Decryption algorithm e

input

output

&___,-f—'w-__/

Bob (a) Encryption with public key Alice

(e.g., RSA)

Symmetric vs Public-Key

Conventional Encryption Public-Key Encryption

Needed to Work: Needed to Work:

1. The same algorithm with the same key is 1. One algorithm is used for encryption and
used for encryption and decryption. decryption with a pair of keys, one for

encryption and one for decryption.

2. The sender and receiver must share the

algorithm and the key. 2. The sender and receiver must each have
one of the matched pair of keys (not the
Needed for Security: same one).
1. The key must be kept secret. Needed for Security:
2. It must be impossible or at least 1. One of the two keys must be kept secret.
impractical to decipher a message if no
other information is available. 2. It must be impossible or at least
impractical to decipher a message if no
3. Knowledge of the algorithm plus other information is available.
samples of ciphertext must be
insufficient to determine the key. 3. Knowledge of the algorithm plus one of

the keys plus samples of ciphertext must
be insufficient to determine the other
key.

Public-Key Cryptosystems

Source A Destination B

G N

Decryption

Decryption
Algorithm

Algorithm

Encryption
Algorithm

Encryption
Algorithm

Key Pair
Source

PR, PU,

Key Pair
Source

)

Public-Key Applications

* can classify uses into 3 categories:

— encryption/decryption (provide secrecy)

— digital signatures (provide authentication)
— key exchange (of session keys)

* some algorithms are suitable for all uses,
others are specific to one

Algorithm Encryption/Decryption | Digital Signature Keyv Exchange

RSA Yes Yes ' Yes

Elliptic Curve Yes Yes Yes

Diffie-Hellman No No Yes
DSS§S No Yes No

Public-Key Requirements

* Public-Key algorithms rely on two keys where:

— it is computationally infeasible to find decryption key
knowing only algorithm & encryption key

— it is computationally easy to en/decrypt messages when
the relevant (en/decrypt) key is known

— either of the two related keys can be used for encryption,
with the other used for decryption (for some algorithms)

* these are formidable requirements which only
a few algorithms have satisfied

Public-Key Requirements

need a trapdoor one-way function

one-way function has

— Y = f(X) easy

— X =f(Y) infeasible

a trap-door one-way function has
— Y =f,(X) easy, if k and X are known

— X=1,(Y) easy, if kand Y are known

— X =f,YY) infeasible, if Y known but k not known

a practical public-key scheme depends on a
suitable trap-door one-way function

Security of Public Key Schemes

» like private key schemes brute force exhaustive
search attack is always theoretically possible

» but keys used are too large (>512bits)

» security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

» more generally the hard problem is known, but is
made hard enough to be impractical to break

» requires the use of very large numbers
» hence is slow compared to private key schemes

RSA

» by Rivest, Shamir & Adleman of MIT in 1977
» best known & widely used public-key scheme

» based on exponentiation in a finite (Galois) field over
integers modulo a prime

® nb. exponentiation takes O((log n)3) operations (easy)
» uses large integers (eg. 1024 bits)

» security due to cost of factoring large numbers
® nb. factorization takes O(e 'egnloglogn) gperations (hard)

RSA En/decryption

* to encrypt a message M the sender:
— obtains public key of recipient PU={e, n}
— computes: C = M® mod n, where 0sM<n
* to decrypt the ciphertext C the owner:
— uses their private key PR={d, n}
— computes:M = C¢ mod n
* note that the message M must be smaller
than the modulus n (block if needed)

RSA Key Setup

each user generates a public/private key pair by:
selecting two large primes at random: p, g
computing their system modulus n=p.qg
—noteg(n)=(p-1) (g-1)

selecting at random the encryption key e

— where 1<e<@ (n), gcd(e,o(n))=1
solve following equation to find decryption key d
—e.d=1 mod o(n) and 0=dsn

publish their public encryption key: PU={e,n}
keep secret private decryption key: PR={d,n}

Why RSA Works

* because of Euler's Theorem:
— a?’®mod n = 1 wheregcd(a,n)=1
* in RSA have:
— N=p.q
= @(n)= (p=L) (g=+)
— carefully chose e & d to be inversesmod o (n)
— hencee.d=1+k.o (n) for some k
* hence:
Cd — Me.d — M1+k.@(n) — Ml. (Mg(n))k

= M, (1)¥ = M! = M mod n

N o

¥ gu R s

RSA Example - Key Setup

Select primes: p=17 & g=11

Calculate n =pg =17 x 11=187
Calculate g(n)=(p-1) (g-1)=16x10=160
Select e: gcd (e, 160)=1; choose e=7

Determine d: de=1 mod 160andd < 160
Value is d=23 since 23x7=161= 10x160+1

Publish public key PU={7, 187}
Keep secret private key PR={23, 187}

RSA Example - En/Decryption

» sample RSA encryption/decryption is:
» given message M = 88 (nb. 88<187)

» encryption:
C = 887 mod 187 = 11

» decryption:
M = 1143 mod 187 = 88

Exponentiation

can use the Square and Multiply Algorithm
a fast, efficient algorithm for exponentiation
concept is based on repeatedly squaring base

and multiplying in the ones that are needed to
compute the result

look at binary representation of exponent

only takes O(log, n) multiples for number n
—eg. 7> = 74,7t = 3.7 = 10 mod 11
— eg. 3129 = 3128 31 = 5 3 = 4 mod 11

Exponentiation

c =0; £ =1

for 1 = k downto 0
do ¢ = 2 X C
f = (£f x £) mod n
if by == 1 then
c = ¢ 4+ 1
f = (f x a) mod n

return £

Efficient Encryption

encryption uses exponentiation to power e

hence if e small, this will be faster
— often choose e=65537 (216-1)
— also see choices of e=3 or e=17

but if e too small (eg e=3) can attack

— using Chinese remainder theorem & 3 messages
with different modulii

iIf e fixed must ensure gcd (e, 2 (n)) =1
— ie reject any p or g not relatively prime to e

Efficient Decryption

decryption uses exponentiation to power d
— this is likely large, insecure if not
can use the Chinese Remainder Theorem

(CRT) to compute mod p & g separately. then
combine to get desired answer

— approx 4 times faster than doing directly

only owner of private key who knows values
of p & g can use this technique

RSA Key Generation

users of RSA must:
— determine two primes at random -p, g
— select either e or d and compute the other

primes p, g must not be easily derived from
modulus n=p. g

— means must be sufficiently large

— typically guess and use probabilistic test

exponents e, d are inverses, so use Inverse
algorithm to compute the other

RSA Security

* possible approaches to attacking RSA are:

— brute force key search - infeasible given size of
numbers

— mathematical attacks - based on difficulty of
computing @(n), by factoring modulus n

— timing attacks - on running of decryption
— chosen ciphertext attacks - given properties of RSA

Factoring Problem

* mathematical approach takes 3 forms:
— factor n=p. g, hence compute ¢ (n) and then d
— determine @ (n) directly and compute d
— find d directly

* currently believe all equivalent to factoring
— have seen slow improvements over the years
* as of May-05 best is 200 decimal digits (663) bit with LS

— biggest improvement comes from improved algorithm
* cfQSto GHFS to LS

— currently assume 1024-2048 bit RSA is secure
* ensure p, q of similar size and matching other constraints

Progress in Factoring

Number of Approximate Date Achieved MIPS-years Algorithm
Decimal Digits | Number of Bits
100 332 April 1991 7 quadratic sieve
110 365 April 1992 75 quadratic sieve
120 398 June 1993 830 quadratic sieve
129 428 April 1994 5000 quadratic sieve
130 431 April 1996 1000 generalized
number field
sieve
140 465 February 1999 2000 generalized
number field
sieve
155 512 August 1999 8000 generalized
number field
sieve
160 530 April 2003 — Lattice sieve
174 576 December 2003 — Lattice sieve
200 663 May 2005 — Lattice sieve

Progress in
Factoring

MIPS-years Needed to Factor

1 021

10°

10"

IO!E

—_— — —

- - = = c =)
— . - Lt [
- (=3 g -] L ..

=
L

=3

Bits

=
7 //
= n
NA L LT
// /‘/\‘
ST
/|~
A

Timing Attacks

developed by Paul Kocher in mid-1990’s

exploit timing variations in operations

— eg. multiplying by small vs large number

— or IF's varying which instructions executed
infer operand size based on time taken
RSA exploits time taken in exponentiation

countermeasures

— use constant exponentiation time
— add random delays

— blind values used in calculations

Chosen Ciphertext Attacks

RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

attackers chooses ciphertexts & gets
decrypted plaintext back

choose ciphertext to exploit properties of RSA
to provide info to help cryptanalysis

can counter with random pad of plaintext

or use Optimal Asymmetric Encryption
Padding (OASP)

Optimal
Asymmetric
Encryption
Padding
(OASP)

seed M
\ 4
H(P)
padding
¥ ¥ : v
DB
Y
>@ED———
Y
maskedDB
B———UCD-
A 4 :
maskedseed
! }

EM

DB = data block
MGF = mask generating function
EM = encoded message

P = encoding parameters
M = message to be encoded
H = hash function

